Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,761)

Search Parameters:
Keywords = mixture interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1722 KB  
Article
Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability
by Vladimír Šimanský and Martin Lukac
Land 2025, 14(10), 2044; https://doi.org/10.3390/land14102044 - 13 Oct 2025
Abstract
Increasing attention is being paid to the use of cover crops as a means of improving soil quality, particularly in relation to soil organic matter (SOM) accumulation and aggregate stability. This study evaluated the effects of soil texture, soil depth, and cover crop [...] Read more.
Increasing attention is being paid to the use of cover crops as a means of improving soil quality, particularly in relation to soil organic matter (SOM) accumulation and aggregate stability. This study evaluated the effects of soil texture, soil depth, and cover crop type on soil organic carbon (Corg), labile carbon (CL), and soil structure under field conditions in western Slovakia. A field experiment compared two texturally distinct Phaeozem soils—silty clay loam and sandy loam —and two cover cropping strategies: pea (Pisum sativum L.) monoculture and a four-species mixture of flax (Linum usitatissimum L.), camelina (Camelina sativa L.), white mustard (Sinapis alba L.), and Italian millet (Setaria italica L.). Fine-textured soil accumulated up to 50% more Corg and 1.5 times more CL than sandy soil, while aggregate stability was up to 90% higher. The surface layer (0–10 cm) contained more SOM, but the deeper layer (10–20 cm) showed greater aggregate stability. Pea cultivation increased total organic carbon, whereas the diverse mixture enhanced labile carbon content and promoted the formation of smaller yet more stable aggregates. Strong correlations between CL and aggregate stability confirmed the key role of labile organic matter fractions in soil structural stabilisation. Overall, the results demonstrate that the interaction between soil texture and cover crop diversity critically shapes SOM dynamics and soil structure. Combining diverse cover crops with fine-textured soils provides an effective strategy to enhance soil quality, carbon sequestration, and long-term agricultural sustainability. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

15 pages, 2196 KB  
Article
Enantiomeric Ratio Modulates Hierarchical Networks and Rheological Performance in Cyclohexane Bisurea Supramolecular Gels
by Shaoshuai Hua, Yuqian Jiang, Andong Song and Jian Jiang
Gels 2025, 11(10), 821; https://doi.org/10.3390/gels11100821 (registering DOI) - 13 Oct 2025
Abstract
This study presents an enantiomeric-ratio-driven strategy for constructing mechanically robust supramolecular gels using cyclohexane bisurea derivatives. By employing non-equimolar enantiomeric mixtures, we achieved an ultralow critical gelation concentration (CGC < 2 mg/mL) in toluene, representing a reduction of more than fivefold compared to [...] Read more.
This study presents an enantiomeric-ratio-driven strategy for constructing mechanically robust supramolecular gels using cyclohexane bisurea derivatives. By employing non-equimolar enantiomeric mixtures, we achieved an ultralow critical gelation concentration (CGC < 2 mg/mL) in toluene, representing a reduction of more than fivefold compared to homochiral single-enantiomer systems. Rheological measurements revealed substantially enhanced mechanical properties in the non-equimolar gels, with yield stress and storage modulus values up to 17 and 20 times higher, respectively, than those of single-enantiomer gels. Morphological analyses (SEM and POM) indicated that pure enantiomers form isolated crystalline fibers with limited connectivity, whereas racemic mixtures yield disordered amorphous aggregates. In contrast, non-equimolar mixtures self-assemble into hierarchical “sea urchin-like” architectures, wherein crystalline fibers radiate from central cores to form densely interconnected networks. This unique structural motif underpins both the ultralow CGC and superior mechanical performance. Complementary FT-IR, XRD, and DSC analyses demonstrated that chiral imbalance modulates hydrogen-bonding interactions and structural order, while molecular dynamics (MD) simulations provided insight into the divergent self-assembly pathways among homochiral, racemic, and non-equimolar systems. This work provides a stereochemically guided approach for designing high-performance supramolecular gels with tailored hierarchical structures and enhanced functionality. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Figure 1

26 pages, 11124 KB  
Article
Ecological Effects and Microbial Regulatory Mechanisms of Functional Grass Species Assembly in the Restoration of “Heitutan” Degraded Alpine Grasslands
by Zongcheng Cai, Jianjun Shi, Shouquan Fu, Liangyu Lv, Fayi Li, Qingqing Liu, Hairong Zhang and Shancun Bao
Microorganisms 2025, 13(10), 2341; https://doi.org/10.3390/microorganisms13102341 - 11 Oct 2025
Viewed by 166
Abstract
The restoration of “Heitutan” degraded grasslands on the Qinghai-Tibetan Plateau was hindered by suboptimal grass species mixtures, leading to low vegetation productivity, impaired soil nutrient cycling, and microbial functional degradation. Based on a 22-year controlled field experiment, this study systematically elucidated the regulatory [...] Read more.
The restoration of “Heitutan” degraded grasslands on the Qinghai-Tibetan Plateau was hindered by suboptimal grass species mixtures, leading to low vegetation productivity, impaired soil nutrient cycling, and microbial functional degradation. Based on a 22-year controlled field experiment, this study systematically elucidated the regulatory mechanisms of different artificial grass mixtures on vegetation community characteristics, soil physicochemical properties, and bacterial community structure and function. The results demonstrated that mixed-sowing treatments significantly improved soil conditions and enhanced aboveground biomass. The HC treatment (Elymus nutans Griseb. + Poa crymophila Keng ex L. Liu cv. ‘Qinghai’ + Festuca sinensis Keng ex S. L. Lu cv. ‘Qinghai’) achieved aboveground biomass of 1580.0 and 1645.0 g·m−2, representing 66.14% and 60.91% increases, respectively, compared to the HA monoculture (E. nutans). Concurrently, this treatment increased soil organic matter content by 52.3% and 48.4%, total nitrogen by 59.4% and 69.2%, while reducing electrical conductivity by 48.99% and 51.72%, with optimal pH stabilization (7.34–7.38). These findings confirmed that optimized grass mixtures effectively enhance soil physicochemical properties and carbon–nitrogen retention. Microbiome analysis revealed that the HE treatment (E. nutans + P. crymophila + F. sinensis + Poa poophagorum Bor. + Festuca kryloviana Reverd. cv. ‘Huanhu’) exhibited superior α-diversity indices (OTU, Shannon, Ace, Chao1, Pielou) with increases of 9.36%, 4.20%, 15.0%, 1.76%, and 13.4%, respectively, over HA, accompanied by optimal community evenness (lowest Simpson index). Core bacterial phyla included Pseudomonadota (22.7–29.9%), Acidobacteriota (21.5–23.6%), and Actinomycetota (13.6–16.0%), with significant suppression of pathogenic bacteria. Co-occurrence network analysis identified specialized functional modules, with HC and HD treatments (E. nutans + P. crymophila + F. sinensis + P. poophagorum) forming a “nitrogen transformation–antibiotic secretion” network (57.3% positive connections). Structural equation modeling (SEM) revealed that mixed sowing had the strongest direct effect on bacterial diversity (β = 0.76), surpassing indirect effects via soil (β = 0.37) and vegetation (β = 0.11). Redundancy analysis (RDA) identified vegetation cover (24.7% explained variance) and soil pH (20.0%) as key drivers of bacterial community assembly. Principal component analysis (PCA) confirmed HC and HD treatments as the most effective restoration strategies. This study elucidated a tripartite “vegetation–soil–microorganism” restoration mechanism, demonstrating that intermediate-diversity mixtures (3–4 species) optimize ecosystem recovery through niche complementarity, pathogen suppression, and enhanced nutrient cycling. These findings provided a scientific basis for species selection in alpine grassland restoration. Full article
Show Figures

Figure 1

22 pages, 5562 KB  
Article
Beyond Spurious Cues: Adaptive Multi-Modal Fusion via Mixture-of-Experts for Robust Sarcasm Detection
by Guilong Zhao, Yixia Zhao, Xiangrong Yin, Lei Lin and Jizhao Zhu
Mathematics 2025, 13(20), 3250; https://doi.org/10.3390/math13203250 - 11 Oct 2025
Viewed by 227
Abstract
Sarcasm is a complex emotional expression often marked by semantic contrast and incongruity between textual and visual modalities. In recent years, multi-modal sarcasm detection (MMSD) has emerged as a vital task in affective computing. However, existing models frequently rely on superficial spurious cues—such [...] Read more.
Sarcasm is a complex emotional expression often marked by semantic contrast and incongruity between textual and visual modalities. In recent years, multi-modal sarcasm detection (MMSD) has emerged as a vital task in affective computing. However, existing models frequently rely on superficial spurious cues—such as emojis or hashtags—during training and inference, limiting their ability to capture deeper semantic inconsistencies and undermining generalization to real-world scenarios. To tackle these challenges, we propose Multi-Modal Mixture-of-Experts (MM-MoE), a novel framework that integrates diverse expert modules through a global dynamic gating mechanism for adaptive cross-modal interaction and selective semantic fusion. This architecture allows for the model to better capture modality-level incongruity. Furthermore, we introduce MMSD3.0 and MMSD4.0, two cross-dataset evaluation benchmarks derived from two open source benchmark datasets, MMSD and MMSD2.0, to assess model robustness under varying distributions of spurious cues. Extensive experiments demonstrate that MM-MoE achieves strong performance and generalization ability, consistently outperforming state-of-the-art baselines when encountering superficial spurious correlations. Full article
(This article belongs to the Special Issue Advances in Blockchain and Intelligent Computing)
Show Figures

Figure 1

14 pages, 1824 KB  
Article
Homometallic 2D Cd2+ and Heterometallic 3D Cd2+/Ca2+, Cd2+/Sr2+ Metal–Organic Frameworks Based on an Angular Tetracarboxylic Ligand
by Rafail P. Machattos, Nikos Panagiotou, Vasiliki I. Karagianni, Manolis J. Manos, Eleni E. Moushi and Anastasios J. Tasiopoulos
Materials 2025, 18(20), 4647; https://doi.org/10.3390/ma18204647 - 10 Oct 2025
Viewed by 304
Abstract
This study reports on the synthesis, structural characterization and gas sorption studies of a homometallic 2D Cd2+ MOF and two heterometallic 3D Cd2+/Ca2+ and Cd2+/Sr2+ -MOFs based on the angular tetracarboxylic ligand 3,3′,4,4′-sulfonyltetracarboxylic acid (H4 [...] Read more.
This study reports on the synthesis, structural characterization and gas sorption studies of a homometallic 2D Cd2+ MOF and two heterometallic 3D Cd2+/Ca2+ and Cd2+/Sr2+ -MOFs based on the angular tetracarboxylic ligand 3,3′,4,4′-sulfonyltetracarboxylic acid (H4STBA). The homometallic 2D Cd2+ MOF with the formula [NH2(CH3)2]+2[Cd(STBA)]2−n·nDMF·1.5nH2O—(1)n·nDMF·1.5nH2O was synthesized from the reaction of CdCl2·H2O and 3,3′,4,4′-diphthalic sulfonyl dianhydride (3,3′,4,4′-DPSDA) with stoichiometric ratio of 1:1.3 in DMF/H2O (5/2 mL) at 100 °C. The two heterometallic Cd2+/Ca2+ and Cd2+/Sr2+ compounds were prepared from analogous reactions to this afforded (1)n·nDMF·1.5nH2O with the difference that the reaction mixture also contained AE(NO3)2 (AE2+ = Ca2+ or Sr2+) and, in particular, from the reaction of AE(NO3)2, CdCl2·H2O and 3,3′,4,4′-DPSDA with stoichiometric ratio 1:1.1:1.4 in DMF/H2O (5/2 mL) at 100 °C. Notably, compounds [CdCa(STBA)(H2O)2]n·0.5nDMF—(2)n·0.5nDMF and [CdSr(STBA)(H2O)2]n·0.5nDMF—(3)n·0.5nDMF are the first heterometallic compounds Mn+/AE2+ (M = any metal ion) reported containing ligand H4STBA. The structure of (1)n·nDMF·1.5nH2O comprises a 2D network based on helical 1D chain secondary building unit (SBU) [Cd2+(STBA)4−)]2−. The 2D sheets are linked through hydrogen bonding interactions, giving rise to a pseudo-3D structure. On the other hand, compounds (2)n·1.5nH2O and (3)n·1.5nH2O display 3D microporous structures consisting of a helical 1D chain SBU [Cd2+AE2+(STBA)4−)]. All three compounds contain rhombic channels along c axes. The three MOFs exhibit an appreciable thermal stability, up to 350–400 °C. Gas sorption measurements on activated materials (2)n and (3)n revealed moderate BET surface areas of 370 m2/g and 343 m2/g, respectively, along with CO2 uptake capacity of 2.58 mmol/g at 273 K. Full article
(This article belongs to the Special Issue Synthesis and Applications of Metal–Organic Frameworks)
Show Figures

Graphical abstract

25 pages, 1817 KB  
Article
Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes
by Mary Negrón, Ignacio F. López, José Dörner, Andrew D. Cartmill, Oscar A. Balocchi and Eladio Saldivia
Agronomy 2025, 15(10), 2367; https://doi.org/10.3390/agronomy15102367 - 10 Oct 2025
Viewed by 427
Abstract
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in [...] Read more.
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in breeds, size, live weight, and milk production. This study investigated whether cows of contrasting size/live weight can improve degraded pasture and positively modify soil (Andosol-Duric Hapludand) physical features. Three pasture types were used as follows: (i) cultivated fertilised Lolium perenne L. (perennial ryegrass) and Trifolium repens L. (white clover) mixture (BM); (ii) cultivated fertilised L. perenne, T. repens, Bromus valdivianus Phil. (pasture brome), Holcus lanatus L. (Yorkshire fog), and Dactylis glomerata L. (cocksfoot) mixture (MSM); and (iii) naturalised fertilised pasture Agrostis capillaris L. (browntop), B. valdivianus, and T. repens (NFP). Pastures were grazed with two groups of dairy cows of contrasting size and live weight: light cows (LC) [live weight: 464 ± 5.4 kg; height at the withers: 132 ± 0.6 cm (average ± s.e.m.)] and heavy cows (HC) [live weight: 600 ± 8.7 kg; height at the withers: 141 ± 0.9 cm (average ± s.e.m.)]. Hoof area was measured, and the pressure applied by cows on the soil was calculated. Soil differences in penetration resistance (PR) and macro-porosity (wCP > 50 μm) between pastures were explained by tillage and seeding, rather than as a result of livestock presence and movement (animal trampling). The PR variation during the year was associated with the soil water content (SWC). Grazing dairy cows of contrasting live weight caused changes in soil and pasture attributes, and they behaved differently during grazing. Light cows were linked to more intense grazing, a stable soil structure, and pastures with competitive species and greater tiller density. In MSM, pasture consumption increased, and the soil was more resilient to hoof compression. In general, grazing with heavy cows in these three different pasture systems did not negatively impact soil physical properties. These findings indicate that volcanic soils are resilient and that during renovation, the choice of pasture type has a greater initial impact on soil structure than the selection of cow size, but incorporating lighter cows can be a strategy to promote denser pasture swards in these grazing systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

16 pages, 2595 KB  
Article
Vapor Liquid Equilibrium Measurement and Distillation Simulation for Azeotropic Distillation Separation of H2O/EM Azeotrope
by Chunli Li, Jinxin Zhang, Jiqing Rao, Kaile Shi, Yuze Sun, Wen Liu and Jiapeng Liu
Separations 2025, 12(10), 273; https://doi.org/10.3390/separations12100273 - 8 Oct 2025
Viewed by 241
Abstract
Since H2O and Ethylene Glycol Monomethyl Ether (EM) form a minimum-boiling azeotrope, 1-pentanol, 1-hexanol, and 1-heptanol are selected as entrainers to separate the azeotropic mixture (H2O/EM) using azeotropic distillation. The binary vapor liquid equilibrium (VLE) data were determined at [...] Read more.
Since H2O and Ethylene Glycol Monomethyl Ether (EM) form a minimum-boiling azeotrope, 1-pentanol, 1-hexanol, and 1-heptanol are selected as entrainers to separate the azeotropic mixture (H2O/EM) using azeotropic distillation. The binary vapor liquid equilibrium (VLE) data were determined at 101.3 kPa, including H2O/EM, EM/1-pentanol, EM/1-hexanol, EM/1-heptanol, H2O/1-pentanol, H2O/1-hexanol and H2O/1-heptanol. Meanwhile, the Herington area test was used to validate the thermodynamic consistency of the experimental binary data. The VLE data for the experimental binary system were analyzed using the NRTL, UNIQUAC, and Wilson activity coefficient models, showing excellent agreement between predictions and measurements. Finally, molecular simulations were employed to calculate interaction energies between components, providing insights into the VLE behavior. The azeotropic distillation process was simulated using Aspen Plus to evaluate the separation performance and determine the optimal operating parameters. Therefore, this study provides guidance and a foundational basis for the separation of H2O/EM systems at 101.3 kPa. Full article
(This article belongs to the Special Issue Green Separation and Purification Technology)
Show Figures

Figure 1

18 pages, 2300 KB  
Article
Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems
by Yoanna Kostova, Pavletta Shestakova and Albena Bachvarova-Nedelcheva
Pharmaceuticals 2025, 18(10), 1505; https://doi.org/10.3390/ph18101505 - 7 Oct 2025
Viewed by 256
Abstract
Background/Objectives: The present work deals with the sol–gel synthesis of hybrid materials based on a silica–polyvinylpyrrolidone (Si-PVP) system. Methods: The nanohybrids have been prepared using an acidic catalyst at ambient temperature. Ibuprofen (IBP) was used as a model substance in the obtained model [...] Read more.
Background/Objectives: The present work deals with the sol–gel synthesis of hybrid materials based on a silica–polyvinylpyrrolidone (Si-PVP) system. Methods: The nanohybrids have been prepared using an acidic catalyst at ambient temperature. Ibuprofen (IBP) was used as a model substance in the obtained model drug systems, while tetraethyl orthosilicate (TEOS) was used as a silica precursor. Poly(vinylpyrrolidone) (PVP) and IBP were introduced into the reaction mixture as solutions in ethanol using two different approaches: (i) a direct introduction of a drug solution into the reaction mixture during sol–gel synthesis, and (ii) a solvent deposition technique. Results: XRD data provide evidence that IBP entrapped in the silica–PVP network is in an amorphous state. By SEM it was revealed that in the adsorbate, the IBP particles possess an average particle size of about 20 μm. Based on the obtained IR and UV-Vis spectral results, the existence of hydrogen bonding of IBF with silica and PVP could be suggested. Solid-state NMR analysis allowed the identification of the presence of both crystalline-like and amorphous phases in the hybrid material prepared by the sol–gel method, while it was demonstrated that in the adsorbate, the rigid crystalline dimeric structure of the drug has been preserved. Conclusions: The overall analysis of the structural characteristics of the two materials indicated that in the hybrid material obtained by the sol–gel method, the interactions between the amorphous drug, PVP, and the silica matrix are more pronounced as compared to the adsorbate. An improvement of the drug’s aqueous solubility as well of in vitro drug release profile (up to 8 h) was achieved, demonstrating the potential of the developed drug–silica–organic polymer nanohybrid as a promising drug delivery system. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

37 pages, 1878 KB  
Review
Protein Corona as a Result of Interaction of Protein Molecules with Inorganic Nanoparticles
by Ruslan M. Sarimov, Elena A. Molkova, Alexander V. Simakin, Alexey S. Dorokhov and Sergey V. Gudkov
Int. J. Mol. Sci. 2025, 26(19), 9771; https://doi.org/10.3390/ijms26199771 - 7 Oct 2025
Viewed by 429
Abstract
Currently, there is a growing interest in biomedical research in the use of inorganic nanoparticles for targeted drug delivery, as biosensors, and in theranostic applications. This review examines the interaction of inorganic nanoparticles with protein molecules depending on the chemical nature, size, and [...] Read more.
Currently, there is a growing interest in biomedical research in the use of inorganic nanoparticles for targeted drug delivery, as biosensors, and in theranostic applications. This review examines the interaction of inorganic nanoparticles with protein molecules depending on the chemical nature, size, and surface charge of the nanoparticles. The effect of protein and nanoparticle concentration, as well as their incubation time, is analyzed. The work focuses on the influence of parameters such as pH, ionic strength, and temperature on the interaction of nanoparticles with protein molecules. The following dependencies were studied in detail: the thickness of the protein corona as a function of nanoparticle size; the size of nanoparticles after interaction with protein as a function of protein and nanoparticle concentration; the distribution of zeta potentials in colloids of nanoparticles, proteins, and their mixtures. It has been shown that proteins and nanoparticles can influence each other’s physicochemical properties. This can lead to the emergence of new biological properties in the system. Therefore, the adsorption of proteins onto nanoparticle surfaces can induce conformational changes. The probability of changing the protein structure increases when a covalent bond is formed between the nanoparticle and the protein molecule. Studies demonstrate that protein structure remains more stable with spherical nanoparticles than with rod-shaped or other high-curvature nanostructures. The results presented in the review demonstrate the possibility of adapting physiological responses to nanomaterials by changing the chemical composition of the surface of nanoparticles and their size and charge. Full article
(This article belongs to the Special Issue Nanoparticles in Molecular Pharmaceutics)
Show Figures

Figure 1

18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 - 4 Oct 2025
Viewed by 888
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

17 pages, 4400 KB  
Article
Advanced Polyamidoamine Hydrogels for the Selective Cleaning of Artifacts in Heritage Conservation
by Elisabetta Ranucci and Jenny Alongi
Polymers 2025, 17(19), 2680; https://doi.org/10.3390/polym17192680 - 3 Oct 2025
Viewed by 347
Abstract
A polyamidoamine-based hydrogel (H-M-GLY) and its montmorillonite-based composite (H-M-GLY/MMT) were studied as selective cleaning materials for cultural heritage conservation. H-M-GLY was synthesized from a glycine-based polyamidoamine oligomer with acrylamide terminals (M-GLY) through radical polymerization at pH 7.3 and had a basic character. The [...] Read more.
A polyamidoamine-based hydrogel (H-M-GLY) and its montmorillonite-based composite (H-M-GLY/MMT) were studied as selective cleaning materials for cultural heritage conservation. H-M-GLY was synthesized from a glycine-based polyamidoamine oligomer with acrylamide terminals (M-GLY) through radical polymerization at pH 7.3 and had a basic character. The M-GLY oligomer was in turn synthesized from N,N′-methylenebisacrylamide and glycine in a 1:0.85 molar ratio. H-M-GLY/MMT was obtained by cross-linking a 1:0.1—weight ratio—M-GLY/MMT mixture at pH 4.0, to promote polyamidoamine-MMT interaction. The composite hydrogel absorbed less water than the plain hydrogel and proved tougher, due to montmorillonite’s electrostatic interactions with the positively charged M-GLY units. Scanning electron microscopic analysis showed that MMT was uniformly dispersed throughout the hydrogel. Both hydrogels were subjected to ink bleeding tests on papers written with either iron gall or India ink. Microscopic observation revealed neither bleeding nor release of hydrogel fragments. Being basic, H-M-GLY successfully deacidified the surface of aged paper. H-M-GLY/MMT, swollen in a 1:9 ethanol/water solution, was found to be effective in removing wax, known to trap carbonaceous particles and form dark stains on artistic artifacts. This study demonstrates the great potential of polyamidoamine-based hydrogels as versatile selective cleaning systems for cellulosic and other cultural heritage materials. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 11220 KB  
Article
LM3D: Lightweight Multimodal 3D Object Detection with an Efficient Fusion Module and Encoders
by Yuto Sakai, Tomoyasu Shimada, Xiangbo Kong and Hiroyuki Tomiyama
Appl. Sci. 2025, 15(19), 10676; https://doi.org/10.3390/app151910676 - 2 Oct 2025
Viewed by 385
Abstract
In recent years, the demand for both high accuracy and real-time performance in 3D object detection has increased alongside the advancement of autonomous driving technology. While multimodal methods that integrate LiDAR and camera data have demonstrated high accuracy, these methods often have high [...] Read more.
In recent years, the demand for both high accuracy and real-time performance in 3D object detection has increased alongside the advancement of autonomous driving technology. While multimodal methods that integrate LiDAR and camera data have demonstrated high accuracy, these methods often have high computational costs and latency. To address these issues, we propose an efficient 3D object detection network that integrates three key components: a DepthWise Lightweight Encoder (DWLE) module for efficient feature extraction, an Efficient LiDAR Image Fusion (ELIF) module that combines channel attention with cross-modal feature interaction, and a Mixture of CNN and Point Transformer (MCPT) module for capturing rich spatial contextual information. Experimental results on the KITTI dataset demonstrate that our proposed method outperforms existing approaches by achieving approximately 0.6% higher 3D mAP, 7.6% faster inference speed, and 17.0% fewer parameters. These results highlight the effectiveness of our approach in balancing accuracy, speed, and model size, making it a promising solution for real-time applications in autonomous driving. Full article
Show Figures

Figure 1

27 pages, 3117 KB  
Article
Iridoids from Himatanthus sucuuba Modulate Feeding Behavior of Lutzomyia longipalpis: Integrated Experimental and Computational Approaches
by Maíra M. H. Almeida, Jefferson D. da Cruz, Maria Athana M. Silva, Samara G. Costa-Latgé, Bruno Gomes, Fernando A. Genta, Jefferson R. A. Silva and Ana Claudia F. Amaral
Molecules 2025, 30(19), 3937; https://doi.org/10.3390/molecules30193937 - 1 Oct 2025
Viewed by 276
Abstract
Control strategies for leishmaniasis increasingly target sand fly vectors through sugar feeding approaches containing bioactive compounds. This study investigated the behavioral and toxicological effects of the iridoids plumericin and isoplumericin, isolated from Himatanthus sucuuba, on Lutzomyia longipalpis by integrating computational and experimental [...] Read more.
Control strategies for leishmaniasis increasingly target sand fly vectors through sugar feeding approaches containing bioactive compounds. This study investigated the behavioral and toxicological effects of the iridoids plumericin and isoplumericin, isolated from Himatanthus sucuuba, on Lutzomyia longipalpis by integrating computational and experimental approaches focused on gustatory system interactions. The iridoids were purified by column chromatography and characterized by GC-MS. The gustatory receptor A0A1B0CHD5 was structurally characterized through homology modeling, followed by molecular docking and 100 ns molecular dynamics simulations. Behavioral assays evaluated survival, repellency, and feeding preferences using sugar solutions supplemented with an iridoid mixture. Toxicity was assessed in Drosophila melanogaster as a non-target organism model. Molecular docking results revealed comparable binding affinities between sucrose (ChemPLP score 57.96) and the iridoids plumericin (49.08) and isoplumericin (47.75). Molecular dynamics simulations confirmed the stability of the ligand–receptor complexes and revealed distinct conformational changes. The iridoids did not affect L. longipalpis survival, showed no repellency, and did not reduce sugar feeding acceptance. Preference for the control diet was observed only after continuous exposure (48 h), suggesting involvement of post-ingestive sensory processing. No acute toxicity was observed in D. melanogaster (96% survival). These findings demonstrate that iridoids preserve vector feeding behavior and survival while exhibiting low toxicity to non-target organisms, supporting their potential use in gustatory modulation strategies in leishmaniasis vector control without compromising ecological safety. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

23 pages, 3236 KB  
Article
Obtaining of Composite Cements with Addition of Fly Ash
by Galiya Rakhimova, Gulim Syndarbekova, Nurgali Zhanikulov, Bakytkul Yerkebayeva, Ekaterina Potapova and Murat Rakhimov
Buildings 2025, 15(19), 3523; https://doi.org/10.3390/buildings15193523 - 30 Sep 2025
Viewed by 209
Abstract
The potential for creating composite cements by incorporating fly ash is demonstrated. Analysis revealed that the fly ash examined consists of 69.66 wt. % silicon oxide, 21.34 wt. % aluminum oxide, 1.57 wt. % calcium oxide and 2.78 wt. % iron oxide. Fly [...] Read more.
The potential for creating composite cements by incorporating fly ash is demonstrated. Analysis revealed that the fly ash examined consists of 69.66 wt. % silicon oxide, 21.34 wt. % aluminum oxide, 1.57 wt. % calcium oxide and 2.78 wt. % iron oxide. Fly ash mainly consists of quartz (SiO2), goethite (FeO(OH)) and mullite (3Al2O3·2SiO2). The properties of the cement composition containing 5 to 25 wt. % fly ash were studied. Incorporating fly ash enhances system dispersion, promotes mixture uniformity, and stimulates the pozzolanic reaction. Compositions of composite cements consisting of 90% CEM I 42.5 and 10% fly ash were developed. The cement stone based on the obtained composite cement had a compacted structure with a density of 2.160 g/cm3, which is 9.4% higher than the control sample. It is shown that when composite cement containing 10% fly ash interacts with water, hydration reactions of cement minerals (C3S, C2S, C3A and C4AF) begin first. This is accompanied by the formation of hydrate neoplasms, such as calcium hydroxide (Ca(OH)2) and calcium hydrosilicates (C-S-H). Fly ash particles containing amorphous silica progressively participate in a pozzolanic reaction with Ca(OH)2, leading to the formation of additional calcium hydrosilicates phases. This process enhances structural densification and reduces the porosity of the cement matrix. After 28 days of curing, the compressive strength of the resulting composite cements ranged from 42.1 to 54.2 MPa, aligning with the strength classes 32.5 and 42.5 as specified by GOST 31108-2020. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

11 pages, 6376 KB  
Article
Study of Electro-Chemical Properties and Conditions of Flame Stabilization of Promising Fuel Mixtures CH4/H2 and NH3/H2
by Vladimir Lukashov, Andrey Tupikin, Yuriy Dubnishchev and Olga Zolotukhina
Energies 2025, 18(19), 5198; https://doi.org/10.3390/en18195198 - 30 Sep 2025
Viewed by 225
Abstract
This paper investigates the combustion characteristics of promising decarbonized fuel mixtures—methane/hydrogen (CH4/H2) and ammonia/hydrogen (NH3/H2)—with a focus on how they interact with external electric fields. The key findings are that these flames possess significant electrochemical [...] Read more.
This paper investigates the combustion characteristics of promising decarbonized fuel mixtures—methane/hydrogen (CH4/H2) and ammonia/hydrogen (NH3/H2)—with a focus on how they interact with external electric fields. The key findings are that these flames possess significant electrochemical properties, allowing for non-intrusive control over their stabilization, shape, and structure using relatively weak electric fields. The research combines experimental techniques like volt-ampere characteristic (VAC) measurement and advanced Hilbert visualization to analyze flame deformation, temperature distribution, and species concentration. Two orientations of the electric field were considered: transverse and longitudinal. For the transverse field, an assessment of the degree of flame deformation was made, indicating the preservation of the laminar combustion regime. In the longitudinal electric field, a change in the combustion stabilization mode was observed, which was detected through visualization and current-voltage characteristics (CVC). Full article
(This article belongs to the Special Issue Science and Technology of Combustion for Clean Energy)
Show Figures

Figure 1

Back to TopTop