Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. High-Performance Liquid Chromatography (HPLC) Analysis and Spectrophotometry Revealed the Presence of Mimosine in LL Extract
2.2. LL Extract and Mimosine Caused Increase in Worm Mortality Dose-Dependently
2.3. LL Extract and Mimosine Significantly Decreased Head Thrashing Activity in C. elegans
2.4. Significant Inhibition of Egg-Laying Activity in C. elegans Exposed to LL Extract and Mimosine
2.5. Mean Pump Amplitude of Pharyngeal Pumping Activity Was Significantly Affected by LL Extract and Mimosine
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Collection and Authentication
4.3. Preparation of LL Extract and Mimosine
4.4. HPLC Analysis of LL Extract Content and Validation of the Presence of Mimosine
4.5. Quantification of Mimosine Content by Spectrophotometry
4.6. Maintenance of C. elegans and Synchronization
4.7. Toxicity Assay
4.8. Head Thrashing Assay
4.9. Egg-Laying Assay
4.10. Pharyngeal Pumping Assay
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pullan, R.; Smith, J.; Jasrasaria, R.; Brooker, S. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites Vectors 2014, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Soil-Transmitted Helminth Infections. 2018. Available online: http://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminthinfections (accessed on 30 June 2019).
- Van Houtert, M.; Sykes, A. Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections. Int. J. Parasites 2010, 26, 1151–1167. [Google Scholar] [CrossRef]
- Meenakshisundaram, A.; Harikrishnan, T.J.; Anna, T. Anthelmintic activity of Indigofera tinctoria against gastrointestinal nematodes of sheep. Vet. World 2016, 9, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovanelli, F.; Mattellini, M.; Gianluca, F.; Guido, F.; Stefania, P. In vitro anthelmintic activity of four plant-derived compounds against sheep gastrointestinal nematodes. Vet. Sci. 2018, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngwese, M.; Manouana, G.; Moure, P.; Ramharter, M.; Esen, M.; Adégnika, A. Diagnostic techniques of soil-transmitted helminths: Impact on control measures. Trop. Med. Infect. Dis. 2020, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Hewitt, G.; Tuffrey, V.; de Silva, N. A review and meta-analysis of the impact of intestinal worms on child growth and nutrition. Matern. Child Nutr. 2008, 4, 118–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manke, M.B.; Dhawale, S.C.; Jamkhande, P.G. Helminthiasis and medicinal plants: A review. Asian Pac. J. Trop. Dis. 2015, 5, 175–180. [Google Scholar] [CrossRef]
- Brooker, S.; Clements, A.C.A.; Bundy, D.A.P. Global Epidemiology, Ecology and Control of Soil-Transmitted Helminth Infections. Adv. Parasitol. 2006, 62, 221–261. [Google Scholar]
- Villalba, J.J.; Miller, J.; Ungar, E.D.; Landau, S.Y.; Glendinning, J. Ruminant self-medication against gastrointestinal nematodes: Evidence, mechanism, and origins. Parasite 2014, 21, 31. [Google Scholar] [CrossRef]
- Vercruysse, J.; Charlier, J.; Van Dijk, J.; Morgan, E.R.; Geary, T.; von Samson-Himmelstjerna, G.; Claerebout, E. Control of helminth ruminant infections by 2030. Parasitology 2018, 145, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasit. Vectors 2013, 6, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geurden, T.; Hoste, H.; Jacquiet, P.; Traversa, D.; Sotiraki, S.; di Regalbono, A.F.; Tzanidakis, N.; Kostopoulou, D.; Gaillac, C.; Privat, S.; et al. Anthelmintic resistance and multidrug resistance in sheep gastro-intestinal nematodes in France, Greece and Italy. Vet. Parasitol. 2014, 201, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Taman, A.; El-Beshbishi, S.N.; Bardicy, S.E.; Tadros, M.; Ayoub, M.; Mansour, B.; El-Bialy, S. In vitro screening of BTP-Iso on Schistosoma mansoni and its intermediate host Biomphalaria alexandrina. Asian Pac. J. Trop. Dis. 2016, 6, 946–951. [Google Scholar] [CrossRef]
- Marie-Magdeleine, C.; Ceriac, S.; Barde, D.J.; Minatchy, N.; Periacarpin, F.; Pommier, F.; Calif, B.; Philibert, L.; Bambou, J.; Archimède, H. Evaluation of nutraceutical properties of Leucaena leucocephala leaf pellets fed to goat kids infected with Haemonchus contortus. BMC Vet. Res. 2020, 16, 280. [Google Scholar] [CrossRef]
- Nordi, E.C.; Costa, R.L.; David, C.M.G.; Parren, G.A.E.; Freitas, A.C.B.; Lameirinha, L.P.; Katiki, L.M.; Bueno, M.S.; Quirino, C.R.; Gama, P.E.; et al. Supplementation of moist and dehydrated citrus pulp in the diets of sheep artificially and naturally infected with gastrointestinal nematodes on the parasitological parameters and performance. Vet. Parasitol. 2014, 205, 532–539. [Google Scholar] [CrossRef]
- Fichi, G.; Mattellini, M.; Meloni, E.; Flamini, G.; Perrucci, S. In vitro anthelmintic activity of two aloe-derived active principles against sheep gastrointestinal nematodes. Nat. Prod. Commun. 2017, 12, 1897–1899. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Sandoval, J.; Acevedo-Rodríguez, P. Leucaena leucocephala. CABI Organization. 2013. Available online: https://www.cabi.org/isc/datasheet/31634 (accessed on 3 July 2019).
- Zayed, M.Z.; Sallam, S.M.A.; Shetta, N.D. Review article on Leucaena leucocephala as one of the miracle timber trees. Int. J. Pharm. Pharm. Sci. 2018, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Awe, F.; Giwa-Ajeniya, A.; Akinyemi, A.; Ezeri, G. Phytochemical analysis of Acalypha wilkesiana, Leucaena leucocephala, Pepperomia pellucida and Sena alata leaves. Indian J. Environ. Sci. 2013, 2, 41–44. [Google Scholar]
- Aderibigbe, S.; Adetunji, O.; Odeniyi, M. Antimicrobial and pharmaceutical properties of the seed oil of Leucaena leucocephala (Lam.) De Wit (Leguminosae). Afr. J. Biomed. Res. 2011, 14, 63–68. [Google Scholar]
- Rosida, D.F.; Djajati, S.; Nilamayu, Z.A.; Rosida. Antibacterial Activity of Leucaena leucocephala Extracts on Growth of Escherichia coli. Adv. Sci. Lett. 2017, 23, 12268–12271. [Google Scholar] [CrossRef]
- Saptawati, T.; Dahliyanti, N.; Risalati, R. Antibacterial activity of Leucaena leucocephala leaf extract ointment against Staphylococcus aureus and Staphylococcus epidermidis. Pharmaciana 2019, 9, 75–182. [Google Scholar] [CrossRef]
- Suparno, O.; Panandita, T.; Afifah, A.; Marimin; Purnawati, R. Antibacterial activities of leave extracts as bactericides for soaking of skin or hide. IOP Conf. Ser. Earth Environ. Sci. 2018, 141, 012028. [Google Scholar] [CrossRef] [Green Version]
- Dzoyem, J.P.; Eloff, J.N. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. J. Ethnopharmacol. 2015, 160, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Tao, Z.; Jin, Y.; Yuan, Y.; Dong, T.T.X.; Tsim, K.W.K.; Zhou, Z. Flavonoids, a potential new insight of Leucaena leucocephala foliage in ruminant health. J. Agric. Food Chem. 2018, 66, 7616–7626. [Google Scholar] [CrossRef] [PubMed]
- Gamal-Eldeen, A.; Amer, H.; Helmy, W.; Ragab, H.; Talaat, R. Antiproliferative and cancer chemo-preventive properties of sulfated glycosylated extract derived from Leucaena leucocephala. Indian J. Pharm. Sci. 2007, 69, 805. [Google Scholar] [CrossRef]
- Chung, H.; Chen, M.; Chang, Y.; Yang, S.; Lin, C.; Lin, C. Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells. Environ. Toxicol. 2017, 32, 1765–1774. [Google Scholar] [CrossRef]
- She, L.; Liu, C.; Chen, C.; Li, H.; Li, W.; Chen, C. The anti-cancer and anti-metastasis effects of phytochemical constituents from Leucaena leucocephala. Biomed. Res. 2017, 28, 2893–2897. [Google Scholar]
- Kabore, A.; Traore, A.; Nignan, M.; Gnanda, B.I.; Bamogo, V.; Tamboura, H.H.; Bélem, A.M.G. In vitro anthelmintic activity of Leuceana leucocephala (Lam.) De Wit. (Mimosaceae) and Gliricidia sepium (Jacq.) Kunth ex Steud (Fabaceae) leave extracts on Haemonchus contortus ova and larvae. J. Chem. Pharm. Res. 2012, 4, 303–309. [Google Scholar]
- Ademola, I.O.; Akanbi, A.I.; Idowu, S.O. Comparative nematocidal activity of chromatographic fractions of Leucaena leucocephala seed against gastrointestinal nematodes. Pharm. Biol. 2008, 43, 599–604. [Google Scholar] [CrossRef]
- Rivero, N.; Jaramillo Colmenero, A.; Peláez-Acero, A.; Rivas-Jacobo, M.; Ballesteros-Rodea, G.; Zaragoza-Bastida, A. Anthelmintic activity of Leucaena leucocephala pod on gastrointestinal nematodes of sheep (in vitro). Abanico Vet. 2019, 9, 1–9. [Google Scholar]
- El-Nuby, A. Phytochemical and nematicidal activity studies of some extracts of different plant parts of Leucaena leucocephala against Meloidogyne incognita. Int. J. Chem. Pharm. Sci. 2020, 11, 1–17. [Google Scholar]
- Xuan, T.D.; Elzaawely, A.A.; Deba, F.; Fukuta, M.; Tawata, S. Mimosine in Leucaena as a potent bio-herbicide. Agron. Sustain. Dev. 2006, 26, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.; Tawata, S.; Dang, T. Herbicidal activity of mimosine and its derivatives. In Herbicide—Advances in Research; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Chanchay, N.; Poosaran, N. The reduction of mimosine and tannin contents in leaves of Leucaena leucocephala. Asian J. Food Agro-Ind. 2009, 2, S137–S144. [Google Scholar]
- Tan, H.Y.; Sieo, C.C.; Abdullah, N.; Liang, J.B.; Huang, X.D.; Ho, Y.W. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 2011, 169, 185–193. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Sallam, S.M.A.; Lucas, R.C.; Louvandini, H.; Kreuzer, M.; Abdalla, A.L. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch. Anim. Nutr. 2013, 67, 169–184. [Google Scholar] [CrossRef]
- Lalitha, K.; Kulothungan, S. Selective determination of mimosine and its dihydroxypyridinyl derivative in plant systems. Amino Acids 2006, 31, 279–287. [Google Scholar] [CrossRef]
- Adekojo, T.; Aremu, A.; Ijaiya, A.; Owoleke, O.; Ibrahim, A. Effects of dietary inclusion of differently processed Leucaena leucocephala leaf meal on carcass characteristics of rabbits (Oryctolagus cunniculus). Int. J. Food Sci. Nutr. Eng. 2014, 4, 118–127. [Google Scholar]
- Negi, V.S.; Bingham, J.P.; Li, Q.X.; Borthakur, D. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation. Plant Physiol. 2014, 164, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.; Chompoo, J.; Tawata, S. Insecticidal and nematicidal activities of novel mimosine derivatives. Molecules 2015, 20, 16741–16756. [Google Scholar] [CrossRef] [Green Version]
- Pund, G.; Kothari, D.; Thorat, P. Lab scale extraction of mimosine from leucaena leucocephala leaves. Int. Res. J. Eng. Technol. 2017, 4, 642–646. [Google Scholar]
- Conti, P.; Frydas, S.; Reale, M.; Barbacane, R.C.; di Gioacchino, M.; Felaco, M.; Trakatellis, A. Inhibition of MCP-1 and MIP-2 transcription and translation by mimosine in muscle tissue infected with the parasite Trichinella spiralis. Mol. Cell. Biochem. 2002, 229, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Gold, B.; Vishwanatha, J.K.; Rhode, S. Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 1994, 205, 210–216. [Google Scholar] [CrossRef]
- Chang, H.C.; Lee, T.H.; Chuang, L.Y.; Yen, M.H.; Hung, W. Inhibitory effect of mimosine on proliferation of human lung cancer cells is mediated by multiple mechanisms. Cancer Lett. 1999, 145, 1–8. [Google Scholar] [CrossRef]
- Chung, L.C.; Tsui, K.H.; Feng, T.H.; Lee, S.L.; Chang, P.L.; Juang, H.H. L-Mimosine blocks cell proliferation via upregulation of B-cell translocation gene 2 and N-myc downstream regulated gene 1 in prostate carcinoma cells. Am. J. Physiol. Physiol. 2012, 302, C676–C685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, G.; Bohm, R.; Segner, H. Mimosine-induced cell death and related chromatin changes. J. Submicrosc. Cytol. Pathol. 1994, 26, 319–330. [Google Scholar] [PubMed]
- Gilbert, D.M.; Neilson, A.; Miyazawa, H.; DePamphilis, M.L.; Burhans, W.C. Mimosine arrests DNA synthesis at replication forks by inhibiting deoxyribonucleotide metabolism. J. Biol. Chem. 1995, 270, 9597–9606. [Google Scholar] [CrossRef] [Green Version]
- Khanna, K.; Lavin, M. Ionizing radiation and UV induction of P53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 1993, 8, 3307–3312. [Google Scholar]
- Xuan, T.D.; Minh, T.N.; Khanh, T.D. Isolation and biological activities of 3-hydroxy-4(1H)-pyridone. J. Plant Interact. 2016, 11, 94–100. [Google Scholar] [CrossRef]
- Benjakul, S.; Kittiphattanabawon, P.; Sumpavapol, P.; Maqsood, S. Antioxidant activities of lead (Leucaena leucocephala) seed as affected by extraction solvent, prior dechlorophyllisation and drying methods. J. Food Sci. Technol. 2014, 51, 3026–3037. [Google Scholar] [CrossRef] [Green Version]
- Wardatun, S.; Harahap, Y.; Mun’im, A.; Saputri, F.C.; Sutandyo, N. Removal of mimosine from Leucaena leucocephala (Lam.) de Wit seeds to increase their benefits as nutraceuticals. Pharm. Sci. Res. 2020, 7, 159–165. [Google Scholar] [CrossRef]
- Ilham, Z.; Hamidon, H.; Rosji, N.A.; Ramli, N.; Osman, N. Extraction and Quantification of Toxic Compound Mimosine from Leucaena Leucocephala Leaves. Procedia Chem. 2015, 16, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Partridge, F.A.; Murphy, E.A.; Willis, N.J.; Bataille, C.J.R.; Forman, R.; Heyer-Chauhan, N.; Marinič, B.; Sowood, D.J.C.; Wynne, G.M.; Else, K.J.; et al. Dihydrobenz[e] [1,4] oxazepin-2(3H)-ones, a new anthelmintic chemotype immobilising whipworm and reducing infectivity in vivo. PLoS Negl. Trop. Dis. 2017, 11, e0005359. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.G.; Vela Gurovic, M.S.; Silbestri, G.F.; Garelli, A.; Giunti, S.; Rayes, D.; de Rosa, M.J. Diisopropylphenyl-imidazole (DII): A new compound that exerts anthelmintic activity through novel molecular mechanisms. PLoS Negl. Trop. Dis. 2018, 12, e0007021. [Google Scholar] [CrossRef] [PubMed]
- Risi, G.; Aguilera, E.; Ladós, E.; Suárez, G.; Carrera, I.; Álvarez, G.; Salinas, G. Caenorhabditis elegans Infrared-Based Motility Assay Identified New Hits for Nematicide Drug Development. Vet. Sci. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Milišiūnaitė, V.; Kadlecová, A.; Žukauskaitė, A.; Doležal, K.; Strnad, M.; Voller, J.; Arbačiauskienė, E.; Holzer, W.; Šačkus, A. Synthesis and anthelmintic activity of benzopyrano[2,3-c] pyrazol-4(2H)-one derivatives. Mol. Divers. 2020, 24, 1025–1042. [Google Scholar] [CrossRef]
- Lai, Y.; Xiang, M.; Liu, S.; Che, Y.; Liu, X. A novel high-throughput nematicidal assay using embryo cells and larvae of Caenorhabditis elegans. Exp. Parasitol. 2014, 139, 33–41. [Google Scholar] [CrossRef]
- Burns, A.R.; Luciani, G.M.; Musso, G.; Bagg, R.; Yeo, M.; Zhang, Y.; Rajendran, L.; Glavin, J.; Hunter, R.; Redman, E.; et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Partridge, F.A.; Brown, A.E.; Buckingham, S.D.; Willis, N.J.; Wynne, G.M.; Forman, R.; Else, K.J.; Morrison, A.A.; Matthews, J.B.; Russell, A.J.; et al. An automated high-throughput system for phenotypic screening of chemical libraries on C. elegans and parasitic nematodes. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 8–21. [Google Scholar] [CrossRef]
- Zamanian, M.; Cook, D.E.; Zdraljevic, S.; Brady, S.C.; Lee, D.; Lee, J.; Andersen, E.C. Discovery of genomic intervals that underlie nematode responses to benzimidazoles. PLoS Negl. Trop. Dis. 2018, 12, e0006368. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Gadea, A.; Topper, L.; Young, A.; Crisp, A.; Kressin, L.; Elbel, E.; Maples, T.; Brauner, M.; Erbguth, K.; Axelrod, A.; et al. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc. Natl. Acad. Sci. USA 2011, 108, 17504–17509. [Google Scholar] [CrossRef] [Green Version]
- Lüersen, K.; Faust, U.; Gottschling, D.C.; Döring, F. Gait-specific adaptation of locomotor activity in response to dietary restriction in Caenorhabditis elegans. J. Exp. Biol. 2014, 217, 2480–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce-Shimomura, J.T.; Chen, B.L.; Mun, J.J.; Ho, R.; Sarkis, R.; McIntire, S.L. Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc. Natl. Acad. Sci. USA 2008, 105, 20982–20987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, M.; Samuel, A.D.T. C. elegans locomotion: Small circuits, complex functions. Curr. Opin. Neurobiol. 2015, 33, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Maulik, M.; Mitra, S.; Bult-Ito, A.; Taylor, B.E.; Vayndorf, E. Behavioral phenotyping and pathological indicators of Parkinson’s disease in C. elegans models. Front. Genet. 2017, 8, 77. [Google Scholar] [CrossRef]
- Buckingham, S.D.; Sattelle, D.B. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 2009, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Schafer, W.F. Genetics of egg-laying in worms. Annu. Rev. Genet. 2006, 40, 487–509. [Google Scholar] [CrossRef] [Green Version]
- Schafer, W.R. Egg-laying. In WormBook: The Online Review of C. elegans Biology; The C. elegans Research Community: Pasadena, CA, USA, 2005; pp. 1–7. [Google Scholar]
- Hobson, R.J.; Hapiak, V.M.; Xiao, H.; Buehrer, K.L.; Komuniecki, P.R.; Komuniecki, R.W. SER-7, a Caenorhabditis elegans 5-HT7-like Receptor, Is Essential for the 5-HT Stimulation of Pharyngeal Pumping and Egg Laying. Genetics 2006, 172, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Shu, M.H.; Appleton, D.; Zandi, K.; AbuBakar, S. Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract. BMC Complement. Altern. Med. 2013, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chung, S.H.; Fang-Yen, C.; Craig, C.; Kerr, A.R.; Suzuki, H.; Samuel, A.D.T.; Mazur, E.; Schafer, W.R. A Self-Regulating Feed-Forward Circuit Controlling C. elegans Egg-Laying Behavior. Curr. Biol. 2008, 18, 1445–1455. [Google Scholar] [CrossRef] [Green Version]
- Antonio-Irineo, N.; Flota-Bañuelos, C.; Hernández-Marín, A.; Arreola-Enríquez, J.; Fraire-Cordero, S. Preliminary study on the in vitro inhibition of gastrointestinal nematodes from sheep with aqueous extracts of forage plants. Abanico Vet. 2021, 11, 1–15. [Google Scholar]
- Adekunle, O.K.; Aderogba, M.A. Characterisation of an antinematicidal compound from Leucaena leucocephala. Australas. Plant Dis. Notes 2008, 3, 168–170. [Google Scholar] [CrossRef] [Green Version]
- von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; de la Mora, B.V.; González-Cortazar, M.; Zamilpa, A.; Gallegos, E.C. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Romero, N.; Areche, C.; Cubides-Cárdenas, J.; Escobar, N.; García-Beltrán, O.; Simirgiotis, M.J.; Céspedes, Á. In vitro anthelmintic evaluation of Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce: Fingerprint analysis of extracts by UHPLC-orbitrap mass spectrometry. Molecules 2020, 25, 3002. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.M.B.; Bevilaqua, C.M.L.; Macedo, I.T.F.; de Morais, S.M.; Monteiro, M.V.B.; Campello, C.C.; Ribeiro, W.L.C.; Batista, E.K.F. Effect of six tropical tanniferous plant extracts on larval exsheathment of Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2011, 20, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Ozaraga, M.; Ozaraga, B. Efficacy of Ipil-ipil (Leucaena leucocephala), betel nut (Areca catechu) and papaya (Carica papaya) seeds against roundworms of darag native chicken. Philipp. J. Vet. Anim. Sci. 2017, 43, 33–37. [Google Scholar]
- Soares, A.; Araújo, S.; Lopes, S.; Costa Junior, L. Anthelmintic activity of Leucaena leucocephala protein extracts on Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2015, 24, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Delgado, B.; Lacsamana, E.; Macatangay, R.; Arreola-Enríquez, J.; Fraire-Cordero, S. Anthelmintic Activity of Leucaena glauca (Ipil-ipil) Seed and Leaf Extract in an Ascaridae Model. Semant. Sch. 2012, 6, 53–64. [Google Scholar]
- Niacaris, T.; Avery, L. Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J. Exp. Biol. 2003, 206, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Song, B.M.; Avery, L. The pharynx of the nematode C. elegans: A model system for the study of motor control. Worm. 2013, 2, e21833. [Google Scholar] [CrossRef] [Green Version]
- Raizen, D.; Avery, L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron. 1994, 12, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Shtonda, B.; Avery, L. CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J. Exp. Biol. 2005, 208, 2177–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avery, L.; You, Y.J. C. Elegans feeding. In WormBook: The Online Review of C. Elegans Biology; The C. elegans Research Community: Pasadena, CA, USA, 2012; pp. 1–23. [Google Scholar]
- Schüler, C.; Fischer, E.; Shaltiel, L.; Steuer Costa, W.; Gottschalk, A. Arrhythmogenic effects of mutated L-type Ca2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans. Sci. Rep. 2015, 5, 14427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jospin, M.; Qi, Y.B.; Stawicki, T.M.; Boulin, T.; Schuske, K.R.; Horvitz, H.R.; Bessereau, J.; Jorgensen, E.M.; Jin, Y. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol. 2009, 7, e1000265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lainé, V.; Ségor, J.R.; Zhan, H.; Bessereau, J.L.; Jospin, M. Hyperactivation of L-type voltage-gated Ca2+ channels in Caenorhabditis elegans striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the α1 subunit. J. Exp. Biol. 2014, 217, 3805–3814. [Google Scholar] [PubMed] [Green Version]
- Lee, R.; Lobel, L.; Hengartner, M.; Horvitz, H.; Avery, L. Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 1997, 16, 6066–6076. [Google Scholar] [CrossRef] [Green Version]
- Kwok, T.; Ricker, N.; Fraser, R.; Chan, A.W.; Burns, A.; Stanley, E.F.; McCourt, P.; Cutler, S.R.; Roy, P.J. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 2006, 441, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kwok, T.C.Y.; Hui, K.; Kostelecki, W.; Ricker, N.; Selman, G.; Feng, Z.P.; Roy, P.J. A genetic screen for dihydropyridine (DHP)-resistant worms reveals new residues required for DHP-blockage of mammalian calcium channels. PLoS Genet. 2008, 4, e1000067. [Google Scholar] [CrossRef]
- Shyn, S.; Kerr, R.; Schafer, W. Serotonin and Go Modulate Functional States of Neurons and Muscles Controlling C. elegans Egg-Laying Behavior. Curr. Biol. 2003, 13, 1910–1915. [Google Scholar] [CrossRef] [Green Version]
- Trent, C.; Tsung, N.; Horvitz, H. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 1983, 104, 619–647. [Google Scholar] [CrossRef]
- Mahmood, A.; Raja, G.; Mahmood, T.; Gulfraz, M.; Khanum, A. Isolation and characterization of antimicrobial activity conferring component (s) from seeds of bitter gourd (Momordica charantia). J. Med. Plants Res. 2012, 6, 566–573. [Google Scholar] [CrossRef]
- Kulevanova, S.; Stefova, M.; Stafilov, T. HPLC identification and determination of myricetin, quercetin, kaempferol and total flavonoids in herbal drugs. Maced. Pharm. Bull. 2002, 1, 25–30. [Google Scholar] [CrossRef]
- Wardatun, S.; Harahap, Y.; Mun’im, A.; Saputri, F.C.; Sutandyo, N. Leucaena leucocephala (Lam.) de Wit Seeds: A new potential source of sulfhydryl compounds. Pharmacogn. J. 2020, 12, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans methods: Synchronization and observation. J. Vis. Exp. 2012, 64, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.; Ferdek, P.; Lian, L.; Barclay, J.; Burgoyne, R.; Morgan, A. Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans. Biochemistry 2009, 418, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mimosine (mg/mL) | Retention Time (RT) (min) | Height (mAU) | Area (mAU X s) | Area (%) |
---|---|---|---|---|
0.2 | 0.908 | 7.45316 | 42.06311 | 50.3087 |
1.086 | 10.97289 | 41.54688 | 49.6913 | |
1 | 0.9 | 16.02594 | 87.79227 | 67.1053 |
1.088 | 11.14823 | 43.03543 | 32.8947 | |
5 | 0.893 | 24.3674 | 132.21669 | 74.4095 |
1.085 | 11.47292 | 45.47133 | 25.5905 |
Samples | Retention Time (RT) (min) | Height (mAU) | Area (mAU X s) | Area (%) | |
---|---|---|---|---|---|
Unspiked | 0.908 | 7.25016 | 49.88125 | 52.6444 | |
Spiked | LL extract + 0.2 mg/mL mimosine | 0.896 | 9.15798 | 54.45244 | 70.4267 |
LL extract + 1 mg/mL mimosine | 0.886 | 26.47382 | 140.31894 | 84.1147 | |
LL extract + 5 mg/mL mimosine | 0.902 | 42.3965 | 238.33374 | 88.5571 |
Treatments | Regression Equation | LC50 Value |
---|---|---|
LL extract | Y = 0.6939X + 1.461 | 73 mg/mL |
Mimosine | Y = 6.713X + 7.097 | 6.39 mg/mL |
Treatments | Concentration (mg/mL) | Mean Number of Head Thrashes per min ± Standard Deviation (SD) |
---|---|---|
M9 buffer (negative control) | 112.53 ± 5.02 | |
Levamisole (Lev) (positive control) | 100 µM | 0 **** |
LL extract | 0.9875 | 60 ± 19.37 *** |
1.875 | 42.93 ± 6.37 **** | |
3.75 | 37.6 ± 4.83 **** | |
7.5 | 32.13 ± 7.70 **** | |
15 | 20.93 ± 11.21 **** | |
30 | 8.13 ± 3.95 **** | |
Mimosine | 0.11 | 90.40 ± 7.71 |
0.22 | 74.67 ± 6.58 ** | |
0.45 | 64.80 ± 9.62 *** | |
0.9 | 63.47 ± 22.03 *** | |
1.8 | 51.27 ± 7.56 **** | |
3.6 | 47.27 ± 6.84 **** |
Treatments | Concentration (mg/mL) | Mean Number of Head Thrashes per min ± Standard Deviation (SD) |
---|---|---|
M9 buffer (negative control) | 16.33 ± 1.25 | |
Lev (positive control) | 100 µM | 0 **** |
LL extract | 0.9875 | 15.33 ± 0.47 |
1.875 | 14.67 ± 0.94 | |
3.75 | 10 ± 2.16 ** | |
7.5 | 2 ± 2.83 **** | |
15 | 1.33 ± 0.94 **** | |
30 | 0.67 ± 0.94 **** | |
Mimosine | 0.11 | 14.67 ± 1.25 |
0.22 | 12 ± 2.16 | |
0.45 | 11 ± 2.94 * | |
0.9 | 7.33 ± 1.25 *** | |
1.8 | 6 ± 1.63 *** | |
3.6 | 3.67 ± 1.25 **** |
Treatments | Concentrations (mg/mL) | Pharyngeal Pumping Parameters | ||||
---|---|---|---|---|---|---|
Mean Pump Frequency (Hz) | Mean Number of Pumps/min | Mean Pump Duration (ms) | Mean Inter-Pump Interval (IPI) Duration (ms) | Mean Pump Amplitude (µV) | ||
Ser alone (control) | 10 mM | 240.67 ± 15.16 | 3.91 ± 0.25 | 118.87 ± 10.75 | 255.22 ± 16.47 | 146.87 ± 31.53 |
LL extract | 0.9875 | 257.73 ± 26.31 | 4.20 ± 0.45 | 99.83 ± 11.89 *** | 293.73 ± 28.74 | 80.16 ± 17.59 **** |
1.875 | 229.27 ± 22.21 | 3.74 ± 0.40 | 106.86 ± 11.77 * | 226.89 ± 29.65 | 66.42 ± 15.06 **** | |
3.75 | 228.73 ± 16.48 | 3.75 ± 0.28 | 113.16 ± 10.38 | 265.75 ± 19.44 | 59.16 ± 7.70 **** | |
7.5 | 242.33 ± 14.08 | 3.95 ± 0.23 | 101.09 ± 4.19 *** | 252.44 ± 14.66 | 64.52 ± 6.75 **** | |
15 | 227.40 ± 47.68 | 3.76 ± 0.72 | 98.28 ± 17.09 **** | 265.98 ± 53.46 | 72.74 ± 11.23 **** | |
30 | 239.8 ± 20.70 | 3.86 ± 0.32 | 110.50 ± 11.04 | 258.83 ± 21.41 | 84.04 ± 12.91 **** | |
Mimosine | 0.11 | 245.73 ± 36.65 | 3.99 ± 0.58 | 119.43 ± 15.29 | 255.09 ± 42.93 | 113.45 ± 33.094 **** |
0.22 | 244.20 ± 30.45 | 3.98 ± 0.52 | 100.21 ± 12.83 *** | 252.31 ± 32.75 | 90.84 ± 26.31 **** | |
0.45 | 245.53 ± 24.20 | 4.05 ± 0.40 | 103.74 ± 11.37 ** | 246.79 ± 27.57 | 81.40 ± 10.67 **** | |
0.9 | 241.27 ± 17.83 | 3.93 ± 0.28 | 108.77 ± 12.73 | 253.22 ± 18.56 | 79.41 ± 9.31 **** | |
1.8 | 258.40 ± 32.52 | 4.28 ± 0.50 | 106.56 ± 12.55 * | 235.98 ± 30.77 | 90.78 ± 21.26 **** | |
3.6 | 253.27 ± 14.59 | 4.09 ± 0.20 | 110.76 ± 8.72 | 243.89 ± 11.86 | 69.39 ± 10.14 **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widaad, A.; Zulkipli, I.N.; Petalcorin, M.I.R. Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans. Molecules 2022, 27, 1875. https://doi.org/10.3390/molecules27061875
Widaad A, Zulkipli IN, Petalcorin MIR. Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans. Molecules. 2022; 27(6):1875. https://doi.org/10.3390/molecules27061875
Chicago/Turabian StyleWidaad, Amal, Ihsan Nazurah Zulkipli, and Mark I. R. Petalcorin. 2022. "Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans" Molecules 27, no. 6: 1875. https://doi.org/10.3390/molecules27061875
APA StyleWidaad, A., Zulkipli, I. N., & Petalcorin, M. I. R. (2022). Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans. Molecules, 27(6), 1875. https://doi.org/10.3390/molecules27061875