Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = mimosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11870 KB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Cited by 2 | Viewed by 1548
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

15 pages, 1594 KB  
Review
Allelopathy and Allelochemicals of Leucaenaleucocephala as an Invasive Plant Species
by Hisashi Kato-Noguchi and Denny Kurniadie
Plants 2022, 11(13), 1672; https://doi.org/10.3390/plants11131672 - 24 Jun 2022
Cited by 61 | Viewed by 7267
Abstract
Leucaena leucocephala (Lam.) de Wit is native to southern Mexico and Central America and is now naturalized in more than 130 countries. The spread of L. leucocephala is probably due to its multipurpose use such as fodder, timber, paper pulp, shade trees, and [...] Read more.
Leucaena leucocephala (Lam.) de Wit is native to southern Mexico and Central America and is now naturalized in more than 130 countries. The spread of L. leucocephala is probably due to its multipurpose use such as fodder, timber, paper pulp, shade trees, and soil amendment. However, the species is listed in the world’s 100 worst invasive alien species, and an aggressive colonizer. It forms dense monospecific stands and threatens native plant communities, especially in oceanic islands. Phytotoxic chemical interactions such as allelopathy have been reported to play an important role in the invasion of several invasive plant species. Possible evidence for allelopathy of L. leucocephala has also been accumulated in the literature over 30 years. The extracts, leachates, root exudates, litter, decomposing residues, and rhizosphere soil of L. leucocephala increased the mortality and suppressed the germination and growth of several plant species, including weeds and woody plants. Those observations suggest that L. leucocephala is allelopathic and contains certain allelochemicals. Those allelochemicals may release into the rhizosphere soil during decomposition process of the plant residues and root exudation. Several putative allelochemicals such as phenolic acids, flavonoids, and mimosine were identified in L. leucocephala. The species produces a large amount of mimosine and accumulates it in almost all parts of the plants, including leaves, stems, seeds, flowers, roots, and root nodules. The concentrations of mimosine in these parts were 0.11 to 6.4% of their dry weight. Mimosine showed growth inhibitory activity against several plant species, including some woody plants and invasive plants. Mimosine blocked cell division of protoplasts from Petunia hybrida hort. ex E. Vilm. between G1 and S phases, and disturbed the enzyme activity such as peroxidase, catalase, and IAA oxidase. Some of those identified compounds in L. leucocephala may be involved in its allelopathy. Therefore, the allelopathic property of L. leucocephala may support its invasive potential and formation of dense monospecific stands. However, the concentrations of mimosine, phenolic acids, and flavonoids in the vicinity of L. leucocephala, including its rhizosphere soil, have not yet been reported. Full article
(This article belongs to the Special Issue Plant–Plant Allelopathic Interactions)
Show Figures

Figure 1

19 pages, 3328 KB  
Article
Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans
by Amal Widaad, Ihsan Nazurah Zulkipli and Mark I. R. Petalcorin
Molecules 2022, 27(6), 1875; https://doi.org/10.3390/molecules27061875 - 14 Mar 2022
Cited by 12 | Viewed by 6274
Abstract
Helminth infections continue to be a neglected global threat in tropical regions, and there have been growing cases of anthelmintic resistance reported towards the existing anthelmintic drugs. Thus, the search for a novel anthelmintic agent has been increasing, especially those derived from plants. [...] Read more.
Helminth infections continue to be a neglected global threat in tropical regions, and there have been growing cases of anthelmintic resistance reported towards the existing anthelmintic drugs. Thus, the search for a novel anthelmintic agent has been increasing, especially those derived from plants. Leucaena leucocephala (LL) is a leguminous plant that is known to have several pharmacological activities, including anthelmintic activity. It is widely known to contain a toxic compound called mimosine, which we believed could be a potential lead candidate that could exert a potent anthelmintic effect. Hence, this study aimed to validate the presence of mimosine in LL extract and to investigate the anthelmintic effect of LL extract and mimosine on head thrashing, egg-laying, and pharyngeal pumping activities using the animal model Caenorhabditis elegans (C. elegans). Mimosine content in LL extract was confirmed through an HPLC analysis of spiking LL extract with different mimosine concentrations, whereby an increasing trend in peak heights was observed at a retention time of 0.9 min. LL extract and mimosine caused a significant dose-dependent increase in the percentage of worm mortality, which produced LC50s of 73 mg/mL and 6.39 mg/mL, respectively. Exposure of C. elegans to different concentrations of LL extract and mimosine significantly decreased the head thrashing, egg-laying, and mean pump amplitude of pharyngeal pumping activity. We speculated that these behavioral changes are due to the inhibitory effect of LL extract and mimosine on an L-type calcium channel called EGL-19. Our findings provide evidential support for the potential of LL extract and its active compound, mimosine, as novel anthelmintic candidates. However, the underlying mechanism of the anthelmintic action has yet to be elucidated. Full article
(This article belongs to the Special Issue Microbiocides Chemistry II)
Show Figures

Figure 1

16 pages, 1187 KB  
Review
A Multipurpose Leguminous Plant for the Mediterranean Countries: Leucaena leucocephala as an Alternative Protein Source: A Review
by Anna De Angelis, Laura Gasco, Giuliana Parisi and Pier Paolo Danieli
Animals 2021, 11(8), 2230; https://doi.org/10.3390/ani11082230 - 29 Jul 2021
Cited by 50 | Viewed by 14128
Abstract
In tropical and subtropical regions, as well as in the internal and/or marginal Mediterranean areas, one of the most important problems related to animal production is represented by the inadequate nutritional supplies. The low productivity of the animals, often connected to reduced annual [...] Read more.
In tropical and subtropical regions, as well as in the internal and/or marginal Mediterranean areas, one of the most important problems related to animal production is represented by the inadequate nutritional supplies. The low productivity of the animals, often connected to reduced annual growth, is, in fact, not infrequently attributable to the low nitrogen content and the high fiber content of the local plant species and crop residues that constitute the base ingredients of the rations commonly adopted by farmers. The use of the supplementation with arboreal and shrub fodder, although often containing anti-nutritional factors and toxins that limit its use, could be a profitable way to alleviate the nutritional deficiencies of the basic diets. Leucaena leucocephala (Lam.) De Wit is native to Central America and widely naturalized in the majority of Latin American countries. It is a legume suitable for tropical and subtropical environments including the countries of the Mediterranean area. Moreover, its spread is desirable if we consider the multiple uses to which it is suitable, the considerable amount of biomass produced, and its role in preserving the environment. The aim of this work was to highlight the characteristics of Leucaena that can justify its wide diffusion. A structured analysis of strengths and weaknesses was performed accordingly. Being a good protein source for feeding livestock, it could be a species to be introduced in the inland areas of the Mediterranean countries as an alternative protein source; the limit represented by the presence of anti-nutritional factors could be overcome by feed processing and by launching targeted research programs. Full article
Show Figures

Figure 1

2 pages, 170 KB  
Abstract
Effect of Feeding Different Cultivars of Leucaena leucocephala on Rumen-Based in vitro Anaerobic Fermentations
by Diane Ouwerkerk , Anita Maguire , Jenny Gravel , Cathy Minchin , Michael Gravel , Athol Klieve and Ros Gilbert
Proceedings 2019, 36(1), 96; https://doi.org/10.3390/proceedings2019036096 - 13 Feb 2020
Viewed by 1495
Abstract
The leguminous forage shrub, Leucaena leucocephala, is one of the few nutritional options available to significantly improve beef productivity in Northern Australia. A mixed bacterial rumen inoculum for the detoxification of mimosine (present in Leucaena) and its toxic derivatives 3,4 DHP [...] Read more.
The leguminous forage shrub, Leucaena leucocephala, is one of the few nutritional options available to significantly improve beef productivity in Northern Australia. A mixed bacterial rumen inoculum for the detoxification of mimosine (present in Leucaena) and its toxic derivatives 3,4 DHP and 2,3 DHP has been produced in an anaerobic fermenter for the last 23 years by the Queensland Department of Agriculture and Fisheries, using the commercial cultivar Cunninghamii. The development and release of a new psyllid-resistant cultivar ‘Redlands’, offers potential for increasing uptake by the beef industry but brings unanswered questions about its impact on the survival of the toxin degrading bacteria Synergistes jonesii and the overall efficacy of the current inoculum. A series of 30-day anaerobic fermentations were undertaken using the same starter cultures used in the production of commercial inoculum but fed daily with one of three Leucaena cultivars: Cunninghamii, Redlands or Wondergraze. Populations of S. jonesii were monitored daily using a quantitative PCR assay and the ability of the fermentation to detoxify mimosine and its derivatives were assayed on days 10, 15, 20, 25 and 30. Feeding the new Redlands cultivar had a negative impact on S. jonesii numbers and the ability to detoxify 3,4 DHP. However, as fermentation time increased, the S. jonesii populations adapted to the Redlands cultivar. A follow-on fermentation using a starter culture obtained from Day 30 of a Redlands fermentation, showed an immediate increase in S. jonesii populations and was able to detoxify mimosine and its toxic derivatives. Full article
(This article belongs to the Proceedings of The Third International Tropical Agriculture Conference (TROPAG 2019))
32 pages, 1913 KB  
Review
Phytochelators Intended for Clinical Use in Iron Overload, Other Diseases of Iron Imbalance and Free Radical Pathology
by Christina N. Kontoghiorghe, Annita Kolnagou and George J. Kontoghiorghes
Molecules 2015, 20(11), 20841-20872; https://doi.org/10.3390/molecules201119725 - 23 Nov 2015
Cited by 58 | Viewed by 10503
Abstract
Iron chelating drugs are primarily and widely used in the treatment of transfusional iron overload in thalassaemia and similar conditions. Recent in vivo and clinical studies have also shown that chelators, and in particular deferiprone, can be used effectively in many conditions involving [...] Read more.
Iron chelating drugs are primarily and widely used in the treatment of transfusional iron overload in thalassaemia and similar conditions. Recent in vivo and clinical studies have also shown that chelators, and in particular deferiprone, can be used effectively in many conditions involving free radical damage and pathology including neurodegenerative, renal, hepatic, cardiac conditions and cancer. Many classes of phytochelators (Greek: phyto (φυτό)—plant, chele (χηλή)—claw of the crab) with differing chelating properties, including plant polyphenols resembling chelating drugs, can be developed for clinical use. The phytochelators mimosine and tropolone have been identified to be orally active and effective in animal models for the treatment of iron overload and maltol for the treatment of iron deficiency anaemia. Many critical parameters are required for the development of phytochelators for clinical use including the characterization of the therapeutic targets, ADMET, identification of the therapeutic index and risk/benefit assessment by comparison to existing therapies. Phytochelators can be developed and used as main, alternative or adjuvant therapies including combination therapies with synthetic chelators for synergistic and or complimentary therapeutic effects. The development of phytochelators is a challenging area for the introduction of new pharmaceuticals which can be used in many diseases and also in ageing. The commercial and other considerations for such development have great advantages in comparison to synthetic drugs and could also benefit millions of patients in developing countries. Full article
(This article belongs to the Section Metabolites)
Show Figures

Figure 1

16 pages, 787 KB  
Article
Insecticidal and Nematicidal Activities of Novel Mimosine Derivatives
by Binh Cao Quan Nguyen, Jamnian Chompoo and Shinkichi Tawata
Molecules 2015, 20(9), 16741-16756; https://doi.org/10.3390/molecules200916741 - 14 Sep 2015
Cited by 31 | Viewed by 7832
Abstract
Mimosine, a non-protein amino acid, is found in several tropical and subtropical plants, which has high value for medicine and agricultural chemicals. Here, in continuation of works aimed to development of natural product-based pesticidal agents, we present the first significant findings for insecticidal [...] Read more.
Mimosine, a non-protein amino acid, is found in several tropical and subtropical plants, which has high value for medicine and agricultural chemicals. Here, in continuation of works aimed to development of natural product-based pesticidal agents, we present the first significant findings for insecticidal and nematicidal activities of novel mimosine derivatives. Interestingly, mimosinol and deuterated mimosinol (D-mimosinol) from mimosine had strong insecticidal activity which could be a result of tyrosinase inhibition (IC50 = 31.4 and 46.1 μM, respectively). Of synthesized phosphoramidothionate derivatives from two these amino alcohols, two compounds (1a and 1b) showed high insecticidal activity (LD50 = 0.5 and 0.7 μg/insect, respectively) with 50%–60% mortality at 50 μg/mL which may be attributed to acetylcholinesterase inhibition. Compounds 1a and 1b also had strong nematicidal activity with IC50 = 31.8 and 50.2 μM, respectively. Our results suggest that the length of the alkyl chain and the functional group at the C5-position of phosphoramidothionates derived from mimosinol and d-mimosinol are essential for the insecticidal and nematicidal activities. These results reveal an unexplored scaffold as new insecticide and nematicide. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

14 pages, 770 KB  
Article
Mimosine Dipeptide Enantiomsers: Improved Inhibitors against Melanogenesis and Cyclooxygenase
by Binh Cao Quan Nguyen and Shinkichi Tawata
Molecules 2015, 20(8), 14334-14347; https://doi.org/10.3390/molecules200814334 - 6 Aug 2015
Cited by 20 | Viewed by 5843
Abstract
Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time [...] Read more.
Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time that a small library of mimosine dipeptide enantiomers (Mi-L/D-amino acid) inhibit the melanogenesis in B16F10 melanoma cells by down-regulating the cellular tyrosinase with little effect on their growth or viability. Two of them, Mi-D-Trp and Mi-D-Val, turned out to be the most potent inhibitors on melanin content and cellular tyrosinase in B16F10 melanoma cells. In addition, most of the mimosine dipeptides were more potent than mimosine for inhibiting cyclooxygenase 1 (COX-1) with IC50 of 18–26 μM. Among them, Mi-L-Val and Mi-L-Trp inhibited cyclooxygenase 2 (COX-2) more potently than indomethacin, with IC50 values of 22 and 19 μM, respectively. Taken together, our results suggest the possibility that mimosine dipeptides could be better candidates (than mimosine) for anti-melanogenic (skin hyperpigmentation treatment) and cyclooxygenase (COX) inhibition. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop