Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,709)

Search Parameters:
Keywords = microbial factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1119 KB  
Review
The Impact of Lifestyle on Reproductive Health: Microbial Complexity, Hormonal Dysfunction, and Pregnancy Outcomes
by Eunice Barraza-Ortega, Bruno Gómez-Gil, Teresa García-Gasca, Dennise Lizárraga, Natalia Díaz and Alejandra García-Gasca
Int. J. Mol. Sci. 2025, 26(17), 8574; https://doi.org/10.3390/ijms26178574 (registering DOI) - 3 Sep 2025
Abstract
Endocrine dysfunctions refer to alterations in hormone production, release, or regulation that can significantly impact health. In pregnant women or those planning pregnancy, these conditions may manifest as disorders such as polycystic ovary syndrome, hypothyroidism, endometriosis, gestational diabetes mellitus, and other metabolic issues, [...] Read more.
Endocrine dysfunctions refer to alterations in hormone production, release, or regulation that can significantly impact health. In pregnant women or those planning pregnancy, these conditions may manifest as disorders such as polycystic ovary syndrome, hypothyroidism, endometriosis, gestational diabetes mellitus, and other metabolic issues, which could potentially cause infertility or pregnancy complications. Research and clinical experience indicate that hormones play a crucial role in basic physiology and are essential for overall health and well-being. At the same time, lifestyle—defined as daily habits related to nutrition, exercise, sleep, stress management, and other factors—directly influences microbial composition and hormonal regulation. The human microbiome, a diverse community of microorganisms residing within the human body, plays essential roles in supporting overall health. The increasing prevalence of hormonal disorders, especially in urban populations, has heightened interest in how modern lifestyles—characterised by sedentary habits, chronic stress, imbalanced diets, and inadequate sleep—may contribute to the development or aggravation of these conditions, leading to higher infertility rates or pregnancy complications if untreated. This review investigates the interaction between hormonal dysfunction, the human microbiome, and lifestyle factors, with a focus on their effects on pregnant women and those seeking to conceive. Its purpose is to provide a comprehensive overview of the underlying pathophysiological mechanisms and to examine preventative and therapeutic approaches that could alter these patterns. Full article
Show Figures

Figure 1

13 pages, 508 KB  
Article
Pyogenic Spondylodiscitis: Predictors of Microbiological Yield from Biopsy in a Tertiary Hospital
by Aslı Haykır Solay, Dilek Bulut, Gülnur Kul, Semanur Kuzi, Muhammed Erkan Emrahoğlu, İhsaniye Süer Doğan, Nesibe Korkmaz, Ayşenur Soykuvvet Ayhan, Fatma Şanlı, Mustafa Kavcar, Saffet Öztürk and Gönül Çiçek Şentürk
Medicina 2025, 61(9), 1591; https://doi.org/10.3390/medicina61091591 - 3 Sep 2025
Abstract
Background and Objectives: Pyogenic spondylodiscitis (SD) is a severe spinal infection involving the intervertebral disc and adjacent vertebrae and is often associated with significant morbidity. Identifying the causative microorganism is crucial for targeted treatment; however, the microbiological yield from blood or tissue [...] Read more.
Background and Objectives: Pyogenic spondylodiscitis (SD) is a severe spinal infection involving the intervertebral disc and adjacent vertebrae and is often associated with significant morbidity. Identifying the causative microorganism is crucial for targeted treatment; however, the microbiological yield from blood or tissue cultures varies widely due to factors such as prior antibiotic use and biopsy technique. In this study, we aimed to investigate the clinical, laboratory, and radiological predictors of microbiological yield, particularly from tissue biopsy specimens. Materials and Methods: This retrospective cohort study included adult patients diagnosed with pyogenic SD between January 2023 and July 2025 at a tertiary care hospital. Demographics, comorbidities, laboratory markers (CRP, ESR, ALP, albumin), radiological findings (abscess presence, anatomical location, claw sign), prior antibiotic use, and microbiological results were analyzed. Tissue specimens were obtained through either surgical sampling or needle biopsy. Univariable and multivariable logistic regression were performed to determine the predictors of positive tissue cultures. Results: Of the 159 patients screened, 55 met our inclusion criteria. The mean age was 63.9 ± 13.5 years, 80% had lumbar involvement, and 58.2% had abscesses, primarily paravertebral or psoas in location. Microorganisms were isolated in 65.5% of the cases, with Staphylococcus aureus being the most common (41.7%). The blood culture positivity was 55.5%, while tissue culture positivity was 40.4%. Logistic regression revealed that lower albumin (p = 0.046) and higher ALP levels (p = 0.045) were independent predictors of a positive microbial yield from tissue biopsies. Conclusions: Serum albumin and ALP levels may aid clinical decision-making regarding invasive sampling in SD. When blood cultures are negative and albumin is low while ALP is elevated, clinicians should consider prioritizing tissue biopsy. These findings may help optimize diagnostic strategies and should be validated in larger, prospective studies. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

17 pages, 422 KB  
Review
Gut Microbiome and Intestinal Colonization with Multidrug-Resistant Strains of Enterobacterales: An Interplay Between Microbial Communities
by Béla Kocsis, Dóra Szabó and László Sipos
Antibiotics 2025, 14(9), 890; https://doi.org/10.3390/antibiotics14090890 (registering DOI) - 3 Sep 2025
Abstract
Background: The intestinal tract is a host to a high number of diverse bacteria, and the presence of multidrug-resistant (MDR) Enterobacterales strains acts as a reservoir and a source of infection. The interactions between the intestinal microbiome and colonizer Enterobacterales strains influence [...] Read more.
Background: The intestinal tract is a host to a high number of diverse bacteria, and the presence of multidrug-resistant (MDR) Enterobacterales strains acts as a reservoir and a source of infection. The interactions between the intestinal microbiome and colonizer Enterobacterales strains influence long-lasting colonization. Aims: In this narrative review, we summarize available data about the intestinal colonization of MDR Enterobacterales strains and correlations between colonization and the intestinal microbiome. Results: Several endogenous and exogenous factors influence the intestinal colonization of MDR Enterobacterales strains. On the gut microbiome level, the intestinal microbial community is composed of the Lachnospiraceae family (e.g., Lachnoclostridium, Agathobacter, Roseburia, Tyzzerella), which indicates a protective role against colonizer MDR Enterobacterales strains; by contrast, a high abundance of Enterobacterales correlates with the colonization of MDR Enterobacterales strains. In specific patient groups, striking differences in microbiome composition can be detected. Among hematopoietic stem-cell-transplanted patients colonized by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, a greater abundance of Bifidobacterium, Blautia, Clostridium, Coprococcus, L-Ruminococcus, Mogibacteriaceae, Peptostreptococceae and Oscillospira was observed compared to patients not colonized by ESBL-producing strains, who had a greater abundance of Actinomycetales. In liver transplant patients, a reduction in the alpha-diversity of the intestinal microbiome in fecal samples correlates with the carriage of MDR Enterobacterales. Conclusions: Intestinal colonization with MDR Enterobacterales is a multifactorial process that involves the MDR strain (e.g., its plasmids, fimbria), host and mucosal factors (e.g., IgA and defensin) and exogenous factors (e.g., use of antibiotics, hospitalization). On the gut microbiome level, the Lachnospiraceae family is dominant among intestines not colonized by MDR strains, but a high abundance of Enterobacterales was correlated with colonization with MDR Enterobacterales strains. Full article
Show Figures

Figure 1

20 pages, 4626 KB  
Review
Biochar for Mitigating Nitrate Leaching in Agricultural Soils: Mechanisms, Challenges, and Future Directions
by Lan Luo, Jie Li, Zihan Xing, Tao Jing, Xinrui Wang and Guilong Zhang
Water 2025, 17(17), 2590; https://doi.org/10.3390/w17172590 - 1 Sep 2025
Abstract
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged [...] Read more.
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged as a promising amendment for nitrate mitigation. This review summarizes recent advances in understanding the roles of biochar in nitrate retention and transformation in soils, including both direct mechanisms—such as surface adsorption, ion exchange, and pore entrapment—and indirect mechanisms—such as enhanced microbial activity, soil structure improvement, and root system development. Field and laboratory evidence shows that biochar can reduce NO3-N leaching by 15–70%, depending on its properties, soil conditions, and application context. However, inconsistencies in performance due to differences in biochar types, soil conditions, and environmental factors remain a major barrier to widespread adoption. This review also suggests current knowledge gaps and research needs, including long-term field validation, biochar material optimization, and integration of biochar into precision nutrient management. Overall, biochar presents a multifunctional strategy for reducing nitrate leaching and promoting sustainable nitrogen management in agroecosystems. Full article
(This article belongs to the Special Issue Advanced Research in Non-Point Source Pollution of Watersheds)
Show Figures

Graphical abstract

20 pages, 10269 KB  
Article
An AI-Designed Antibody-Engineered Probiotic Therapy Targeting Urease to Combat Helicobacter pylori Infection in Mice
by Feiliang Zhong, Xintong Liu, Xuefang Wang, Mengyu Hou, Le Guo and Xuegang Luo
Microorganisms 2025, 13(9), 2043; https://doi.org/10.3390/microorganisms13092043 - 1 Sep 2025
Abstract
Helicobacter pylori (Hp), a Class I carcinogen infecting over 50% of the global population, is increasingly resistant to conventional antibiotics. This study presents an AI-engineered probiotic strategy targeting urease, a key Hp virulence factor. A humanized single-domain antibody (UreBAb), previously identified and selected [...] Read more.
Helicobacter pylori (Hp), a Class I carcinogen infecting over 50% of the global population, is increasingly resistant to conventional antibiotics. This study presents an AI-engineered probiotic strategy targeting urease, a key Hp virulence factor. A humanized single-domain antibody (UreBAb), previously identified and selected in our laboratory, was synthesized commercially and modeled using AlphaFold2, with structural validation conducted via SAVES 6.0. Molecular docking (PyMOL/ClusPro2) and binding energy analysis (InterProSurf) identified critical urease-active residues: K40, P41, K43, E82, F84, T86, K104, I107, K108, and R109. Machine learning-guided optimization using mCSA-AB, I-Mutant, and FoldX prioritized four mutational hotspots (K43, E82, I107, R109), leading to the generation of nine antibody variants. Among them, the I107W mutant exhibited the highest activity, achieving 65.6% urease inhibition—a 24.95% improvement over the wild-type antibody (p < 0.001). Engineered Escherichia coli Nissle 1917 (EcN) expressing the I107W antibody significantly reduced gastric HP colonization by 4.42 log10 CFU in the treatment group and 3.30 log10 CFU in the prevention group (p < 0.001 and p < 0.05, respectively), while also suppressing pro-inflammatory cytokine levels. Histopathological (H&E) analysis confirmed that the I107W antibody group showed significantly enhanced mucosal repair compared to wild-type probiotic-treated mice. Notably, 16S rRNA sequencing revealed that intestinal microbiota diversity and the abundance of core microbial species remained stable across different ethnic backgrounds. By integrating AI-guided antibody engineering with targeted probiotic delivery, this platform provides a transformative and microbiota-friendly strategy to combat antibiotic-resistant Hp infections. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

26 pages, 1175 KB  
Review
Food Preservatives and the Rising Tide of Early-Onset Colorectal Cancer: Mechanisms, Controversies, and Emerging Innovations
by Alice N. Mafe and Dietrich Büsselberg
Foods 2025, 14(17), 3079; https://doi.org/10.3390/foods14173079 - 1 Sep 2025
Abstract
Early-onset colorectal cancer (EOCRC) is emerging as a significant global health concern, particularly among individuals under the age of 50. This alarming trend has coincided with an increase in the consumption of processed foods that often rely heavily on synthetic preservatives. At the [...] Read more.
Early-onset colorectal cancer (EOCRC) is emerging as a significant global health concern, particularly among individuals under the age of 50. This alarming trend has coincided with an increase in the consumption of processed foods that often rely heavily on synthetic preservatives. At the same time, these additives play a critical role in ensuring food safety and shelf life. Growing evidence suggests that they may contribute to adverse gut health outcomes, which is a known risk factor in colorectal cancer development. At the same time, synthetic preservatives serve essential roles such as preventing microbial spoilage, maintaining color, and prolonging shelf life. Natural preservatives, on the other hand, not only provide antimicrobial protection but also exhibit antioxidant and anti-inflammatory properties. These contrasting functions form the basis of current discussions on their safety and health implications. Despite their widespread use, the long-term health implications of synthetic preservatives remain inadequately understood. This review synthesizes recent clinical, epidemiological, mechanistic, and toxicological data to examine the potential link between synthetic food preservatives and EOCRC. Particular focus is placed on compounds that have been associated with DNA damage, gut microbiota disruption, oxidative stress, and chronic inflammation, which are the mechanisms that collectively increase cancer risk. In contrast, natural preservatives derived from plants and microbes are gaining attention for their antioxidant, antimicrobial, and possible anti-inflammatory effects. While these alternatives show promise, scientific validation and regulatory approval remain limited. This review highlights the urgent need for more rigorous, long-term human studies and advocates for enhanced regulatory oversight. It advocates for a multidisciplinary approach to developing safer preservation strategies and highlights the importance of public education in making informed dietary choices. Natural preservatives, though still under investigation, may offer a safer path forward in mitigating EOCRC risk and shaping future food and health policies. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 1842 KB  
Review
The Impact of HIV Infection and Aging on Periodontitis
by Sophia DeVore, Dalia Seleem and Miou Zhou
Oral 2025, 5(3), 64; https://doi.org/10.3390/oral5030064 - 1 Sep 2025
Viewed by 31
Abstract
Background: Periodontal disease is a common chronic inflammatory disease affecting the oral cavity involving the tissues supporting teeth. It is a significant oral health concern worldwide, particularly amongst individuals living with human immunodeficiency virus (HIV). Biological aging is associated with a natural decline [...] Read more.
Background: Periodontal disease is a common chronic inflammatory disease affecting the oral cavity involving the tissues supporting teeth. It is a significant oral health concern worldwide, particularly amongst individuals living with human immunodeficiency virus (HIV). Biological aging is associated with a natural decline in the immune system, which can also affect the severity of periodontitis and other potential risk factors. In people living with HIV (PLWH), the contribution of both the HIV infection and the aging process can lead to increased susceptibility to periodontal disease. Objectives: This paper aims to review the recent literature about the relationships between HIV infection and early aging and their impact on periodontitis, and to inform interested clinicians about the current literature on the intersection between and within these topics. Methods: This review explores the recent literature on the complex relationship between HIV, aging, and periodontitis. The PubMed, ScienceDirect, and Medline databases were used to find clinical research studies within the last 10 years to identify significant correlations between HIV, aging, and periodontitis. Results: These studies identify key pathogens, molecules, or cellular pathways that contribute to a more comprehensive understanding of the pathophysiologic processes that link HIV, aging, and periodontitis. This complex relationship is multifactorial, involving immune dysfunction, microbial dysbiosis, and inflammatory pathways that still need further research. Conclusions: Overall, this exploration through molecular and cellular mechanisms underlying the relationships between aging, HIV, and periodontitis can provide therapeutic implications for dental clinicians to prevent and treat their affected patients. Full article
Show Figures

Figure 1

24 pages, 2945 KB  
Article
Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients
by Muhammad Riaz Ejaz, Kareem Badr, Farzin Shabani, Zahoor Ul Hassan, Nabil Zouari, Roda Al-Thani and Samir Jaoua
Microbiol. Res. 2025, 16(9), 196; https://doi.org/10.3390/microbiolres16090196 - 1 Sep 2025
Viewed by 41
Abstract
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S [...] Read more.
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S rRNA amplicon sequencing and soil chemical analysis. Soil samples from five different locations in Qatar (three coastal and two inland) identified 26 bacterial phyla, which were dominated by Actinomycetota (35–43%), Pseudomonadota (12–16%), and Acidobacteriota (4–13%). Species-level analysis discovered taxa such as Rubrobacter tropicus, Longimicrobium terrae, Gaiella occulta, Kallotenue papyrolyticum, and Sphingomonas jaspsi, suggesting the presence of possible novel microbial families. The functional predictions showed development in pathways related to amino acid metabolism, carbohydrate metabolism, and stress tolerance. In addition, heavy-metal-related taxa, which are known to harbor genes for metal resistance mechanisms including efflux pumps, metal chelation, and oxidative stress tolerance. The presence of Streptomyces, Pseudomonas, and Bacillus highlights their roles in stress tolerance, biodegradation, and metabolite production. These findings improve the understanding of microbial roles in dry soils, especially in nutrient cycling and ecosystem resilience. They highlight the importance of local bacteria for sustaining desert soil functions. Further research is needed to validate these relationships, using metabolomic approaches while monitoring microbial-community-changing aspects under fluctuating environmental conditions. Full article
Show Figures

Graphical abstract

15 pages, 2089 KB  
Protocol
A Protocol for Modeling Human Bone Inflammation: Co-Culture of Osteoblasts and Osteoclasts Exposed to Different Inflammatory Microenvironments
by Araceli Valverde and Afsar Raza Naqvi
Methods Protoc. 2025, 8(5), 97; https://doi.org/10.3390/mps8050097 (registering DOI) - 1 Sep 2025
Viewed by 43
Abstract
Bone remodeling relies on the coordinated activity of osteoblasts (OBs) and osteoclasts (OCs). Disruptions in OB-OC balance can lead to diseases such as periodontitis, a chronic microbial-induced inflammatory disease. To investigate how inflammation affects OB-OC interactions, we standardized an in vitro 2D indirect [...] Read more.
Bone remodeling relies on the coordinated activity of osteoblasts (OBs) and osteoclasts (OCs). Disruptions in OB-OC balance can lead to diseases such as periodontitis, a chronic microbial-induced inflammatory disease. To investigate how inflammation affects OB-OC interactions, we standardized an in vitro 2D indirect co-culture system using primary human OB and OC precursors from peripheral blood mononuclear cells in a transwell setup, which allows paracrine signaling and separate analysis of each cell type. When exposed to bacterial lipopolysaccharides (Aa LPS and E. coli LPS) and proinflammatory cytokines (IL-6 and TNF-α), we observed that inflammatory stimuli significantly increased OC differentiation, particularly TNF-α, while E. coli LPS specifically suppressed OB activity as observed by the expression of key markers and cellular staining. These results demonstrate that microbial and host-derived inflammatory factors can differentially modulate bone cell behavior. This approach offers a physiologically relevant and ethically advantageous alternative to animal models to screen dual-targeted bone therapies to restore perturbed metabolism. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

32 pages, 2165 KB  
Review
Biogeochemical Interactions and Their Role in European Underground Hydrogen Storage
by Frank E. Viveros, Na Liu and Martin A. Fernø
Minerals 2025, 15(9), 929; https://doi.org/10.3390/min15090929 - 1 Sep 2025
Viewed by 206
Abstract
Integrating renewable energy requires robust, large-scale storage solutions to balance intermittent supply. Underground hydrogen storage (UHS) in geological formations, such as salt caverns, depleted hydrocarbon reservoirs, or aquifers, offers a promising way to store large volumes of energy for seasonal periods. This review [...] Read more.
Integrating renewable energy requires robust, large-scale storage solutions to balance intermittent supply. Underground hydrogen storage (UHS) in geological formations, such as salt caverns, depleted hydrocarbon reservoirs, or aquifers, offers a promising way to store large volumes of energy for seasonal periods. This review focuses on the biological aspects of UHS, examining the biogeochemical interactions between H2, reservoir minerals, and key hydrogenotrophic microorganisms such as sulfate-reducing bacteria, methanogens, acetogens, and iron-reducing bacteria within the gas–liquid–rock–microorganism system. These microbial groups use H2 as an electron donor, triggering biogeochemical reactions that can affect storage efficiency through gas loss and mineral dissolution–precipitation cycles. This review discusses their metabolic pathways and the geochemical interactions driven by microbial byproducts such as H2S, CH4, acetate, and Fe2+ and considers biofilm formation by microbial consortia, which can further change the petrophysical reservoir properties. In addition, the review maps 76 ongoing European projects focused on UHS, showing 71% target salt caverns, 22% depleted hydrocarbon reservoirs, and 7% aquifers, with emphasis on potential biogeochemical interactions. It also identifies key knowledge gaps, including the lack of in situ kinetic data, limited field-scale monitoring of microbial activity, and insufficient understanding of mineral–microbe interactions that may affect gas purity. Finally, the review highlights the need to study microbial adaptation over time and the influence of mineralogy on tolerance thresholds. By analyzing these processes across different geological settings and integrating findings from European research initiatives, this work evaluates the impact of microbial and geochemical factors on the safety, efficiency, and long-term performance of UHS. Full article
(This article belongs to the Special Issue Mineral Dissolution and Precipitation in Geologic Porous Media)
Show Figures

Figure 1

26 pages, 1699 KB  
Review
Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents
by Gerefa Sefu Edo, Esa Abiso Godana, Guillaume Legrand Ngolong Ngea, Kaili Wang, Qiya Yang and Hongyin Zhang
Foods 2025, 14(17), 3075; https://doi.org/10.3390/foods14173075 - 31 Aug 2025
Viewed by 405
Abstract
Fruits and vegetables are essential for a healthy diet, providing vital nutrients and contributing to global food security. Fungal pathogens that interact with fruits and vegetables reduce their quality and shelf life and lead to economic losses and risks to human health through [...] Read more.
Fruits and vegetables are essential for a healthy diet, providing vital nutrients and contributing to global food security. Fungal pathogens that interact with fruits and vegetables reduce their quality and shelf life and lead to economic losses and risks to human health through the production of mycotoxins. Chemical fungicides, used to control postharvest pathogens, are posing serious environmental and health risks, driving interest in safer alternative strategies. Biocontrol methods using antagonistic microbes, such as yeasts, are eco-friendly, sustainable, and the most promising, but they often have limited efficacy and specificity in diverse produce. There is growing interest in the innovative enhancement of biocontrol strategies. The present review shows that inducing, enhancing, co-application, encapsulation, and post-application treatments are common enhancement techniques, while environmental, host, and pathogen characteristics, antagonistic microbial traits, and chemical inputs are the major gearing factors for the best application methods. These methods do not involve genetic modification, which is adequate to reduce the proliferation of GMOs (Genetically Modified Organisms) while optimizing antagonistic microbial performance by promoting growth, inducing host resistance, enhancing antifungal properties, improving adhesion, and boosting stress tolerance. Most enhancers fall under groups of nutritional additives, protective carriers, growth stimulants, and encapsulants. Integrating these enhancers and best methods promises reduced postharvest losses, supports sustainable agriculture, and addresses economic losses and food security challenges. This study highlights the role of organic and natural elicitors, their application methods, their mechanisms in improving BCAs (Biological Control Agents), and their overall efficiency. This review concisely compiles recent strategies, calling for further research to revolutionize fungal pathogen management, reduce food waste, and promote responsible farming practices. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Food and Nutrition Security)
Show Figures

Figure 1

19 pages, 5168 KB  
Article
Green Tea Modulates Temporal Dynamics and Environmental Adaptation of Microbial Communities in Daqu Fermentation
by Liang Zhao, Fangfang Li, Hao Xiao, Tengfei Zhao, Yanxia Zhong, Zhihui Hu, Lu Jiang, Xiangyong Wang and Xinye Wang
Fermentation 2025, 11(9), 511; https://doi.org/10.3390/fermentation11090511 - 31 Aug 2025
Viewed by 110
Abstract
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with [...] Read more.
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with STR, TDR, Sloan neutral model, and phylogenetic analyses. Results showed time-dependent increases in bacterial/fungal richness, with 30% tea maximizing species richness. Tea delayed bacterial shifts until day 15 but accelerated fungal reconstruction from day 6, expanding the temporal response window. While stochastic processes dominated initial assembly (77–94% bacteria, 88–99% fungi), deterministic processes intensified with tea concentration, particularly in fungi (1% → 12%). Tea increased bacterial dispersal limitation and reduced phylogenetic conservatism of endogenous factors. This work proposed a framework for rationally engineering fermentation ecosystems by decoding evolutionary-ecological rules of microbial assembly. It revealed how plant-derived additives can strategically adjust niche partitioning and ancestral constraints to reprogram microbiome functionality. These findings provided a theoretical foundation in practical strategies for optimizing industrial baijiu production through targeted ecological interventions. Full article
(This article belongs to the Special Issue Development and Application of Starter Cultures, 2nd Edition)
Show Figures

Figure 1

18 pages, 1618 KB  
Article
The Role of Surgical and Perioperative Factors in Shaping Gut Microbiome Recovery After Colorectal Surgery
by Julia Kohn, Alexander Troester, Zachary Ziegert, Julia Frebault, Sonja Boatman, Maria Martell, Harika Nalluri-Butz, Matthew C. Bobel, Paolo Goffredo, Abigail J. Johnson, Cyrus Jahansouz, Christopher Staley and Wolfgang B. Gaertner
Antibiotics 2025, 14(9), 881; https://doi.org/10.3390/antibiotics14090881 - 31 Aug 2025
Viewed by 182
Abstract
The gut microbiome is essential for gut health, immune regulation, and metabolism, but pathogenic bacteria like Enterococcus and Streptococcus can disrupt these processes, increasing infection risk after colorectal surgery. Prior studies show that intravenous antibiotics and surgical bowel preparation (SBP, including mechanical preparation [...] Read more.
The gut microbiome is essential for gut health, immune regulation, and metabolism, but pathogenic bacteria like Enterococcus and Streptococcus can disrupt these processes, increasing infection risk after colorectal surgery. Prior studies show that intravenous antibiotics and surgical bowel preparation (SBP, including mechanical preparation with oral antibiotics) significantly disrupt the gut microbiota, potentially delaying postoperative recovery. However, the effects of surgical indication (e.g., diagnosis) and operation type on gut microbiome composition and function remain unclear. This study examines how SBP, resectional and non-resectional surgery, and underlying diagnoses shape the postoperative gut microbiome and microbial recovery. Methods: Fecal samples were collected from patients undergoing colonoscopy (n = 30), non-resectional (ventral mesh rectopexy, transanal surgery; n = 25), or resectional surgery with primary anastomosis (n = 26) at baseline, intraoperatively, and on postoperative days (POD) 10, 30, and 180. Microbial diversity was assessed through 16S rRNA sequencing, and short-chain fatty acid (SCFA) levels were measured to evaluate functional changes. Results: Alpha diversity (Shannon indices) decreased across all groups, recovering by POD10 in colonoscopy patients and by POD180 in non-resectional and resectional cohorts. Beta diversity (community composition) also returned to baseline by POD10 in colonoscopy patients and POD180 in non-resectional patients, but the resectional cohort did not fully recover (p < 0.001). Both surgical cohorts showed substantial losses of commensal bacteria through POD30, with notable increases in Streptococcus in resectional patients (p < 0.0001) and Enterococcus in both surgical cohorts (p < 0.0001). Functionally, only the resectional cohort experienced significant reductions in SCFA levels (p < 0.015) relative to baseline levels. Diagnosis minimally influenced long-term microbiota recovery, although cancer patients tended to have more stable microbiomes compared to patients with diverticulitis. Conclusions: These findings indicate that perioperative factors, especially surgical resection and SBP, significantly impact gut microbial recovery, with pathogenic bacteria persisting up to 6 months post-surgery. Full article
Show Figures

Figure 1

19 pages, 6937 KB  
Article
Integrating Machine Learning to Identify Key Microbiota of Gut Community Changes Across Different Stages in Dahe Black Pigs
by Lanlan Yi, Wenjie Cheng, Guangyao Song, Huijin Jia, Yuxiao Xie, Wanghong Zhang, Junhong Zhu and Sumei Zhao
Microorganisms 2025, 13(9), 2038; https://doi.org/10.3390/microorganisms13092038 - 31 Aug 2025
Viewed by 97
Abstract
Growth stage is a key factor influencing the composition and richness of the porcine gut microbiota. The stage-specific alterations in gut microbiota of indigenous Chinese pig breeds and cultivated breeds remain to be elucidated. This study conducted 16S rRNA sequencing analysis on fecal [...] Read more.
Growth stage is a key factor influencing the composition and richness of the porcine gut microbiota. The stage-specific alterations in gut microbiota of indigenous Chinese pig breeds and cultivated breeds remain to be elucidated. This study conducted 16S rRNA sequencing analysis on fecal microbiota from Dahe black pigs across distinct growth stages. Samples included lactating sows, suckling piglets, weaned piglets, pigs weighing 50–100 kg, pigs weighing 120–150 kg, and pigs weighing > 200 kg. The results indicated that Escherichia shigella (12.4% vs. 16.2%), Lactobacillus (5.9% vs. 6.3%), and Rikenellaceae RC9 gut group (3.9% vs. 4.2%) were dominant genera shared between lactating sows and suckling piglets. The relative abundance of Eubacterium brachy group was significantly higher in lactating sows, whereas Flavonifractor was significantly lower compared to suckling piglets (p < 0.05). Compared to pigs weighing > 120 kg, lactating sows exhibited 22 differentially abundant genera, including Escherichia shigella, Cloacibacillus, Fusobacterium, Faecalibacterium, and Prevotella (p < 0.05). In suckling piglets, Firmicutes and Bacteroidota constituted 47.4% and 27.3% of the microbiota, respectively. Their relative abundance increased with body weight, reaching 52.6% and 33.3% in pigs weighing > 200 kg. Proteobacteria decreased from 17.3% in suckling piglets to 2.0% in >200 kg pigs. Spirochaetota declined from 2.5% in suckling piglets to 0.9% in weaned piglets and then increased to 6.9% in >200 kg pigs. Lactobacillus peaked at 15.7% in weaned piglets, while Escherichia shigella reached its maximum (16.2%) in suckling piglets, both gradually declining thereafter. Streptococcus abundance remained relatively stable (1.1% in suckling piglets; 4.5% in weaned piglets). Prevotellaceae NK3B31 group registered 2.9% in suckling piglets, increased to 7.1% in weaned piglets, and then declined to 2.6% in >200 kg pigs. Mitsuokella, Bilophila, Succinivibrio, Romboutsia, and Desulfovibrio were identified as the top five genera discriminating suckling and weaned piglets. Similarly, Lachnospiraceae XPB1014 group, Clostridium sensu stricto 1, Turicibacter, Quinella, and p 1088 a5 gut group were key discriminators between weaned piglets and 50–100 kg pigs. These identified microbial taxa represent potential candidate targets for modulating the developmental timing of growth phases in pigs, offering possibilities for either advancing or delaying specific physiological timepoints. Full article
(This article belongs to the Special Issue Feature Papers in Microbiomes)
Show Figures

Graphical abstract

19 pages, 1869 KB  
Article
Optimization of Fermentation Conditions for Enhanced Single Cell Protein Production by Rossellomorea marisflavi NDS and Nutritional Composition Analysis
by Hui Zhang, Wenwen Zhang, Wen Zhang, Minghan Yin, Lefei Jiao, Tinghong Ming, Xiwen Jia, Moussa Gouife, Jiajie Xu and Fei Kong
Foods 2025, 14(17), 3066; https://doi.org/10.3390/foods14173066 - 30 Aug 2025
Viewed by 241
Abstract
Microbial proteins offer a sustainable alternative for animal nutrition. Rossellomorea marisflavi NDS, a bacterium isolated from seawater, was previously identified as a promising candidate due to its high protein content. This study aimed to enhance its single cell protein production through systemic fermentation [...] Read more.
Microbial proteins offer a sustainable alternative for animal nutrition. Rossellomorea marisflavi NDS, a bacterium isolated from seawater, was previously identified as a promising candidate due to its high protein content. This study aimed to enhance its single cell protein production through systemic fermentation optimization. Single-factor optimization in shake flask determined the optimal conditions to be: a salinity of 20‰ NaCl, a temperature of 32 °C, and an initial pH of 7.3, and a medium composed of 1% (w/v) corn flour, 1% peptone, 0.3% beef extract, and 0.2% KCl. Scaling up to a 10 L bioreactor demonstrated that a two-stage agitation strategy (150 rpm for the first 20 h followed by 180 rpm for the remaining 12 h) enhanced single cell protein yield. Furthermore, allowing the pH to fluctuate freely was more beneficial for protein production than maintaining a constant pH of 7.3 ± 0.02. Under these optimized conditions, the biomass composition (wet weight) was determined to be 2.3767 ± 0.0205% crude ash, 15.6013 ± 0.0082% crude protein, 0.1023 ± 0.0026% crude lipid, and 2.6997 ± 0.0021% carbohydrates. Amino acid analysis revealed a rich profile, with lysine and glutamic acid being the predominant essential and non-essential amino acids, respectively. Fatty acids analysis indicated that C14:1n5 was the most dominant. These findings underscore the potential of R. marisflavi NDS as a high-quality dietary protein supplement and provide a solid foundation for its industrial-scale production. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

Back to TopTop