Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = methylene blue adsorption capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2198 KB  
Article
Fly Ash-Derived Mesoporous Silica–Alumina Aerogel via an Optimized Water-Acid Leaching Process for Effective Methylene Blue Removal
by Ke Sun, Yike Liu, Zhiming Zhang, Jiayu Xu, Jiajing Yu, Jiankuan Zhang, Lianzheng Gui, Zhuo Chen and Sha Liang
Separations 2025, 12(9), 234; https://doi.org/10.3390/separations12090234 - 1 Sep 2025
Abstract
Adsorption is a common method for solving the contamination of methylene blue (MB) in dyeing wastewater. Aerogel adsorbents with high porosity and specific surface areas have attracted increasing attention. However, the high costs of raw materials for aerogel preparation restrict their large-scale production [...] Read more.
Adsorption is a common method for solving the contamination of methylene blue (MB) in dyeing wastewater. Aerogel adsorbents with high porosity and specific surface areas have attracted increasing attention. However, the high costs of raw materials for aerogel preparation restrict their large-scale production and application. Fly ash (FA), a by-product of coal-fired power plants, is rich in silica and aluminum elements and has the potential to prepare aerogel adsorbents. This study proposed a modified recycling route for FA to synthesize silica–alumina composite aerogel with high specific surface area. FA was pretreated by three steps of alkali fusion, water leaching and acid leaching to obtain a solution rich in silicon and aluminum elements, with a total leaching efficiency of 96.92% and 91.36% for silicon and aluminum, respectively, under optimized alkaline fusion conditions of FA:NaOH mass ratio of 1:1.2, calcination time of 2 h, and calcination temperature of 550 °C. Silica–alumina aerogel with a specific surface area of 661.3 m2/g was then synthesized from the leaching solution through a sol–gel method, exhibiting well-developed mesopores and achieving an adsorption capacity of 52.22 mg/g for MB. The adsorption kinetics and isotherms of MB adsorption by FA-derived silica–alumina composite aerogel was investigated. FTIR characterization confirmed that the adsorption of MB by FA-derived aerogel was mainly physical adsorption. This study provides a new approach for the resource utilization of FA, and the high-specific-surface-area FA-derived aerogel holds potential as an alternative adsorbent for the removal of dyes in wastewater. Full article
Show Figures

Figure 1

22 pages, 2299 KB  
Article
Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions
by María Lorena Cadme Arévalo, Raisha Lorena Campisi Cadme, Thais Sarah Arreaga Cadme, Ronald Oswaldo Villamar-Torres, Javier Fernández González, José Benavente Herrera, Alda Geijo López, Sesan Abiodun Aransiola and Naga Raju Maddela
Processes 2025, 13(9), 2748; https://doi.org/10.3390/pr13092748 - 28 Aug 2025
Viewed by 246
Abstract
This study focused on the comprehensive characterization of the adsorbent obtained from rice husk, which was selected for its high adsorption capacity in iodine solution (IS) and methylene blue solution (MBS). This was achieved with adsorbents prepared by a combined treatment involving calcium [...] Read more.
This study focused on the comprehensive characterization of the adsorbent obtained from rice husk, which was selected for its high adsorption capacity in iodine solution (IS) and methylene blue solution (MBS). This was achieved with adsorbents prepared by a combined treatment involving calcium carbonate prior to carbonization and activation with phosphoric acid. Characterization was performed using advanced techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), laser light diffraction and energy-dispersive X-ray spectroscopy (EDS), which allowed for the evaluation of the adsorbent’s microstructure and composition. The results revealed a complex structure of the adsorbents with interconnected pores, which facilitates efficient adsorption in IS and MBS and the standard indicators to evaluate adsorption capacity. The novelty of this study lies in the application of advanced characterization techniques to optimize the adsorbent properties and understand how preparation conditions affect the adsorbent’s microstructure. The characterized adsorbent materials in this study presented great potential for applications in water treatment and industrial processes, offering an economical and environmentally sustainable solution. Promoting the use of rice husks in the production of adsorbents contributes to the circular economy, reducing production costs and environmental pollution. The results suggested that these materials are effective in the removal of pollutants, which make them relevant for practical applications in water and soil bioremediation. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

17 pages, 3162 KB  
Article
A Cyclodextrin Polymer for the Removal of Pharmaceuticals as Environmental Pollutants from Water, as Illustrated by the Example of Methylene Blue as a Model Compound
by Iwona Zawierucha, Jakub Lagiewka, Paulina Kapusniak, Damian Kulawik, Sandra Zarska, Tomasz Girek, Aleksandra Ciesielska, Malgorzata Girek-Bak and Wojciech Ciesielski
Materials 2025, 18(17), 3980; https://doi.org/10.3390/ma18173980 - 25 Aug 2025
Viewed by 469
Abstract
This study developed a beta-cyclodextrin polymer crosslinked with citric acid (CDCAPol) for removing water contaminants using methylene blue (MB) as a model compound. The polymer, which features free carboxyl groups and cyclodextrin cavities, demonstrated high adsorptive capacity. Under optimal conditions (0.01 g adsorbent, [...] Read more.
This study developed a beta-cyclodextrin polymer crosslinked with citric acid (CDCAPol) for removing water contaminants using methylene blue (MB) as a model compound. The polymer, which features free carboxyl groups and cyclodextrin cavities, demonstrated high adsorptive capacity. Under optimal conditions (0.01 g adsorbent, pH 6, and 50 mg/dm3 MB), a removal efficiency of 99.2% was achieved, with a maximum adsorption capacity of 126.58 mg/g as determined by the Langmuir isotherm. Kinetic data fit the best to the pseudo-second-order model, highlighting strong interactions between MB and the polymer. This promising material may find applications in wastewater treatment and environmental protection. Full article
Show Figures

Figure 1

24 pages, 5000 KB  
Article
A Study of Methylene Blue Adsorption by a Synergistic Adsorbent Algae (Nostoc sphaericum)/Activated Clay
by Yakov Felipe Carhuarupay-Molleda, Noemí Melisa Ccasa Barboza, Sofía Pastor-Mina, Carlos Eduardo Dueñas Valcarcel, Ybar G. Palomino-Malpartida, Rolando Licapa Redolfo, Antonieta Mojo-Quisani, Miriam Calla-Florez, Rolando F. Aguilar-Salazar, Yovana Flores-Ccorisapra, Arturo Rojas Benites, Edward Arostegui León, David Choque-Quispe and Frida E. Fuentes Bernedo
Polymers 2025, 17(15), 2134; https://doi.org/10.3390/polym17152134 - 4 Aug 2025
Viewed by 677
Abstract
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was [...] Read more.
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was obtained by acid treatment, followed by activation with 1 M NaCl and sonication, while ANS was obtained by microatomization in an aqueous medium. NC/ANS was mixed in a 4:1 weight ratio. The NC/ANS synergistic adsorbent was characterized by the point of zero charge (PZC), zeta potential (ζ), particle size, FTIR spectroscopy, and scanning electron microscopy (SEM). NC/ANS exhibited good colloidal stability, as determined by pHPZC, particle size in the nanometer range, and heterogeneous morphology with functional groups (hydroxyl, carboxyl, and amide), removing between 72.59 and 97.98% from an initial concentration of 10 ppm of MB, for doses of 20 to 30 mg/L of NC/ANS and pH of 5 to 8. Optimal adsorption conditions are achieved at pH 6.8 and 32.9 mg/L of adsorbent NC/ANS. It was observed that the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models best described the adsorption kinetics, indicating a predominance of the physisorption process, with adsorption capacity around 20 mg/g. Isotherm models and thermodynamic parameters of adsorption, ΔS, ΔH, and ΔG, revealed that the adsorption process is spontaneous, favorable, thermodynamically stable, and occurs at the monolayer level, with a regeneration capacity of 90.35 to 37.54% at the fifth cycle. The application of physical activation methods, such as sonication of the clay and microatomization of the algae, allows proposing a novel and alternative synergistic material from organic and inorganic sources that is environmentally friendly and promotes sustainability, with a high capacity to remove cationic dyes in wastewater. Full article
Show Figures

Figure 1

15 pages, 1591 KB  
Article
Role of Cation Nature in FAU Zeolite in Both Liquid-Phase and Gas-Phase Adsorption
by Baylar Zarbaliyev, Nizami Israfilov, Shabnam Feyziyeva, Gaëtan Lutzweiler, Narmina Guliyeva and Benoît Louis
Catalysts 2025, 15(8), 734; https://doi.org/10.3390/catal15080734 - 1 Aug 2025
Viewed by 929
Abstract
This study focuses on the exchange of mono- and divalent metal cations in FAU-type zeolite and their behavior in gas-phase CO2 adsorption measurements and liquid-phase methylene blue (MB) adsorption in the absence of oxidizing agents under dark conditions. Firstly, zeolites exchanged with [...] Read more.
This study focuses on the exchange of mono- and divalent metal cations in FAU-type zeolite and their behavior in gas-phase CO2 adsorption measurements and liquid-phase methylene blue (MB) adsorption in the absence of oxidizing agents under dark conditions. Firstly, zeolites exchanged with different cations were characterized by several techniques, such as XRD, SEM, XRF, XPS, and N2 adsorption–desorption, to reveal the impact of the cations on the zeolite texture and structure. The adsorption studies revealed a positive effect of cation exchange on the adsorption capacity of the zeolite, particularly for silver-loaded FAU zeolite. In liquid-phase experiments, Ag-Y zeolite also demonstrated the highest MB removal, with a value of 79 mg/g. Kinetic studies highlighted that Ag-Y could reach the MB adsorption equilibrium within 1 h, with its highest rate of adsorption occurring during the first 5 min. In gas-phase adsorption studies, the highest CO2 adsorption capacity was also achieved over Ag-Y, yielding 10.4 µmol/m2 of CO2 captured. Full article
Show Figures

Graphical abstract

24 pages, 5431 KB  
Article
A Comparative Evaluation of Ulothrix sp. and Spirogyra sp. as Eco-Friendly Biosorbents for Methylene Blue Removal: Mechanistic Insights from Equilibrium, Kinetic, and Thermodynamic Analyses
by Meriem Dehbi, Hicham Zeghioud, Dalila Smail and Faouzia Dehbi
Processes 2025, 13(8), 2408; https://doi.org/10.3390/pr13082408 - 29 Jul 2025
Viewed by 687
Abstract
This study investigates two novel algal biosorbents (Ulothrix sp. and Spirogyra sp.) from Djelfa, Algeria, for methylene blue (MB) removal from aqueous solutions. A comprehensive characterization, including scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), Brunauer–Emmett–Teller (BET) analysis, porosity measurements, and Fourier-transform infrared [...] Read more.
This study investigates two novel algal biosorbents (Ulothrix sp. and Spirogyra sp.) from Djelfa, Algeria, for methylene blue (MB) removal from aqueous solutions. A comprehensive characterization, including scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), Brunauer–Emmett–Teller (BET) analysis, porosity measurements, and Fourier-transform infrared spectroscopy (FTIR), revealed distinct physicochemical properties. Ulothrix exhibited a surface area of 5.35 m2/g with an average pore diameter of 32.77 nm, whereas Spirogyra showed values of 3.47 m2/g and 20.97 nm for the surface area and average pore diameter, respectively. Despite their modest surface areas, both algae demonstrated effective adsorption capacities (6.94 mg/g for Spirogyra vs. 6.38 mg/g for Ulothrix), with optimal doses of 0.01 g and 0.08 g (for 50 mL of MB solution), respectively. Kinetic analysis confirmed pseudo-second-order adsorption (R2 > 0.97), indicating chemisorption dominance. Isotherm data best fit the Sips model (R2 = 0.94), suggesting heterogeneous monolayer formation. Thermodynamic studies revealed an endothermic (ΔH° > 0), spontaneous (ΔG° < 0), yet favorable adsorption process, highlighting the potential of these naturally abundant algae as sustainable biosorbents for dye wastewater treatment. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

27 pages, 2690 KB  
Article
Adsorption of Methylene Blue on Metakaolin-Based Geopolymers: A Kinetic and Thermodynamic Investigation
by Maryam Hmoudah, Rosanna Paparo, Michela De Luca, Michele Emanuele Fortunato, Olimpia Tammaro, Serena Esposito, Riccardo Tesser, Martino Di Serio, Claudio Ferone, Giuseppina Roviello, Oreste Tarallo and Vincenzo Russo
ChemEngineering 2025, 9(4), 79; https://doi.org/10.3390/chemengineering9040079 - 25 Jul 2025
Viewed by 401
Abstract
Metakaolin-based geopolymers with different molar ratios of Si/Al were synthesized and utilized as an efficient adsorbent for the removal of methylene blue (MB) as a model cationic dye from aqueous solution. Various analytical techniques were employed to characterize the synthesized geopolymers. The influence [...] Read more.
Metakaolin-based geopolymers with different molar ratios of Si/Al were synthesized and utilized as an efficient adsorbent for the removal of methylene blue (MB) as a model cationic dye from aqueous solution. Various analytical techniques were employed to characterize the synthesized geopolymers. The influence of the main operation conditions on the adsorption kinetics of MB onto the geopolymer was examined under various operating conditions. Results showed a significant maximum MB adsorption capacity at the temperature of 30 °C for all four types of geopolymers studied (designated as A, B, C, and D) up to 35.3, 23.6, 25.5, and 19.0 mg g−1, respectively. The corresponding order of Si/Al ratio was A < C < B < D. Adsorption kinetics was so fast and reached equilibrium in 10 min, and the experimental results were described using the adsorption dynamic intraparticle model (ADIM). The equilibrium data for MB removal was in agreement with the Langmuir isotherm. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

25 pages, 2545 KB  
Article
Kinetic, Isotherm, and Thermodynamic Modeling of Methylene Blue Adsorption Using Natural Rice Husk: A Sustainable Approach
by Yu-Ting Huang and Ming-Cheng Shih
Separations 2025, 12(8), 189; https://doi.org/10.3390/separations12080189 - 22 Jul 2025
Viewed by 615
Abstract
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable [...] Read more.
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable and low-cost adsorbent for the removal of methylene blue (MB) from synthetic wastewater. This approach effectively avoids the energy-intensive grinding process by directly using whole unprocessed rice husk, highlighting its potential as a sustainable and cost-effective alternative to activated carbon. A series of batch adsorption experiments were conducted to evaluate the effects of key operating parameters such as initial dye concentration, contact time, pH, ionic strength, and temperature on the adsorption performance. Adsorption kinetics, isotherm models, and thermodynamic analysis were applied to elucidate the adsorption mechanism and behavior. The results showed that the maximum adsorption capacity of CRH for MB was 5.72 mg/g. The adsorption capacity was stable and efficient between pH 4 and 10, and reached the highest value at pH 12. The presence of sodium ions (Na+) and calcium ions (Ca2+) inhibited the adsorption efficiency, with calcium ions having a more significant effect. Kinetic analysis confirmed that the adsorption process mainly followed a pseudo-second-order model, suggesting the involvement of a chemisorption mechanism; notably, in the presence of ions, the Elovich model provided better predictions of the data. Thermodynamic evaluation showed that the adsorption was endothermic (ΔH° > 0) and spontaneous (ΔG° < 0), accompanied by an increase in the disorder of the solid–liquid interface (ΔS° > 0). The calculated activation energy (Ea) was 17.42 kJ/mol, further supporting the involvement of chemisorption. The equilibrium adsorption data were well matched to the Langmuir model at high concentrations (monolayer adsorption), while they were accurately described by the Freundlich model at lower concentrations (surface heterogeneity). The dimensionless separation factor (RL) confirmed that the adsorption process was favorable at all initial MB concentrations. The results of this study provide insights into the application of agricultural waste in environmental remediation and highlight the potential of untreated whole rice husk as a sustainable and economically viable alternative to activated carbon, which can help promote resource recovery and pollution control. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

28 pages, 4509 KB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 433
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

14 pages, 2594 KB  
Article
Amorphous MoTex Nanomaterials Promote Visible-Light Co-Catalytic Degradation of Methylene Blue
by Zhen Zhang, Bin Liu, Jian Zhou and Zhimei Sun
Materials 2025, 18(14), 3388; https://doi.org/10.3390/ma18143388 - 18 Jul 2025
Viewed by 389
Abstract
To investigate the application potential of amorphous transition metal chalcogenides in catalysis, this study successfully synthesized amorphous molybdenum telluride (MoTex) materials and systematically explored their structural characteristics, compositional modulation, and catalytic performance. Experimental results indicate that the synthesized amorphous system consists [...] Read more.
To investigate the application potential of amorphous transition metal chalcogenides in catalysis, this study successfully synthesized amorphous molybdenum telluride (MoTex) materials and systematically explored their structural characteristics, compositional modulation, and catalytic performance. Experimental results indicate that the synthesized amorphous system consists of particles of approximately 200–300 nm in size. This distinct microstructure facilitates the exposure of abundant active sites and enhances physical adsorption capacity. The amorphous MoTe2/MoTe3 catalysts achieve an approximately 30%/40% degradation of methylene blue (MB) within 90 min, demonstrating significantly enhanced photocatalytic efficiency compared to that of crystalline MoTe2 (≈20% degradation under identical conditions). Furthermore, when integrated with titanium dioxide (TiO2), the composite exhibits exceptional co-catalytic performance, achieving a 90% degradation of MB within 90 min under visible-light irradiation, representing a catalytic efficiency improvement exceeding 160% compared to the results for pristine TiO2. Furthermore, through comparative analysis of the catalytic behavior and microstructural variations between amorphous MoTe3 (a-MoTe3) and MoTe2 (a-MoTe2), we observed that the catalytic activity of molybdenum tellurides exhibits a weak correlation with the tellurium content, with co-catalytic efficacy jointly governed by the density of the active sites and the physical adsorption properties. This research provides new methods and insights for the study and improvement of catalytic performance in chalcogenide materials. Full article
Show Figures

Graphical abstract

23 pages, 13783 KB  
Article
Synthesis and Characterization of a Nanocomposite Based on Opuntia ficus indica for Efficient Removal of Methylene Blue Dye: Adsorption Kinetics and Optimization by Response Surface Methodology
by Yasser Boumezough, Gianluca Viscusi, Sihem Arris, Giuliana Gorrasi and Sónia A. C. Carabineiro
Int. J. Mol. Sci. 2025, 26(14), 6717; https://doi.org/10.3390/ijms26146717 - 13 Jul 2025
Viewed by 471
Abstract
In this study, an efficient and cost-effective nanocomposite material based on Opuntia ficus indica (cactus) powder modified with iron oxide nanoparticles was developed as an adsorbent for the removal of methylene blue (MB), a common water pollutant. The nanocomposite was synthesized through the [...] Read more.
In this study, an efficient and cost-effective nanocomposite material based on Opuntia ficus indica (cactus) powder modified with iron oxide nanoparticles was developed as an adsorbent for the removal of methylene blue (MB), a common water pollutant. The nanocomposite was synthesized through the co-precipitation method of Fe2+ and Fe3+ ions and characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). Batch adsorption experiments were conducted over 24 h, varying different operational conditions, such as pH, temperature and initial pollutant concentration. Furthermore, a Box–Behnken design was employed to develop an empirical model for predicting removal efficiency and optimizing the adsorption conditions. The effects of adsorption variables including contact time (1–60 min), initial MB concentration (20–100 mg/L), pH (2–12), adsorbent dosage (2–6 g/L) and temperature (25–55 °C) on the removal capacity were examined. Under optimal conditions, the maximum removal efficiency of MB reached approximately 96%, with a maximum adsorption capacity of 174 mg/g, as predicted by the Langmuir model. The synthesized cactus/iron oxide nanocomposite demonstrated significant potential as an adsorbent for treating MB-contaminated water. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

22 pages, 8995 KB  
Article
Evaluation of the Adsorption Capacity of the BiOX (X = Cl, I) and BiOX-GO Nanomaterials (NMs) for Water Treatment
by Jorge H. Martinez-Montelongo, Martha L. Jiménez-González, Abner González-Pérez, Monika Mortimer, F. J. Avelar-González, Jorge E. Macias-Díaz and Iliana E. Medina-Ramírez
Processes 2025, 13(7), 2179; https://doi.org/10.3390/pr13072179 - 8 Jul 2025
Viewed by 454
Abstract
Water pollution is a global problem that severely impacts human and environmental health, water recycling, and the economy. In Mexico, due to water scarcity, potable water contains significant amounts of heavy metals (i.e., arsenic (As)); thus, there is a need for efficient and [...] Read more.
Water pollution is a global problem that severely impacts human and environmental health, water recycling, and the economy. In Mexico, due to water scarcity, potable water contains significant amounts of heavy metals (i.e., arsenic (As)); thus, there is a need for efficient and sustainable water treatment strategies. Bismuth oxyhalides, BiOX (X = Cl, Br, I), exhibit three-dimensional (3D) porous structures suitable for efficient adsorption activity. In addition, bismuth is an abundant and biocompatible element appropriate for fabricating sustainable environmental remediation technologies, such as adsorptive BiOX nanomaterials (NMs). In this study, we examine the adsorption capacity of BiOX (X = Cl, I), BiOX-GO (GO: graphene oxide) and GO NMs to remove methylene blue (MB), methyl orange (MO) and arsenite (AsO33−) from aqueous solution. BiOCl-GO 10%, BiOI, BiOI-GO 1%, BiOI-GO 10% and GO have an enhanced adsorption capacity, removing MB (20 ppm) within one hour using a low dose of NMs (1 mg/mL). In addition, BiOX-GO NMs can be easily separated from the solution and regenerated upon visible light activation due to the photocatalytic activity of the materials. The efficiency of the NMs under study for MO removal decreases, with the GO material having the highest efficiency (96%), followed by BiOX-GO 10% (78%). BiOCl-GO 1% removes arsenic from aqueous solution at low doses and short treatment times; 5 mg As/g adsorbent takes five hours; however, at longer adsorption times (24 h), BiOI-GO 1% excels in its arsenic removal capacity. Perlite-supported BiOCl NMs exhibit a weak capacity for water treatment due to the poor mechanical strength of perlite and the amount of surface-exposed BiOCl material. For the photocatalytic removal of arsenic (oxidation–adsorption), BiOI-GO 1% excels in arsenic removal with efficiencies > 70%. Full article
(This article belongs to the Special Issue Sustainable Adsorbent Materials for Wastewater Treatment)
Show Figures

Figure 1

21 pages, 3506 KB  
Article
Biofunctional Magnetic Carbon Nanohybrid for Fast Removal of Methyl Blue from Synthetic Laboratory Effluent
by Juan A. Ramos-Guivar, Melissa-Alisson Mejía-Barraza, Renzo Rueda-Vellasmin and Edson C. Passamani
Materials 2025, 18(13), 3168; https://doi.org/10.3390/ma18133168 - 3 Jul 2025
Viewed by 535
Abstract
The contamination of aquatic systems by industrial dyes, particularly methylene blue (MB), presents a significant environmental challenge due to their chemical stability and toxicity. In this study, the development and application of a novel magnetic nanohybrid comprising multiwall carbon nanotubes (MWCNTs) functionalized with [...] Read more.
The contamination of aquatic systems by industrial dyes, particularly methylene blue (MB), presents a significant environmental challenge due to their chemical stability and toxicity. In this study, the development and application of a novel magnetic nanohybrid comprising multiwall carbon nanotubes (MWCNTs) functionalized with maghemite (γ-Fe2O3) nanoparticles biosynthesized using Eucalyptus globulus extract (denoted MWNT-NPE) is reported. The material was thoroughly characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Vibrating Sample Magnetometer (VSM), and Fourier-Transform Infrared (FTIR) techniques, revealing high crystallinity, mesoporosity, and superparamagnetic behavior. The MWNT-NPE exhibited exceptional MB adsorption performance under optimized conditions (pH 6, 0.8 g L−1 dose, 40 min equilibrium), achieving a maximum adsorption capacity of 92.9 mg g−1. Kinetic analysis indicated chemisorption and physisorption regimes depending on MB concentration, with the pseudo-second-order and Freundlich isotherm models providing the best fits of experimental data. FTIR spectroscopy demonstrated that the removal mechanism involves π–π stacking, hydrogen bonding, and electrostatic interactions between MB molecules and the composite’s surface functional groups. Notably, the magnetic nanohybrid retained over 98% removal efficiency across five regeneration cycles and successfully removed MB from synthetic effluents with efficiencies exceeding 91%. These findings highlight the synergistic adsorption and magnetic recovery capabilities of the bio-functionalized hybrid system, presenting a sustainable, reusable, and scalable solution for industrial dye remediation. Full article
Show Figures

Figure 1

29 pages, 5081 KB  
Article
Production, Characterization, and Application of KOH-Activated Biochar from Rice Straw for Azo Dye Adsorption
by Megananda Eka Wahyu, Damayanti Damayanti and Ho Shing Wu
Biomass 2025, 5(3), 40; https://doi.org/10.3390/biomass5030040 - 1 Jul 2025
Cited by 2 | Viewed by 650
Abstract
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using [...] Read more.
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using chemical agents (e.g., KOH and NaOH) was performed to enhance surface area and porosity. Among the tested conditions, KOH activation at a char-to-agent ratio of 1:3 produced activated carbon at 800 °C with the highest BET surface area (835.2 m2/g), and high fixed carbon (44.4%) after HCl washing. Thermogravimetric analysis was used to investigate pyrolysis kinetics, with activation energies determined using the Kissinger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose models. The brown solid showed a higher activation energy (264 kJ/mol) compared to isolated lignin (194 kJ/mol), indicating that more energy is required for decomposition. The AC was evaluated for the adsorption of methylene blue (MB) and methyl orange (MO) from aqueous solutions. Both dyes followed the Langmuir isotherm model, indicating that monolayer adsorption occurred. The maximum adsorption capacities reached 222 mg/g for MB and 244 mg/g for MO at 303 K, with higher values at elevated temperatures. Adsorption followed a pseudo-second-order kinetic model and was governed by a physisorption mechanism, as supported by thermodynamic analysis (ΔH < 20 kJ/mol and Ea < 40 kJ/mol). These findings demonstrate that KOH-activated biochar from rice straw residue is a high-performance, low-cost adsorbent for dye removal, contributing to sustainable biomass utilization and wastewater treatment. Full article
Show Figures

Figure 1

19 pages, 2391 KB  
Article
Effective Removal of Methylene Blue from Wastewater Using NiO and Triethanolamine-Modified Electrospun Polyacrylonitrile Nanofiber
by Hacer Dolas
Processes 2025, 13(7), 2032; https://doi.org/10.3390/pr13072032 - 26 Jun 2025
Viewed by 402
Abstract
Methylene blue is a type of azo pollutant that is used in the textile industry and endangers natural resources and human health by mixing wastewater into nature and drinking water. The aim of this study was to create active sites on the surface [...] Read more.
Methylene blue is a type of azo pollutant that is used in the textile industry and endangers natural resources and human health by mixing wastewater into nature and drinking water. The aim of this study was to create active sites on the surface of PAN nanofibers for methylene blue (MB) adsorption. For this purpose, nanofibers obtained from polyacrylonitrile by the electrospinning method were modified with NiO nanoparticles (Ni) and treated with triethanolamine (TEA). The nanofiber obtained via treatment with tea was labeled as Am. The obtained nanofibers (Am/PAN/Ni-nl, PAN/Ni-nl, Am/PA-nl, and PAN-nl) were characterized comparatively by BET, FT-IR and SEM, and the adsorption performance was evaluated by time-dependent qe, isotherm, kinetic and thermodynamic graphs. The shortest equilibrium time of 20 min and the highest equilibrium amount of 45.96 mg g−1 were reached with 0.1 g of Am/PAN/Ni-nl. The Langmuir isotherm and pseudo-second-order kinetics were found to be appropriate, with an R2 value of 0.9987. The enthalpy change was calculated as −92.947 kJ mol−1. Using RSM, the adsorption for Am/PAN/Ni-nl obeyed the quadratic model and the adsorbent exhibited a maximum adsorption capacity of 52.3575 mg g−1 for methylene blue at pH 6, 25 °C and 140 ppm. Full article
(This article belongs to the Special Issue Advances in Adsorption of Wastewater Pollutants)
Show Figures

Graphical abstract

Back to TopTop