Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = microbial biomineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 18492 KB  
Article
Mineralogical and Thermochemical Characteristics of Dolomite Induced by Two Marine Microorganisms: Further Insights into Biomineralization
by Dingxiang Zhuang, Weiheng Yao and Songbao Feng
Crystals 2025, 15(9), 767; https://doi.org/10.3390/cryst15090767 - 28 Aug 2025
Viewed by 289
Abstract
The mechanism of dolomite has been a major hotspot in geological research. However, most of the current studies mainly focus on single microorganisms and fail to fully consider the influence of marine microbial diversity on the precipitation of carbonate rock minerals. In this [...] Read more.
The mechanism of dolomite has been a major hotspot in geological research. However, most of the current studies mainly focus on single microorganisms and fail to fully consider the influence of marine microbial diversity on the precipitation of carbonate rock minerals. In this paper, two marine microorganisms (Bacillus sp. and Virgibacilus oceani), which can induce dolomite precipitation, were selected to induce dolomite precipitation in a culture solution that simulated the Mg2+/Ca2+ of modern oceans. Four systems were set up in this experiment, including the Bacillus sp. system, the Virgibacilus oceani system, the co-precipitation system (Bacillus sp. and Virgibacilus oceani), and the control system. The synergistic promotion of the dolomite was analyzed by comparing the changes in solution pH, ion consumption, morphology, mineralogical phase, and thermal stability in each experimental group. The experimental results show that the increase in pH value and the consumption of Mg2+ and Ca2+ in the coexistence of Bacillus sp. and Virgibacilus oceani are greater than those in the single microorganism system. The minerals induced by Bacillus sp. and Virgibacilus oceani were mostly small calcium carbonate particles and a small amount of proto-dolomite. However, the faster precipitation rates, larger particle diameters, higher proportion of proto-dolomite, and higher thermal stability of the calcium carbonate and proto-dolomite induced by the two microorganisms suggest that biomineralization facilitates the formation of stable dolomite and accelerates the precipitation of Mg2+ and Ca2+ for bioremediation purposes. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

33 pages, 19810 KB  
Review
Research and Application of Green Technology Based on Microbially Induced Carbonate Precipitation (MICP) in Mining: A Review
by Yuzhou Liu, Kaijian Hu, Meilan Pan, Wei Dong, Xiaojun Wang and Xingyu Zhu
Sustainability 2025, 17(17), 7587; https://doi.org/10.3390/su17177587 - 22 Aug 2025
Viewed by 634
Abstract
Microbially induced carbonate precipitation (MICP), as an eco-friendly biomineralization technology, has opened up an innovative path for the green and low-carbon development of the mining industry. Unlike conventional methods, its in situ solidification minimizes environmental disturbances and reduces carbon emissions during construction. This [...] Read more.
Microbially induced carbonate precipitation (MICP), as an eco-friendly biomineralization technology, has opened up an innovative path for the green and low-carbon development of the mining industry. Unlike conventional methods, its in situ solidification minimizes environmental disturbances and reduces carbon emissions during construction. This article reviews the research on MICP technology in various scenarios within the mining industry, summarizes the key factors influencing the application of MICP, and proposes a future research direction to fill the gap of the lack of systematic guidance for the application of MICP in this field. Specifically, it elaborates on the solidification mechanism of MICP and its current application in the solidification and storage of tailings, heavy metal immobilization, waste resource utilization, carbon sequestration, and field-scale deployment, establishing a technical foundation for broader implementation in the mining sector. Key influencing factors that affect the solidification effect of MICP are discussed, along with critical engineering challenges such as the attenuation of microbial activity and the low uniformity of calcium carbonate precipitation under extreme conditions. Proposed solutions include environmentally responsive self-healing technologies (the stimulus-responsive properties of the carriers extend the survival window of microorganisms), a one-phase low-pH injection method (when the pH = 5, the delay time for CaCO3 to appear is 1.5 h), and the incorporation of auxiliary additives (the auxiliary additives provided more adsorption sites for microorganisms). Future research should focus on in situ real-time monitoring of systems integrated with deep learning, systematic mineralization evaluation standard system, and urea-free mineralization pathways under special conditions. Through interdisciplinary collaboration, MICP offers significant potential for integrated scientific and engineering solutions in mine waste solidification and sustainable resource utilization. Full article
Show Figures

Figure 1

24 pages, 1738 KB  
Review
Biomineralization Mediated by Iron-Oxidizing Microorganisms: Implication for the Immobilization and Transformation of Heavy Metals in AMD
by Siyu Li, Chengcheng Li, Xubo Gao, Mengyun Zhu, Huihui Li and Xue Wang
Minerals 2025, 15(8), 868; https://doi.org/10.3390/min15080868 - 17 Aug 2025
Viewed by 315
Abstract
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant [...] Read more.
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant biogeochemical process drives modern iron cycling across terrestrial and aquatic ecosystems. The resulting biomineralization not only produces secondary minerals but also effectively immobilizes heavy metals, offering a sustainable strategy for environmental remediation. This review systematically examines (1) the biogeochemical mechanisms and mineralogical signatures of Fe(II) oxidation by four distinct iron oxidizers: acidophilic aerobes (e.g., Acidithiobacillus), neutrophilic microaerophiles (e.g., Gallionella), nitrate-reducing anaerobes (e.g., Acidovorax), and anoxygenic phototrophs (e.g., Rhodobacter); (2) research advances in heavy metal immobilization by biogenic iron minerals: adsorption, coprecipitation, and structural incorporation; and (3) the impact of pH, temperature, organic matter, and coexisting ions on Fe(II) oxidation efficiency and iron mineral formation by iron-oxidizing bacteria. By characterizing iron-oxidizing bacterial species and their functional processes under varying pH and redox conditions, this study provides critical insights into microbial behaviors driving the evolution of acid mine drainage (AMD). Full article
Show Figures

Figure 1

18 pages, 1555 KB  
Review
Immobilization of Cadmium, Lead, and Copper in Soil Using Bacteria: A Literature Review
by Saulius Vasarevičius and Vaida Paliulienė
Land 2025, 14(8), 1547; https://doi.org/10.3390/land14081547 - 28 Jul 2025
Viewed by 723
Abstract
The heavy metal contamination of soils is a global environmental challenge threatening water quality, food safety, and human health. Using a systematic literature review approach, this study aimed to assess the potential of bacterial strains to immobilize cadmium (Cd2+), lead (Pb [...] Read more.
The heavy metal contamination of soils is a global environmental challenge threatening water quality, food safety, and human health. Using a systematic literature review approach, this study aimed to assess the potential of bacterial strains to immobilize cadmium (Cd2+), lead (Pb2+), and copper (Cu2+) in contaminated soils. A total of 45 articles were analyzed, focusing on studies that reported heavy metal concentrations before and after bacterial treatment. The analysis revealed that bacterial genera such as Bacillus, Pseudomonas, and Enterobacter were most commonly used for the immobilization of these metals. Immobilization efficiencies ranged from 25% to over 98%, with higher efficiencies generally observed when microbial consortia or amendments (e.g., phosphate compounds and biochar) were applied. The main immobilization mechanisms included biosorption, bioprecipitation (such as carbonate-induced precipitation), bioaccumulation, and biomineralization, which convert mobile metal ions into more stable, less bioavailable forms. These findings highlight the promising role of microbial-assisted immobilization in mitigating heavy metal pollution and reducing ecological risks. Further laboratory and field studies are needed to optimize the use of these microbial strains under site-specific conditions to ensure effective and sustainable soil remediation practices. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

22 pages, 3288 KB  
Review
Recent Developments on Biomineralization for Erosion Control
by Shan Liu, Changrui Dong, Yongqiang Zhu, Zichun Wang, Yujie Li and Guohui Feng
Appl. Sci. 2025, 15(12), 6591; https://doi.org/10.3390/app15126591 - 11 Jun 2025
Viewed by 734
Abstract
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing [...] Read more.
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing biomineralization efficiency, multi-scale erosion control, and field-scale MICP implementations in marine dynamic conditions. Key findings include the following: (1) Kinetic analysis of Ca2+ conversion confirmed complete ion utilization within 24 h under optimized PA concentration (3%), resulting in a compressive strength of 2.76 MPa after five treatment cycles in ISO-standard sand. (2) Field validations in Ahoskie and Sanya demonstrated the efficacy of MICP in coastal erosion control through tailored delivery systems and environmental adaptations. Sanya’s studies highlighted seawater-compatible MICP solutions, achieving maximum 1743 kPa penetration resistance in the atmospheric zone and layered “M-shaped” CaCO3 precipitation in tidal regions. (3) Experimental studies revealed that MICP treatments (2–4 cycles) reduced maximum scour depth by 84–100% under unidirectional currents (0.3 m/s) with the maximum surface CaCO3 content reaching 3.8%. (4) Numerical simulations revealed MICP enhanced seabed stability by increasing vertical effective stress and reducing pore pressure. Comparative analysis demonstrates that while the destabilization depth of untreated seabed exhibits a linear correlation with wave height increments, MICP-treated seabed formations maintain exceptional stability through cohesion-enhancing properties, even when subjected to progressively intensified wave forces. This review supports the use of biomineralization as a sustainable alternative for shoreline protection, seabed stabilization, and offshore foundation integrity. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 5609 KB  
Review
Research Progress in the Remediation of Arsenic- and Cadmium-Contaminated Groundwater Mediated by Iron and Manganese Biomineralization
by Feixing Li, Jixiang Cai, Xinxin Zhao, Hui Liu, Fanfan Ju and Youwen Li
Catalysts 2025, 15(6), 570; https://doi.org/10.3390/catal15060570 - 9 Jun 2025
Viewed by 1646
Abstract
Arsenic (As) and cadmium (Cd) contamination in groundwater poses significant risks to human health and environmental sustainability. Iron–manganese minerals and associated microorganisms in subsurface environments exhibit remarkable potential for immobilizing and transforming toxic metal(loid)s through adsorption, redox reactions, and co-precipitation. This study integrates [...] Read more.
Arsenic (As) and cadmium (Cd) contamination in groundwater poses significant risks to human health and environmental sustainability. Iron–manganese minerals and associated microorganisms in subsurface environments exhibit remarkable potential for immobilizing and transforming toxic metal(loid)s through adsorption, redox reactions, and co-precipitation. This study integrates bibliometric analysis with mechanistic review strategies to systematically evaluate the roles of iron–manganese biomineralization in As/Cd stabilization. Bibliometric insights identify emerging research trends, including the application of biogenic oxides and microbial redox cycles in groundwater remediation. Mechanistic analysis reveals how microbial–mineral interactions regulate As/Cd sequestration, emphasizing the influence of environmental factors such as pH, redox conditions, and microbial metabolic pathways. Case studies demonstrate the viability of in situ remediation technologies leveraging these biogeochemical processes, though challenges persist in achieving consistent field-scale performance and long-term stability. Future efforts should prioritize optimizing microbial consortia, advancing real-time monitoring systems, and integrating biogeochemical strategies with engineered barriers. By synthesizing quantitative trends and mechanistic principles, this work provides actionable frameworks for enhancing natural attenuation and designing sustainable remediation systems for metal-contaminated groundwater. Full article
Show Figures

Graphical abstract

23 pages, 1546 KB  
Review
From Microbes to Molecules: Synthetic Biology Approaches for Advanced Materials Design
by Roshini Ramachandran, Frank Macabenta, Grace Bettencourt and Shulammite Feng
BioChem 2025, 5(2), 12; https://doi.org/10.3390/biochem5020012 - 28 May 2025
Cited by 1 | Viewed by 1062
Abstract
Traditional materials synthesis often involves energy-intensive processes with significant waste generation and limited control over material properties. This review examines synthetic biology as a sustainable alternative for designing advanced materials with enhanced precision and versatility. It explores microbial biomineralization, detailing how microorganisms influence [...] Read more.
Traditional materials synthesis often involves energy-intensive processes with significant waste generation and limited control over material properties. This review examines synthetic biology as a sustainable alternative for designing advanced materials with enhanced precision and versatility. It explores microbial biomineralization, detailing how microorganisms influence the formation of mineral deposits and participate in key biogeochemical cycles. It highlights recent research advancements in using a wide variety of microorganisms for the synthesis of inorganic materials such as metal and metal oxide nanoparticles, quantum dots, magnetic nanoparticles, and thin films. The review also discusses the production and properties of various biopolymers. Important factors that can influence the size, morphology, and uniformity of these biomaterials are covered in detail. Emphasis is placed on advancements utilizing synthetic biology tools, such as protein engineering and genome editing, and recent research for creating smart and responsive materials. Considering the present limitations of synthetic biology, challenges related to scale-up, yield, and uniformity are discussed, and suggestions for future research are detailed. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 3680 KB  
Article
Prediction of the Non-Reducing Biomineralization of Nuclide–Microbial Interactions by Machine Learning: The Case of Uranium and Bacillus subtilis
by Shirong Qiang, Leijin Liu, Siqi Li, Shuang Wang, Xinyang Huang, Jiaxin Yang, Jiayu Song, Yue Zhang, Yongxiang Huang and Qiaohui Fan
Toxics 2025, 13(4), 305; https://doi.org/10.3390/toxics13040305 - 13 Apr 2025
Cited by 1 | Viewed by 563
Abstract
Bacillus subtilis exhibits a great affinity to soluble U(VI) through non-reducing biomineralization. The pH value, temperature, initial uranium concentration, bacterial concentration, and adsorption time are recognized as the five environmental sensitive factors that can regulate the degree of non-reductive biomineralization. Most of the [...] Read more.
Bacillus subtilis exhibits a great affinity to soluble U(VI) through non-reducing biomineralization. The pH value, temperature, initial uranium concentration, bacterial concentration, and adsorption time are recognized as the five environmental sensitive factors that can regulate the degree of non-reductive biomineralization. Most of the current studies have focused on the regulatory mechanisms of these factors on uranium non-reductive mineralization. However, there are still few reports on the importance of these factors in influencing non-reductive mineralization, as well as on how to regulate these factors to increase the efficiency of non-reductive mineralization and enhance the enrichment of Bacillus subtilis on uranium. In this work, a deep learning neural network model was constructed to effectively predict the effects of changes in these five environmental sensitivity factors on the non-reducing mineralization of Bacillus subtilis to uranium. Accuracy (99.6%) and R2 (up to 0.89) confirm a high degree of agreement between the predicted output and the observed values. Sensitivity analysis shows that in this model, pH value is the most important influencing factor. However, under different pH values, temperature, initial uranium concentration, adsorption time, and bacterial concentration have different effects. When the pH value is lower than 6, the most important factor is temperature, and once the pH value is greater than 6, the initial concentration is the most important factor. The results are expected to provide a theoretical basis for regulating the enrichment degree of U(VI) by Bacillus subtilis, achieving the maximum long-term stable fixation of U(VI), and understanding the environmental chemical behavior of uranium under different conditions. Full article
(This article belongs to the Special Issue Radioactive Contamination and Radionuclide Removal)
Show Figures

Figure 1

26 pages, 14749 KB  
Article
Microbial Seafloor Weathering of Hydrothermal Sulfides: Insights from an 18-Month In Situ Incubation at the Wocan-1 Hydrothermal Field
by Chuanqi Dong, Xiqiu Han, Yejian Wang, Jiqiang Liu and Mingcong Wei
Biology 2025, 14(4), 389; https://doi.org/10.3390/biology14040389 - 9 Apr 2025
Cited by 1 | Viewed by 687
Abstract
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ [...] Read more.
The weathering of seafloor hydrothermal sulfides is facilitated by microbial activities, yet the specific mechanisms of different sulfide types are not well understood. Previous studies have primarily been carried out under laboratory conditions, making it difficult to accurately replicate the complex in situ conditions of deep-sea hydrothermal fields. Herein, we deployed two well-characterized pyrite (Py)-dominated and chalcopyrite (Ccp)-dominated sulfide slices, which were placed 300 m from an active venting site in the Wocan-1 hydrothermal field (Carlsberg Ridge, Northwest Indian Ocean) for an 18-month in situ incubation experiment. Microscopic observations and organic matter analyses were conducted on the recovered sulfide slices to investigate the microbial weathering features of different sulfide types. Our results demonstrated that the weathering of the Py-dominated sulfide sample was primarily mediated by extracellular polymeric substances (EPSs) through indirect interactions, whereas the Ccp-dominated sulfide sample exhibited both direct microbial dissolution, resulting in the formation of distinct dissolution pits, and indirect EPS-mediated interactions. Four distinct phases of microbe–sulfide interactions were identified: approach, adsorption, stable attachment, and extensive colonization. Furthermore, the weathering products and biomineralization structures differed significantly between the two sulfide types, reflecting their different microbial colonization processes. Our study confirms that microorganisms are crucial in seafloor sulfide weathering. These findings advance our understanding of microbial-driven processes in sulfide mineral transformations and their role in marine ecosystems. Our findings are also valuable for future research on biogeochemical cycles and for developing bioremediation strategies for deep-sea mining. Full article
Show Figures

Figure 1

16 pages, 3018 KB  
Article
Biodigital Micro-Cellular Mashrabiya: Lattice Architectural Microbial Membranes for Sustainable Built Environments
by Yomna K. Abdallah and Alberto T. Estevez
J 2025, 8(2), 13; https://doi.org/10.3390/j8020013 - 3 Apr 2025
Viewed by 839
Abstract
A typical Mashrabiya in Islamic architecture represents an integral climatic and sustainable solution, not only by offering recycling and the responsible use of small pieces of wood assembled in stunning geometrical and natural abstract lattice panels, but also because it offers air cooling, [...] Read more.
A typical Mashrabiya in Islamic architecture represents an integral climatic and sustainable solution, not only by offering recycling and the responsible use of small pieces of wood assembled in stunning geometrical and natural abstract lattice panels, but also because it offers air cooling, filtration, and flow from the exterior to the interior of a building. This leads to the air flow being cooled by the water spray offered by the interior patio fountains, in addition to protecting the sanctity and privacy of a building’s inhabitants, which complies with religious beliefs and social considerations. This integral sustainable solution acts on multiple scales: material recycling and responsible use, as well as climatic and socio-cultural considerations similar to Gaudi’s approach with Trencadís technology, not far from the Arabic and Islamic architectural influence revived in the Catalan Modernism contemporary to his time. In these footsteps, we explore the Mashrabiya of our time: an interactive and living architectural membrane, a soft interface that reacts by growing, giving shade, filtrating air, and transforming in time. Despite attempts to design a contemporary concept of the Mashrabiya, none of them have adopted the living organism to form an interactive living lattice architectural system. In this work, we propose the biodigital micro-cellular Mashrabiya as a novel idea and a proof of concept based on employing the authors’ previously published research findings to utilize eco-friendly biopolymers inoculated with useful native–domestic microbial strains to act as soft and living membranes, where these organisms grow and vary in their chemical and physical characteristics, sustainable function, and industrial value. This study implements an analytical–descriptive methodology to analyze the key characteristics of a traditional Mashrabiya as an integral sustainable solution and how the proposed micro-cellular biodigital Mashrabiya system can fulfill these criteria to be integrated into the built environment, forging future research trajectories on the bio-/micro-environmental compatibility of this biomaterial-based biodigital Mashrabiya system by understanding these materials’ physical, chemical, and physiological traits and their sustainable value. In this work, a biodigital Mashrabiya is proposed based on employing previous research findings on experimentally analyzed biomaterials from a biomineralized calcium-phosphate-based hydrogel and bio-welded seashell–mycelium biocomposite in forging the lattice system of a biodigital Mashrabiya, analyzing the feasibility and sustainability impact of these systems for integration into the architectural built environment. Full article
Show Figures

Figure 1

36 pages, 10656 KB  
Review
Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing
by Armstrong Ighodalo Omoregie, Chih Siong Wong, Adharsh Rajasekar, Jen Hua Ling, Abdelfatah Bousbia Laiche, Hazlami Fikri Basri, Gowthaman Sivakumar and Tariq Ouahbi
Buildings 2025, 15(7), 1052; https://doi.org/10.3390/buildings15071052 - 25 Mar 2025
Cited by 3 | Viewed by 3367
Abstract
Microbial-induced carbonate precipitation (MICP) is gaining attention as an eco-friendly and sustainable method for concrete crack repair. However, key challenges related to its large-scale implementation, regulatory approval, and integration into existing construction standards remain underexplored. This review examines recent advances in MICP, emphasizing [...] Read more.
Microbial-induced carbonate precipitation (MICP) is gaining attention as an eco-friendly and sustainable method for concrete crack repair. However, key challenges related to its large-scale implementation, regulatory approval, and integration into existing construction standards remain underexplored. This review examines recent advances in MICP, emphasizing its role in circular economy practices and sustainable building solutions. Traditional synthetic sealants contribute to environmental pollution and have limited long-term durability, highlighting the need for greener alternatives. Global research trends reveal an increasing focus on self-healing materials, biomineralization, and durability enhancement, alongside emerging innovations such as encapsulation technologies, marine applications, and bio-based composites. Unlike previous reviews, this study integrates bibliometric analysis to systematically assess research trends, identify key collaboration networks, and evaluate regulatory challenges that impact MICP adoption. While MICP offers significant advantages, including self-healing capabilities and compatibility with industrial by-products, barriers related to cost, scalability, and policy integration persist. This review identifies critical thematic clusters which include microbial action, sustainability, and engineering applications. This helps to provide actionable insights for researchers, engineers, and policymakers. By fostering interdisciplinary collaboration, MICP has the potential to become a transformative solution for resilient and environmentally sustainable infrastructure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 6226 KB  
Article
Assessment of Biogenic Healing Capability, Mechanical Properties, and Freeze–Thaw Durability of Bacterial-Based Concrete Using Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium
by Izhar Ahmad, Mehdi Shokouhian, David Owolabi, Marshell Jenkins and Gabrielle Lynn McLemore
Buildings 2025, 15(6), 943; https://doi.org/10.3390/buildings15060943 - 17 Mar 2025
Cited by 5 | Viewed by 2178
Abstract
Microbial-induced carbonate precipitation technology allows concrete to detect and diagnose cracks autonomously. However, the concrete’s compact structure and alkaline environment necessitate the adoption of a proper carrier material to safeguard microorganisms. In this study, various bacterial strains, including Bacillus subtilis, Bacillus sphaericus, and [...] Read more.
Microbial-induced carbonate precipitation technology allows concrete to detect and diagnose cracks autonomously. However, the concrete’s compact structure and alkaline environment necessitate the adoption of a proper carrier material to safeguard microorganisms. In this study, various bacterial strains, including Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium, were immobilized in lightweight expanded clay aggregates (LECA) to investigate their effect on the self-healing performance, mechanical strength, and freeze–thaw durability. Self-healing concrete specimens were prepared using immobilized LECA, directly added bacterial spores, polyvinyl acetate (PVA) fibers, and air-entraining admixture (AEA). The pre-cracked prisms were monitored for 224 days to assess self-healing efficiency through ultrasonic pulse velocity (UPV) and surface crack analysis methods. A compressive strength restoration test was conducted by pre-loading the cube specimens with 60% of the failure load and re-testing them after 28 days for strength regain. Additionally, X-ray diffraction and scanning electron microscopy (SEM) were conducted to analyze the precipitate material. The findings revealed that self-healing efficiency improved with the biomineralization activity over the healing period demonstrated by the bacterial strains. Compression and flexural strengths decreased for the bacterial specimens attributed to porous LECA. However, restoration in compression strength and freeze–thaw durability significantly improved for the bacterial mixes compared to control and reference mixes. XRD and SEM analyses confirmed the formation of calcite as a self-healing precipitate. Overall, results indicated the superior performance of Bacillus megaterium followed by Bacillus sphaericus and Bacillus subtilis. The findings of the current study provide important insights for the construction industry, showcasing the potential of bacteria to mitigate the degradation of concrete structures and advocating for a sustainable solution that reduces reliance on manual repairs, especially in inaccessible areas of the structures. Full article
Show Figures

Figure 1

17 pages, 2131 KB  
Article
Leveraging Biomineralization in Repurposed Stirred Reactors for Mn/Zn Removal from Mine Water: Insights from a Laboratory-Scale Study
by Fumiya Kurogi, Peiyu Liu and Naoko Okibe
Minerals 2025, 15(3), 211; https://doi.org/10.3390/min15030211 - 22 Feb 2025
Viewed by 1010
Abstract
This study developed a semi-passive treatment system for manganese (Mn)- and zinc (Zn)-containing mine water by repurposing a neutralization tank into a biologically active stirred reactor. Laboratory-scale experiments demonstrated efficient removal of Mn2+ (>97%) and Zn2+ (>80%) with hydraulic retention times [...] Read more.
This study developed a semi-passive treatment system for manganese (Mn)- and zinc (Zn)-containing mine water by repurposing a neutralization tank into a biologically active stirred reactor. Laboratory-scale experiments demonstrated efficient removal of Mn2+ (>97%) and Zn2+ (>80%) with hydraulic retention times (HRTs) as short as 6 h—significantly faster than traditional passive systems. XRD and XANES analyses identified the predominant formation of birnessite, a layered Mn oxide, during Mn2+ oxidation, with Zn co-treatment promoting the precipitation of Zn-containing carbonates. Despite decreasing crystallinity of birnessite over time, microbial activity, dominated by Mn-oxidizing genera, such as Sphingomonas, Pseudonocardia, Sphingopyxis, Nitrospira, and Rhodobacter, persisted in the presence of Zn2+, ensuring system stability. Importantly, the low leachability of Mn and Zn from the resulting sludge in TCLP tests confirmed its environmental safety and potential for reuse. By leveraging existing infrastructure and microbial biomineralization, this system bridges the gap between passive and active treatments, significantly reducing treatment footprints and operational costs. These findings highlight the potential of repurposing mine water treatment tanks as a scalable, cost-effective solution for sustainable mine water remediation. Full article
(This article belongs to the Special Issue Microbial Biomineralization and Organimineralization)
Show Figures

Figure 1

19 pages, 14510 KB  
Article
The Influence of Roughness on the Protective Layer Formation Induced by Marine Microorganisms on 5083 Aluminum Alloy
by Julien Jaume, Marie-Line Délia and Régine Basséguy
Materials 2025, 18(3), 708; https://doi.org/10.3390/ma18030708 - 6 Feb 2025
Cited by 1 | Viewed by 821
Abstract
This study investigates the formation of a protective layer on a 5083 aluminum alloy surface induced by microorganisms from salt marsh. The influence of the initial surface roughness was examined to identify optimal conditions for maximum coverage and thickness of the protective layer. [...] Read more.
This study investigates the formation of a protective layer on a 5083 aluminum alloy surface induced by microorganisms from salt marsh. The influence of the initial surface roughness was examined to identify optimal conditions for maximum coverage and thickness of the protective layer. As two opposing effects are suspected, where high surface roughness enhances bacterial adhesion but reduces the resistance to abiotic corrosion, various degrees of roughness were tested. Using electrochemical experiments (OCP measurement, 1/Rp determination, and pitting sensitivity), SEM/TEM observation and EDX characterization, a compromise was found on the initial roughness to obtain a thick protective layer through good bacterial adhesion while minimizing abiotic corrosion. The optimal roughness, achieved through 240-grit grinding, facilitates a uniform distribution of microorganisms and the development of a dense, evenly thick protective layer that significantly enhances the alloy’s resistance to pitting corrosion. The passivity domain doubled when comparing the electrochemical behavior of electrodes immersed in the presence of microbial activity to those immersed without it. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

12 pages, 5569 KB  
Article
Structural and Magnetic Properties of Biogenic Nanomaterials Synthesized by Desulfovibrio sp. Strain A2
by Mikhail S. Platunov, Yuriy V. Knyazev, Olga P. Ikkert, Olga V. Karnachuk, Anton D. Nikolenko, Roman D. Svetogorov, Evgeny V. Khramov, Mikhail N. Volochaev and Andrey A. Dubrovskiy
Inorganics 2025, 13(2), 34; https://doi.org/10.3390/inorganics13020034 - 23 Jan 2025
Viewed by 1184
Abstract
This study explores the phase composition, local atomic structure, and magnetic properties of biogenic nanomaterials synthesized through microbially mediated biomineralization by the sulfate-reducing bacterium Desulfovibrio species strain A2 (Cupidesulfovibrio). Using X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy, X-ray absorption [...] Read more.
This study explores the phase composition, local atomic structure, and magnetic properties of biogenic nanomaterials synthesized through microbially mediated biomineralization by the sulfate-reducing bacterium Desulfovibrio species strain A2 (Cupidesulfovibrio). Using X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and magnetic measurements, we identified a mixture of vivianite (Fe3(PO4)2·8H2O) and sulfur-containing crystalline phases (α-sulfur). XRD analysis confirmed that the vivianite phase, with a monoclinic I2/m structure, constitutes 44% of the sample, while sulfur-containing phases (α-sulfur, Fddd) account for 56%, likely as a result of bacterial sulfate-reducing activity. X-ray absorption spectroscopy (XAS) and EXAFS revealed the presence of multiple sulfur oxidation states, including elemental sulfur and sulfate (S6+), underscoring the role of sulfur in the sample’s structure. Mössbauer spectroscopy identified the presence of ferrihydrite nanoparticles with a blocking temperature of approximately 45 K. Magnetic measurements revealed significant coercivity (~2 kOe) at 4.2 K, attributed to the blocked ferrihydrite nanoparticles. The results provide new insights into the structural and magnetic properties of these microbially mediated biogenic nanomaterials, highlighting their potential applications in magnetic-based technologies. Full article
(This article belongs to the Topic Advances in Inorganic Synthesis)
Show Figures

Graphical abstract

Back to TopTop