Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,807)

Search Parameters:
Keywords = mineral additive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2357 KiB  
Article
Effect of Coal Gangue Powder Addition on Hydraulic Properties of Aeolian Sandy Soil and Plant Growth
by Xiaoyun Ding, Ruimin He, Zhenguo Xing, Haoyan Wei, Jiping Niu, Shi Chen and Min Li
Horticulturae 2025, 11(6), 634; https://doi.org/10.3390/horticulturae11060634 - 5 Jun 2025
Abstract
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) [...] Read more.
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) was added to aeolian sandy soil. We compared the soil hydraulic properties and plant growth of original aeolian sandy soil (CK) and different CGP application rates (10% and 20%). The results indicated that the application of CGP transformed the soil texture from sandy to loamy, significantly reduced soil bulk density and saturated hydraulic conductivity (Ks) values, altered the soil water characteristic curve, enhanced soil water-holding capacity, and increased plant-available water. Compared with the CK group, the emergence rate of alfalfa seeds increased from approximately 50% to over 70% after CGP application. During the growth process, CGP application significantly elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of alfalfa leaves. Rapid fluorescence kinetics monitoring of leaves demonstrated that alfalfa treated with CGP had a higher efficiency in light energy utilization. However, the photosynthetic capacity of leaves did not improve as the CGP application rate increased from 10% to 20%, suggesting that excessive CGP addition did not continuously benefit plant gas exchange. In conclusion, CGP application can improve the soil hydraulic properties of aeolian sandy soil and support plant growth and development, which is conducive to reducing the accumulated amount of coal gangue, alleviating plant water stress, and promoting ecological restoration in arid mining areas. We recommend a 10% addition of coal gangue powder as the optimal amount for similar soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

17 pages, 829 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
18 pages, 1272 KiB  
Article
Novel Flame-Retardant Wood-Polymer Composites by Using Inorganic Mineral Huntite and Hydromagnesite: An Aspect of Application in Electrical Engineering
by Gül Yılmaz Atay, Jacek Lukasz Wilk-Jakubowski and Valentyna Loboichenko
Materials 2025, 18(11), 2652; https://doi.org/10.3390/ma18112652 - 5 Jun 2025
Abstract
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste [...] Read more.
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste and inorganic huntite-hydromagnesite mineral were used as the reinforcement material. The proportion of wood powder additives was changed to 10% and 20%, and the huntite and hydromagnesite ratio was changed to 30%, 40%, 50% and 60%. Maleic anhydride grafted polypropylene, i.e., MAPP, was applied as a binder at a rate of 3%. Polypropylene, wood fibers, mineral powders, and MAPP blended in the mixer were processed in the extruder and turned into granules. Structural, morphological, thermal, mechanical, and flame-retardant properties of the composites were analyzed using XRD, SEM, FTIR, TGA, tensile testing, and the UL-94 vertical flammability test. Test samples were prepared to evaluate the physical and mechanical properties with a compression molding machine. It was concluded that the composites gained significant flame retardancy with the addition of huntite hydromagnesite. The potential for using this material in various fields and its compliance with the principles of circular economy and the Sustainable Development Goals (SDG 12) were noted. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

14 pages, 352 KiB  
Article
Cottonseed Cake as a Feed Supplement: Effects on Nutrient Intake, Digestibility, Performance, Nitrogen Balance, and Ruminal Profile of Lambs Fed Sugarcane Silage-Based Diets
by Hactus Souto Cavalcanti, Juliana Silva de Oliveira, Alexandre Fernandes Perazzo, João Paulo de Farias Ramos, Alberto Jefferson da Silva Macêdo, Evandra da Silva Justino, Evandro de Sousa da Silva, Paloma Gabriela Batista Gomes, Liliane Pereira Santana, Anderson Lopes Pereira, Francisco Naysson de Sousa Santos, Daniele de Jesus Ferreira, Anderson de Moura Zanine and Edson Mauro Santos
Fermentation 2025, 11(6), 322; https://doi.org/10.3390/fermentation11060322 - 4 Jun 2025
Abstract
Using additives in sugarcane silage can reduce dry matter losses and enhance animal performance by preserving nutritional value. This study evaluated the performance, nutrient digestibility, and blood parameters of sheep fed sugarcane silage with or without cottonseed cake. Twenty-six uncastrated, mixed-breed male lambs [...] Read more.
Using additives in sugarcane silage can reduce dry matter losses and enhance animal performance by preserving nutritional value. This study evaluated the performance, nutrient digestibility, and blood parameters of sheep fed sugarcane silage with or without cottonseed cake. Twenty-six uncastrated, mixed-breed male lambs (approximately 6 months of age; 26 ± 1.3 kg) were allocated to two dietary treatments based on sugarcane silage (SS) and cottonseed cake (CSC), which differed in the form of feed presentation: (1) the control, consisting of SS and fresh CSC provided simultaneously but offered separately, without physical mixing; and (2) the Partial Mixed Ration silage (S + CSC), in which SS and CSC were pre-mixed and ensiled together at a proportion of 80:20 (natural matter basis). Dry matter intake (1620 g/kg) was similar between diets, but dry matter digestibility (64.75%) and average daily gain (202.88 g/day) were higher in the cottonseed cake group, leading to greater total weight gain (8.11 kg). These animals also had a lower acetate/propionate ratio (4.2 vs. 2.0 mmol/L) and higher blood glucose (44 vs. 35 mg/dL). Higher N intake, urinary N, and retained N were observed in the cottonseed cake diet, which also improved the diet’s mineral balance. In conclusion, adding cottonseed cake to sugarcane silage enhances fermentation, preserves nutritional value, and improves sheep performance. Full article
(This article belongs to the Special Issue Waste as Feedstock for Fermentation, 2nd Edition)
35 pages, 1795 KiB  
Article
Nutrient Intake and Plasma and Erythrocyte Content Among Lactating Mothers of Hospitalized Very Preterm Infants: Associations with Human Milk Composition
by Kristin Keller, Noelia Ureta-Velasco, Diana Escuder-Vieco, José C. E. Serrano, Javier Fontecha, María V. Calvo, Javier Megino-Tello, Carmen R. Pallás-Alonso and Nadia Raquel García-Lara
Nutrients 2025, 17(11), 1932; https://doi.org/10.3390/nu17111932 - 4 Jun 2025
Abstract
Background/Objectives: Lactating mothers have increased nutritional requirements, but nutritional adequacy is difficult to achieve. Additionally, human milk (HM) composition depends on maternal diet. However, the nutritional intake and status of mothers with hospitalized very preterm infants (MHVPIs) (<32 weeks of gestational age) have [...] Read more.
Background/Objectives: Lactating mothers have increased nutritional requirements, but nutritional adequacy is difficult to achieve. Additionally, human milk (HM) composition depends on maternal diet. However, the nutritional intake and status of mothers with hospitalized very preterm infants (MHVPIs) (<32 weeks of gestational age) have rarely been assessed. Hence, the aim of the present study was to determine the intake of macronutrients, micronutrients, and lipids, as well as the nutritional status of MHVPIs. The results were compared with a group of HM donors (HMDs), and associations with HM composition were evaluated using multiple linear regression. Methods: For dietary assessment, a 5-day dietary record including supplement intake was completed by 15 MHVPIs and 110 HMDs. Vitamins and fatty acids (FA) were determined in plasma and erythrocytes; minerals and methylmalonic acid were determined in urine; and macronutrients, vitamins, minerals, and the lipid profile were determined in HM. Results: Considering dietary reference intakes, the dietary evaluation of MHVPIs revealed a high percentage of inadequate nutrient intake in relation to total energy, as well as for iodine and vitamins B8, B9, C, D, and E. A high protein intake was observed. The percentage of energy from carbohydrates was low, whereas the percentage of energy from fat was high. However, the diet of MHVPIs did not differ substantially from the diet of HMDs. Associations were observed between the study groups (MHVPI vs. HMD) and the HM concentration of protein, several micronutrients, and fatty acids independent from intake and status. Conclusions: Deficient nutrient intakes did not appear to be exclusively related to MHVPI but rather seemed to be widespread in both study groups. However, for preterm infants, an insufficient supply of nutrients is critical and should be addressed in order to improve preterm infant’s outcomes. Furthermore, we provided additional insights into the exploration of HM by relating its composition to prematurity. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

28 pages, 2017 KiB  
Article
Valorization Diagnosis of Roasted Pyrite Ashes Wastes from the Iberian Pyrite Belt
by Juan Antonio Ramírez-Pérez, Manuel Jesús Gázquez-González and Juan Pedro Bolívar
Recycling 2025, 10(3), 112; https://doi.org/10.3390/recycling10030112 - 4 Jun 2025
Abstract
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this [...] Read more.
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this study. Polymetallic mining is also classified as a NORM (naturally occurring radioactive material) activity, thus the main objective of this work was to develop a radiological and physicochemical characterization of this waste (mineral phases, elemental and radionuclide concentrations) in order to perform a valorization diagnosis of this material. The composition of this waste strongly depends on its origin (mine), and is mainly formed by iron oxides (hematite, Fe₂O₃) and heavy metals and metalloids such as As, Pb, Zn, and Cu, in levels 2–4 orders of magnitude higher than those of undisturbed soils, depending on each particular element. However, the average natural radionuclide levels are similar to those of unperturbed soils (around 30 Bqkg−1 of 238U-series, 50 Bqkg−1 of 232Th, and 70 Bqkg−1 for 40K), thus they are below the limits established by European Union regulations to require radiological control during their future valorization. As the main potential applications of roasted pyrite ash, the valorization diagnosis indicates that it can be used as a source of Fe (FeCl₃ or FeSO₄), or an additive in the manufacturing of cements, pigments, etc. Full article
Show Figures

Figure 1

15 pages, 4171 KiB  
Article
Comparative Analysis of Microalgae’s Physiological Responses to Fibrous and Layered Clay Minerals
by Zhongquan Jiang, Tianyi Wei, Sijia Wu, Zhongyang Wang, Zhonghua Zhao, Lu Zhang, Ying Ge and Zhen Li
Biology 2025, 14(6), 647; https://doi.org/10.3390/biology14060647 - 3 Jun 2025
Abstract
Microalgae interact with mineral particles in an aqueous environment, yet how clay minerals affect physiological processes in algal cells remains unexplored. In this study, we compared the effects of palygorskite (Pal) and montmorillonite (Mt), which respectively represent fibrous and layered clay minerals, on [...] Read more.
Microalgae interact with mineral particles in an aqueous environment, yet how clay minerals affect physiological processes in algal cells remains unexplored. In this study, we compared the effects of palygorskite (Pal) and montmorillonite (Mt), which respectively represent fibrous and layered clay minerals, on the physiological processes of Chlamydomonas reinhardtii. It was observed that C. reinhardtii responded differently to the treatments of Pal and Mt. The Pal particles bound tightly to and even inserted themselves into cells, resulting in a significant decrease in cell numbers from 27.35 to 21.02 × 107 mL−1. However, Mt was only loosely attached to the cell surface. The photosynthesis in the algal cells was greatly inhibited by Pal, with the rETRmax significantly reduced from 103.80 to 56.67 μmol electrons m−2s−1 and the downregulation of IF2CP, psbH and OHP1, which are key genes involved in photosynthesis. In addition, Pal reduced the quantities of proteins and polysaccharides in extracellular polymeric substances (EPSs) and the P uptake by C. reinhardtii when the P level in the culture was 3.15 mg/L. However, no significant changes were found regarding the above EPS components or the amount of P in algal cells upon the addition of Mt. Together, the impacts of fibrous Pal on C. reinhardtii was more profound than those of layered Mt. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

14 pages, 780 KiB  
Article
Effects of Cool Water Supply on Laying Performance, Egg Quality, Rectal Temperature and Stress Hormones in Heat-Stressed Laying Hens in Open-Type Laying Houses
by Chan-Ho Kim, Woo-Do Lee, Se-Jin Lim, Ka-Young Yang and Jung-Hwan Jeon
Animals 2025, 15(11), 1635; https://doi.org/10.3390/ani15111635 - 2 Jun 2025
Viewed by 160
Abstract
We used an animal welfare-certified open-type layer farm and analyzed the egg production, egg quality, rectal temperature, and yolk corticosterone levels of laying hens supplied with cool water during the summer season (avg. 33 ± 3.89 °C). A total of 5750 Hy-Line Brown [...] Read more.
We used an animal welfare-certified open-type layer farm and analyzed the egg production, egg quality, rectal temperature, and yolk corticosterone levels of laying hens supplied with cool water during the summer season (avg. 33 ± 3.89 °C). A total of 5750 Hy-Line Brown laying hens at 53 weeks of age were used, and two treatment groups were established: a control group (2900 hens) and a cool water treatment group (2850 hens). The water temperature of the control group was 25.3 ± 0.8 °C and the cool water was 20.1 ± 0.3 °C; all other environment parameters (lighting, ventilation, temperature, feed, etc.) were the same. The experiment was conducted for a total of 9 weeks (between July and September 2024), and during this period, the temperature–humidity index (THI) inside the breeding facility averaged 85.21, which corresponds to the cool water supply range (80 < THI < 90). As a result, the cool water treatment group maintained high productivity and showed low mortality (p < 0.05). In addition, hens provided with cool water showed high eggshell strength and low yolk corticosterone levels (p < 0.05). The core finding of this study is that the supply of cool water in summer is effective in maintaining the productivity and egg quality of laying hens and reducing HS. This is significant in that it suggests it is possible to manage laying hens in summer in a simple way, and it can also be used as basic data for designing future studies, such as using a combination of natural products including vitamins and minerals. Full article
(This article belongs to the Special Issue Heat Stress Management in Poultry)
Show Figures

Figure 1

27 pages, 3567 KiB  
Article
Exploring Salinity Tolerance in Three Halophytic Plants: Physiological and Biochemical Responses to Agronomic Management in a Half-Strength Seawater Aquaponics System
by Ayenia Carolina Rosales-Nieblas, Mina Yamada, Bernardo Murillo-Amador and Satoshi Yamada
Horticulturae 2025, 11(6), 623; https://doi.org/10.3390/horticulturae11060623 - 2 Jun 2025
Viewed by 160
Abstract
Understanding halophyte responses to agronomic management in saline environments is crucial for optimizing their cultivation. This study assessed the physiological and biochemical responses of three halophytic species, ice plant (Mesembryanthemum crystallinum L.), romeritos (Suaeda edulis Flores Olv. and Noguez), and sea [...] Read more.
Understanding halophyte responses to agronomic management in saline environments is crucial for optimizing their cultivation. This study assessed the physiological and biochemical responses of three halophytic species, ice plant (Mesembryanthemum crystallinum L.), romeritos (Suaeda edulis Flores Olv. and Noguez), and sea asparagus (Salicornia europaea L.) cultivated in half-strength seawater aquaponics (approximately 250 mM NaCl) under the following rooting media treatments: (C) untreated rearing water (RW), (pH) pH-adjusted to 5.5 RW, (pH+S) pH-adjusted to 5.5 RW with nutrient supplementation, and (NS) standard nutrient solution + 5 mM NaCl. Salinity was the primary factor influencing plant responses, while agronomic management played a secondary role. Ice plants exhibited stable growth across treatments due to their strong succulence, high water content, and antioxidative system, requiring minimal management, though optimal pH may enhance nutrient availability. Romeritos showed high treatment variability yet maintained biomass production via Na+ compartmentalization, with C treatment supporting better osmotic regulation, while pH adjustments and mineral supplementation induced stress under HSW. Sea asparagus sustained growth across all treatments, likely due to effective K+ retention and osmoregulation, reducing the need for additional management. These findings highlight species-specific salinity tolerance mechanisms and suggest that minimal agronomic management can effectively support halophyte cultivation in saline aquaponic systems. Full article
(This article belongs to the Special Issue Enhancing Plant Quality and Sustainability in Aquaponics Systems)
Show Figures

Figure 1

22 pages, 7344 KiB  
Article
Mortars with Mining Tailings Aggregates: Implications for Additive Manufacturing
by Martina Inmaculada Álvarez-Fernández, Diego-José Guerrero-Miguel, Celestino González-Nicieza, María Belén Prendes-Gero, Juan Carlos Peñas-Espinosa and Román Fernández-Rodríguez
Buildings 2025, 15(11), 1912; https://doi.org/10.3390/buildings15111912 - 1 Jun 2025
Viewed by 194
Abstract
There is no doubt that additive manufacturing (AM) with mortars presents an opportunity within the framework of a circular economy that should not be overlooked. The concepts of reduce, reuse, and recycle are fully aligned with this technology. One of the less explored [...] Read more.
There is no doubt that additive manufacturing (AM) with mortars presents an opportunity within the framework of a circular economy that should not be overlooked. The concepts of reduce, reuse, and recycle are fully aligned with this technology. One of the less explored possibilities is the utilisation of mining tailings as aggregates in printing mortars. This idea not only incorporates the concept of recycling but also contributes to a reduction in the production of potentially hazardous waste that would otherwise require storage in dams, thereby decreasing long-term environmental risks and improving the management of mineral resources. We employed a mortar composed of 12.5% material derived from mining tailings to highlight aspects of AM that are typically not subject to analysis, such as the necessity of considering contact interfaces between layers in structural design, the stackability of layers during the construction process, and the behaviour under fire and seismic events, which must be taken into account during the operational phase. Without aiming for exhaustiveness, we conducted a series of tests and computational modelling to show the significance of these factors, with the intention of drawing the attention of different stakeholders—including construction companies, regulatory authorities, standardisation agencies, insurers, and end-users. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

30 pages, 1714 KiB  
Review
A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications
by Alicia Dobón-Suárez, Pedro Javier Zapata and María Emma García-Pastor
Foods 2025, 14(11), 1969; https://doi.org/10.3390/foods14111969 - 1 Jun 2025
Viewed by 291
Abstract
Pepper (Capsicum annuum L.) processing generates significant byproducts, with seeds emerging as a promising resource due to their rich content of oils, proteins, phenolic compounds and minerals. This comprehensive review critically evaluates the existing literature on the characterization of pepper seeds, highlighting [...] Read more.
Pepper (Capsicum annuum L.) processing generates significant byproducts, with seeds emerging as a promising resource due to their rich content of oils, proteins, phenolic compounds and minerals. This comprehensive review critically evaluates the existing literature on the characterization of pepper seeds, highlighting their significant nutritional value and diverse bioactive constituents. The substantial oil content, characterized by a high proportion of unsaturated fatty acids, such as linoleic and oleic acids, positions pepper seeds as a valuable source for edible oil and potential biofuel production. In addition, the presence of significant amounts of proteins, carbohydrates, dietary fibre and essential amino acids underlines their potential for the development of functional foods and dietary supplements. The current review also summarizes the findings on the phenolic profile and antioxidant activities of pepper seeds, indicating their relevance for nutraceutical and cosmetic applications. Finally, the potential utilization of pepper seeds in various agri-food industrial applications, such as food condiments, biostimulants, and biomass for energy, is discussed, promoting sustainability and a circular bioeconomy approach to valorise this underutilized resource. This systematic review summarizes current knowledge, identifies knowledge gaps, and highlights the potential of pepper seeds as a sustainable and economically viable alternative in multiple sectors. Full article
Show Figures

Graphical abstract

18 pages, 7005 KiB  
Article
Influence of an Alkaline Activator and Mineral Admixture on the Properties of Alkali-Activated Recycled Concrete Powder-Foamed Concrete
by Yongfan Gong, Chao Liu, Zhihui Zhao, Zhengguang Wu and Bangwei Wu
Materials 2025, 18(11), 2567; https://doi.org/10.3390/ma18112567 - 30 May 2025
Viewed by 214
Abstract
Alkali-activated recycled concrete powder-foamed concrete (ARCP-FC) is a new type of insulation architectural material, which is prepared using recycled concrete powders (RCPs), slag powders, fly ash, and sodium silicate. In this study, the influence of the water-to-cement (W/C) ratio, the Na2O [...] Read more.
Alkali-activated recycled concrete powder-foamed concrete (ARCP-FC) is a new type of insulation architectural material, which is prepared using recycled concrete powders (RCPs), slag powders, fly ash, and sodium silicate. In this study, the influence of the water-to-cement (W/C) ratio, the Na2O content, and the mineral admixture content on the mechanical strength, physical properties, and thermal conductivity of ARCP-FC were investigated. The results showed that the compressive strength and dry apparent density of ARCP-FC decreased with the increase in the W/C ratio. In contrast, the water absorption rate increased as the W/C ratio increased. Fewer capillaries were formed due to the rapid setting property, and the optimal W/C ratio was 0.45. The compressive strength and dry apparent density first decreased and then increased with the increase in Na2O content. Too high Na2O addition was not conducive to the thermal insulation of ARCP-FC, and the optimal Na2O content was 6%. The compressive strength and dry shrinkage gradually decreased, while the water absorption gradually increased as the fly ash content increased. Fly ash improved deformation, and the pore was closed to the sphere, reducing the shrinkage and thermal conductivity. The optimal mixture of ARCP-FC consisted of 60% recycled concrete powders, 20% slag, and 20% fly ash. The density, porosity, compressive strength, and thermal conductivity of ARCP-FC were 800 kg/m3, 59.1%, 4.1 MPa, and 0.1036 W/(m·K), respectively. ARCP-FC solved the contradiction between compressive strength and dry apparent density, making it a promising building material for external insulation boards and insulation layers. Full article
Show Figures

Figure 1

18 pages, 3808 KiB  
Article
Physicochemical Exploration and Computational Analysis of Bone After Subchronic Exposure to Kalach 360 SL in Female Wistar Rats
by Latifa Hamdaoui, Hafedh El Feki, Marwa Ben Amor, Hassane Oudadesse, Riadh Badraoui, Naila Khalil, Faten Brahmi, Saoussen Jilani, Bandar Aloufi, Ibtissem Ben Amara and Tarek Rebai
Toxics 2025, 13(6), 456; https://doi.org/10.3390/toxics13060456 - 29 May 2025
Viewed by 164
Abstract
Glyphosate (N-phosphonomethylglycine) is a widely used organophosphorus herbicide that inhibits the shikimate pathway, a crucial metabolic route responsible for the synthesis of aromatic amino acids in plants and certain microorganisms. Due to its broad-spectrum activity, glyphosate serves as the main active ingredient in [...] Read more.
Glyphosate (N-phosphonomethylglycine) is a widely used organophosphorus herbicide that inhibits the shikimate pathway, a crucial metabolic route responsible for the synthesis of aromatic amino acids in plants and certain microorganisms. Due to its broad-spectrum activity, glyphosate serves as the main active ingredient in various commercial herbicide formulations, including Roundup and Kalach 360 SL (KL). It poses a health hazard to animals and humans due to its persistence in soil, water erosion, and crops. The aim of our study was to continue the previous research to explore the impact of KL on bone using physico-chemical parameters and in silico studies after exposing female wistar rats for 60 days. The in silico study concerned the assessment of binding affinity and molecular interactions using computational modeling approach. The rats were allocated into three experimental groups: group 1 (n = 6) served as controls, while groups 2 and 3 received low and high doses (Dose 1: 126 mg/Kg and Dose 2: 315 mg/Kg) of KL dissolved in water, respectively. All rats were sacrificed after 60 days of exposure. XRD and FTIR spectrum analysis of bone tissues in female rats showed significant histoarchitectural changes associated with bone mineralization disruption. Our results have demonstrated that sub-chronic exposure of adult female rats to KL causes bone rarefaction, as confirmed by a previous histological study. This physico-chemical study has further confirmed the harmful impact of KL on the crystalline fraction of bone tissue, composed of hydroxyapatite crystals. In addition, the computational analyses showed that glyphosate binds to 3 Glu form of osteocalcin (3 Glu-OCN) (4MZZ) and decarboxylated osteocalcin (8I75) with good affinities and strong molecular interactions, which justified and supported the in vivo findings. In conclusion, KL may interfere with hydroxyapatite and osteocalcin and, therefore, impair bone remodeling and metabolism. Full article
(This article belongs to the Special Issue Computational Toxicology: Exposure and Assessment)
Show Figures

Graphical abstract

22 pages, 12129 KiB  
Article
Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry
by Zhongjie Yang, Yuandong Zhao, Cangjiang Zhang, Chuantao Ren, Qun Yang and Long Zhang
Minerals 2025, 15(6), 582; https://doi.org/10.3390/min15060582 - 29 May 2025
Viewed by 169
Abstract
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily [...] Read more.
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily occurs within the monzonite granite and monzonite rock mass in the Haigou area and is controlled by fault structures trending northeast, northwest, and near north-south. In order to constrain the age and tectonic setting of quartz vein-type gold mineralization, we conducted a detailed underground investigation and collected samples of monzonite granite and pyroxene diorite porphyrite veins related to quartz-vein-type gold mineralization for LA-ICP-MS zircon U-Pb dating and whole-rock main trace element data testing to confirm that monzonite granite is closely related to gold mineralization. Pyroxene diorite porphyry and gold mineralization were found in parallel veins. The zircon U-Pb weighted mean ages of monzonite and pyroxene diorite porphyrite veins are 317.1 ± 3.5 Ma and 308.8 ± 3.0 Ma, respectively, indicating that gold mineralization in monzonite, pyroxene diorite porphyrite veins, and quartz veins occurred in the Late Carboniferous. The monzonite granite and pyroxene diorite porphyrite veins associated with quartz vein-type gold mineralization have high SiO2, high K, and high Al2O3 and are all metaluminous high-potassium calc-alkaline rock series. Both of them are relatively enriched in light rare earth elements (LREE) and macroionic lithophile elements (LILE: Rb, Ba, K, etc.), but deficient in heavy rare earth elements (HREE) and high field strength elements (HFSE: Nb, Ta, P, Ti, etc.), the monzonitic granite Eu is a weak positive anomaly (δEu = 1.15–1.46), the pyroxene diorite porphyre dyke Eu is a weak positive anomaly (δEu = 1.09–1.13), and the Nb and Ta are negative anomalies. The Th/Nb values are 0.28–0.73 and 1.48–2.05, and La/Nb are 2.61–4.74 and 4.59–5.43, respectively, suggesting that diagenetic mineralization is the product of subduction in an active continental margin environment. In recent years, scholarly research on Sr, Nd, and Pb isotopes in Haigou rock masses has indicated that the magmatic source region in the Haigou mining areas is complex. It is neither a singular crustal source nor a mantle source but rather a mixed crust-mantle source, primarily resulting from the partial melting of lower crustal materials, with additional contributions from mantle-derived materials. In summary, the metallogenic characteristics, chronology data, geochemical characteristics, and regional tectonic interpretation indicate that at least one phase of magmatic-hydrothermal gold mineralization was established in the Late Carboniferous as a result of the subduction of the Paleo-Asian ocean plate at the northern margin of the North China Craton. Full article
Show Figures

Figure 1

15 pages, 275 KiB  
Article
Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits
by Alfredo Estrada-Angulo, Jesús A. Quezada-Rubio, Elizama Ponce-Barraza, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Jorge L. Ramos-Méndez, Yesica J. Arteaga-Wences, Lucía de G. Escobedo-Gallegos, Luis Corona and Alejandro Plascencia
Ruminants 2025, 5(2), 20; https://doi.org/10.3390/ruminants5020020 - 29 May 2025
Viewed by 141
Abstract
Leonardite (LEO), a microbial derived product rich in humic and fulvic acids, has been tested, due to its beneficial properties for health and well-being, as a feed additive, mainly in non-ruminant species. Although there are some reports of LEO supplementation in ruminants fed [...] Read more.
Leonardite (LEO), a microbial derived product rich in humic and fulvic acids, has been tested, due to its beneficial properties for health and well-being, as a feed additive, mainly in non-ruminant species. Although there are some reports of LEO supplementation in ruminants fed with high-to medium-forage based diets, there is no information available of the potential effects of LEO in ruminants fed, under sub-tropical climate conditions, with high-energy diets during long-term fattening. For this reason, the objective of the present experiment was to evaluate the effects of LEO levels inclusion in diets for feedlot lambs finished over a long-term period. For this reason, 48 Pelibuey × Katahdin lambs (initial weight = 20.09 ± 3.55 kg) were fed with a high-energy diet (88:12 concentrate to forage ratio) supplemented with LEO (with a minimum of 75% total humic acids) for 130 days as follows: (1) diet without LEO, (2) diet supplemented with 0.20% LEO, (3) diet supplemented with 0.40% LEO, and (4) diet supplemented with 0.60% LEO. For each treatment, Leonardite was incorporated with the mineral premix. Lambs were blocked by weight and housed in 24 pens (2 lambs/pen). Treatment effects were contrasted by orthogonal polynomials. The average climatic conditions that occurred during the experimental period were 31.6 ± 2.4 °C ambient temperature and 42.2 ± 8.1% relative humidity (RH). Those values of ambient temperature and RH represent a temperature humidity index (THI) of 79.07; thus, lambs were finished under high heat load conditions. The inclusion of LEO in diet did not affect dry matter intake (p ≥ 0.25) and average daily gain (p ≥ 0.21); therefore, feed to gain ratio was not affected (p ≥ 0.18). The observed to expected dietary net energy averaged 0.96 and was not affected by LEO inclusion (p ≥ 0.26). The lower efficiency (−4%) of dietary energy utilization is an expected response given the climatic conditions of high ambient heat load presented during fattening. Lambs that were slaughtered at an average weight of 49.15 ± 6.00 kg did not show differences on the variables measured for carcass traits (p ≥ 0.16), shoulder tissue composition (p ≥ 0.59), nor in visceral mass (p ≥ 0.46) by inclusion of LEO. Under the climatic conditions in which this experiment was carried out, LEO supplementation up to 0.60% in diet (equivalent to 0.45% of humic substances) did not did not help to alleviate the extra-energy expenditure used to dissipate the excessive heat and did not change the gained tissue composition of the lambs that were fed with high-energy diets during long-term period under sub-tropical climate conditions. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Sheep and Goats)
Back to TopTop