Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,237)

Search Parameters:
Keywords = molecular characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1205 KiB  
Article
Transcriptome Screening and Identification of Chemosensory Genes in the Goji Berry Psyllid, Bactericera gobica (Hemiptera: Psyllidae)
by Zhanghui Liu, Yang Ge, Zekun Zhang, Jiayi Liang, Chuanzhi Kang, Chengcai Zhang, Kang Chen, Xiufu Wan, Liu Zhang, Wangpeng Shi and Honghao Chen
Biology 2025, 14(8), 1105; https://doi.org/10.3390/biology14081105 (registering DOI) - 21 Aug 2025
Abstract
Goji berry is widely consumed worldwide and holds substantial market value, yet its cultivation faces significant threats from the goji berry psyllid (Bactericera gobica). Chemosensory-related genes play critical roles in regulating insect behaviors, which makes them key molecular targets for the [...] Read more.
Goji berry is widely consumed worldwide and holds substantial market value, yet its cultivation faces significant threats from the goji berry psyllid (Bactericera gobica). Chemosensory-related genes play critical roles in regulating insect behaviors, which makes them key molecular targets for the development of environmentally friendly pest control strategies. However, chemosensory genes in B. gobica have not been previously identified or characterized. In this study, we sequenced transcriptomes from the antennae and body tissues of male and female B. gobica and annotated genes associated with chemosensory functions. We identified 15 odorant-binding proteins (OBPs), 18 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 26 odorant receptors (ORs), 8 gustatory receptors (GRs), and 32 ionotropic receptors (IRs). Transcriptome data and a quantitative real-time PCR confirmed the tissue-specific expression patterns of these genes, with several genes, including three BgobOBPs, eight BgobCSPs, one BgobOR, two BgobGRs, and two BgobIR, highly expressed in the antennae, suggesting their role in olfactory recognition. BgobGR1 was most highly expressed among GRs, indicating its important role in gustatory perception. We also identified gene BgobGR5 with differential expression patterns between females and males. Our study represents the first characterization of chemosensory genes in a Bactericera species. Full article
(This article belongs to the Special Issue Research on Morphology and Sensorimotor Systems of Insect Antennae)
14 pages, 733 KiB  
Article
Decoding the Spitz Puzzle: Histological Patterns and Diagnostic Challenges in Everyday Pathology Practice—A Single-Center Study
by Iuliu Gabriel Cocuz, Georgian-Nicolae Radu, Maria Cătălina Popelea, Raluca Niculescu, Maria Elena Cocuz, Adrian-Horațiu Sabău, Andreea-Cătălina Tinca, Andreea Raluca Cozac-Szoke, Bogdan Pastor, Diana Maria Chiorean, Corina Eugenia Budin, Irina Bianca Kosovski and Ovidiu Simion Cotoi
Medicina 2025, 61(8), 1501; https://doi.org/10.3390/medicina61081501 (registering DOI) - 21 Aug 2025
Abstract
Background and Objectives: Spitz tumors represent a diagnostic challenge in dermatopathology due to their large spectrum of morphological characteristics and overlap with malignant lesions, especially in pathology departments where molecular pathology is not available. Even though most Spitz lesions are benign, the [...] Read more.
Background and Objectives: Spitz tumors represent a diagnostic challenge in dermatopathology due to their large spectrum of morphological characteristics and overlap with malignant lesions, especially in pathology departments where molecular pathology is not available. Even though most Spitz lesions are benign, the uncertainty around their biological behavior necessitates an integrated approach in daily practice. The objective of our study was to evaluate the epidemiological, macroscopic, and histopathological characteristics of Spitz lesions in accordance with WHO Classification of Skin Tumours. Materials and Methods: We performed a retrospective, descriptive, and hypothesis-generating study on Spitz tumors diagnosed between 2018 and 2024 in the Clinical Pathology Department of the Mures Clinical County Hospital, Romania. We included 10 cases and analyzed their macroscopic characteristics (localization, shape, dimension, and color), microscopic characteristics (cellular types, cytologic atypia, pagetoid migration, mitoses, and the type of lesion), and immunohistochemical profile. Results: The study population was composed of young patients with an average age of 20.2 years old, with a slight predominance of female gender. Most lesions were Spitz nevi, intradermic, or compound, with a fusiform, epithelioid, or rhomboid cell shape. Pagetoid migration and cytological atypia were seen in fewer cases. The Ki 67 proliferation index was under 5% in all cases. The main limitation of this study involved the low number of cases and the lack of molecular testing, which limited the molecular characterization of Spitz tumors. Complete excision was performed in all cases. Conclusions: In the absence of molecular testing, our study emphasizes the importance of clinical–morphological assessment using immunohistochemistry in establishing a correct diagnosis in Spitz lesions. Our results confirm that most of the Spitz lesions were benign and provide a basis for future research with a multidisciplinary approach, including molecular testing. Full article
(This article belongs to the Section Oncology)
13 pages, 489 KiB  
Article
Clinical and Molecular Characterizations of Mitochondrial Disorders: A Tertiary-Care Center Experience
by Mohammed Almuqbil, Najla Binsabbar, Shahad Alsaif, Sulaiman Almasoud, Talah Albasry, Duaa Baarmah, Waleed Altwaijri and Ahmed Alrumayyan
Children 2025, 12(8), 1102; https://doi.org/10.3390/children12081102 - 21 Aug 2025
Abstract
Background: Given the limited research on mitochondrial diseases in our area, specifically regarding their genetic variability and diverse clinical manifestations, and considering the significant number of consanguineous marriages in our region, we aimed to investigate the clinical and molecular characteristics of patients with [...] Read more.
Background: Given the limited research on mitochondrial diseases in our area, specifically regarding their genetic variability and diverse clinical manifestations, and considering the significant number of consanguineous marriages in our region, we aimed to investigate the clinical and molecular characteristics of patients with mitochondrial disorders in Saudi Arabia. Methods: This retrospective cross-sectional cohort study involved a chart review of patients diagnosed with mitochondrial disorders at the Ministry of National Guard Health Affairs tertiary health care centers in Saudi Arabia between 2013 and 2022. Results: The study population comprised 116 patients with a mean age of 10 years (±7 SD). Among the study cohort, 34.5% (n = 40) had died. The primary cause of death was cardiopulmonary arrest (55.0%, n = 22). The most prevalent condition was developmental delay (67.9%. Around 56.9% were diagnosed using Whole Exome Sequencing (WES), 10.3% by Whole Genome Sequencing due to negative WES, 23.3% through a single-gene approach, 7.8% were analyzed through a mitochondrial panel, and 1.7% via a gene panel. The distributions of current age and age at diagnosis were significantly different between the nuclear and mitochondrial gene types. Notably, the diagnostic delay time (time taken from symptom onset to genetic diagnosis) averaged 1.5 years for nDNA variants compared to an average of 10 years for mDNA variants. Conclusions: This study shows that gene type affects clinical characteristics, highlighting the importance of genetic studies in disease manifestation. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
18 pages, 5092 KiB  
Article
bra-miR9569 Targets the BrAHA6 Gene to Negatively Regulate H+-ATPases, Affecting Pollen Fertility in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Siyu Xiong, Xiaochun Wei, Wenjing Zhang, Yanyan Zhao, Shuangjuan Yang, Henan Su, Baoming Tian, Fang Wei, Xiaowei Zhang and Yuxiang Yuan
Plants 2025, 14(16), 2604; https://doi.org/10.3390/plants14162604 - 21 Aug 2025
Abstract
Ogura cytoplasmic male sterility (CMS) in Chinese cabbage (Brassica rapa) is characterized by complete pollen abortion, wherein stamens fail to produce viable pollen while pistils retain normal fertility. This maternally inherited trait is valuable for hybrid breeding. This study employed integrated [...] Read more.
Ogura cytoplasmic male sterility (CMS) in Chinese cabbage (Brassica rapa) is characterized by complete pollen abortion, wherein stamens fail to produce viable pollen while pistils retain normal fertility. This maternally inherited trait is valuable for hybrid breeding. This study employed integrated analysis of miRNA, transcriptome, and degradome sequencing data aligned to the Chinese cabbage reference genome to elucidate the molecular function of bra-miR9569 in Ogura CMS pollen fertility and explore its associated pathways. Subsequently, a bra-miR9569 overexpression vector was constructed and transformed into Arabidopsis thaliana. Phenotypic characterization of transgenic Arabidopsis lines, combined with anther viability assessment and quantification of ATP content and reactive oxygen species (ROS) levels in Chinese cabbage, was performed to analyze the effects of bra-miR9569. Our findings demonstrate that mutation of the mitochondrial gene orf138 in Ogura CMS lines leads to upregulation of bra-miR9569. This microRNA negatively regulates the expression of the ATP-related gene AHA6, resulting in reduced H+-ATPase activity. The consequent energy deficiency triggers cellular content degradation, ultimately causing failure of pollen wall formation and pollen abortion. Full article
Show Figures

Figure 1

14 pages, 964 KiB  
Review
Optic Pathway Glioma: Current Treatment Approaches and Ongoing Clinical Trials
by Osama Elzaafarany, Sarah Elhomosany, Alexandra Rincones, Vincent Dlugi and Sepideh Mokhtari
Brain Sci. 2025, 15(8), 894; https://doi.org/10.3390/brainsci15080894 (registering DOI) - 21 Aug 2025
Abstract
Optic pathway glioma (OPG) is a rare pediatric low-grade glioma, frequently associated with neurofibromatosis type 1 (NF–1), that presents unique therapeutic challenges due to its anatomical location and its potential to impair vision, endocrine function, and developmental trajectories. Current clinical management prioritizes a [...] Read more.
Optic pathway glioma (OPG) is a rare pediatric low-grade glioma, frequently associated with neurofibromatosis type 1 (NF–1), that presents unique therapeutic challenges due to its anatomical location and its potential to impair vision, endocrine function, and developmental trajectories. Current clinical management prioritizes a multidisciplinary, patient-specific approach aimed at tumor control while preserving long-term quality of life. Strategies vary based on clinical presentation, ranging from observation in asymptomatic cases to chemotherapy for progressive or symptomatic tumors. Surgical and radiation options are limited due to potential risks and complications. In recent years, advances in molecular characterization have guided the development of targeted therapies, particularly MEK inhibitors, which demonstrate encouraging efficacy and reduced toxicity profiles. In parallel, investigational therapies including immunotherapy and precision medicine-based approaches are under clinical evaluation. This review provides a synthesis of current standard practices, emerging targeted treatments, and ongoing clinical trials, drawing on relevant literature and expert consensus to inform clinicians and families about available therapeutic options. Literature discussed in this review was identified through a non-systematic search of published articles, clinical trial registries, and authoritative guidelines, with selection based on relevance, clinical significance, and contribution to understanding current and emerging management strategies for OPG. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Figure 1

14 pages, 1495 KiB  
Article
Genetic and Clinical Spectrum of Limb–Girdle Muscular Dystrophies in Western Sicily
by Nicasio Rini, Antonino Lupica, Paolo Alonge, Grazia Crescimanno, Antonia Pignolo, Christian Messina, Sandro Santa Paola, Marika Giuliano, Eugenia Borgione, Mariangela Lo Giudice, Carmela Scuderi, Vincenzo Di Stefano and Filippo Brighina
Genes 2025, 16(8), 987; https://doi.org/10.3390/genes16080987 (registering DOI) - 21 Aug 2025
Abstract
Background and Objectives: Limb–girdle muscular dystrophies (LGMDs) are a group of muscular dystrophies characterized by predominantly proximal-muscle weakness, with a highly heterogeneous genetic etiology. Despite recent efforts, the epidemiology of LGMDs is still under-evaluated. However, a better understanding of the distribution and genetic [...] Read more.
Background and Objectives: Limb–girdle muscular dystrophies (LGMDs) are a group of muscular dystrophies characterized by predominantly proximal-muscle weakness, with a highly heterogeneous genetic etiology. Despite recent efforts, the epidemiology of LGMDs is still under-evaluated. However, a better understanding of the distribution and genetic characteristics of LGMDs is required to optimize the diagnostic process and to address future research. Therefore, the aim of the present study is to investigate and identify new pathogenic variants, to better characterize LGMDs in Sicily. Methods: We enrolled patients with genetic and clinical diagnosis of LGMD referred to our clinic between the years 2019 and 2025. A targeted next-generation-sequencing (NGS) panel was performed, based on the reported disease frequency. A retrospective analysis of the clinical, laboratory, electrophysiological, and histological features was performed. Results: A total of 28 LGMDs patients aged 56.6 years (47.2–60.5 IQR) were identified (16 males, 57%). A molecular diagnosis was achieved in 24 (85.7%) of patients, most commonly carrying mutations in CAPN3 (14 patients, 50%), followed by DYSF, LAMA2, ANO5, FKTN and TTN genes. Pathogenic variants in CAPN3 and LAMA2 were associated with earlier onset and longer disease duration, whereas ANO5 presented later with a milder course. Cardiac involvement was observed more frequently in patients with LAMA2 and FKTN mutations. Association between heterozygous mutations in the CAPN3 and DYSF, as well as between CAPN3 and DMD variants were reported. Discussion: The findings of this study provide valuable insights into the epidemiology of LGMDs in the Western Sicily, offering important contributions to genotype–phenotype correlations. Our analysis highlights the role of genetic diagnosis in achieving accurate classification of the disease and optimizing clinical management. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

51 pages, 4873 KiB  
Review
Type 2 Diabetes and the Multifaceted Gut-X Axes
by Hezixian Guo, Liyi Pan, Qiuyi Wu, Linhao Wang, Zongjian Huang, Jie Wang, Li Wang, Xiang Fang, Sashuang Dong, Yanhua Zhu and Zhenlin Liao
Nutrients 2025, 17(16), 2708; https://doi.org/10.3390/nu17162708 - 21 Aug 2025
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease characterized by chronic hyperglycemia due to insulin resistance and inadequate insulin secretion. Beyond the classically implicated organs, emerging evidence highlights the gut as a central player in T2D pathophysiology through its interactions with metabolic [...] Read more.
Type 2 diabetes (T2D) is a complex metabolic disease characterized by chronic hyperglycemia due to insulin resistance and inadequate insulin secretion. Beyond the classically implicated organs, emerging evidence highlights the gut as a central player in T2D pathophysiology through its interactions with metabolic organs. The gut hosts trillions of microbes and enteroendocrine cells that influence inflammation, energy homeostasis, and hormone regulation. Disruptions in gut homeostasis (dysbiosis and increased permeability) have been linked to obesity, insulin resistance, and β-cell dysfunction, suggesting multifaceted “Gut-X axes” contribute to T2D development. We aimed to comprehensively review the evidence for gut-mediated crosstalk with the pancreas, endocrine system, liver, and kidneys in T2D. Key molecular mechanisms (incretins, bile acids, short-chain fatty acids, endotoxins, etc.) were examined to construct an integrated model of how gut-derived signals modulate metabolic and inflammatory pathways across organs. We also discuss clinical implications of targeting Gut-X axes and identify knowledge gaps and future research directions. A literature search (2015–2025) was conducted in PubMed, Scopus, and Web of Science, following PRISMA guidelines (Preferred Reporting Items for Systematic Reviews). Over 150 high-impact publications (original research and review articles from Nature, Cell, Gut, Diabetologia, Lancet Diabetes & Endocrinology, etc.) were screened. Data on gut microbiota, enteroendocrine hormones, inflammatory mediators, and organ-specific outcomes in T2D were extracted. The GRADE framework was used informally to prioritize high-quality evidence (e.g., human trials and meta-analyses) in formulating conclusions. T2D involves perturbations in multiple Gut-X axes. This review first outlines gut homeostasis and T2D pathogenesis, then dissects each axis: (1) Gut–Pancreas Axis: how incretin hormones (GLP-1 and GIP) and microbial metabolites affect insulin/glucagon secretion and β-cell health; (2) Gut–Endocrine Axis: enteroendocrine signals (e.g., PYY and ghrelin) and neural pathways that link the gut with appetite regulation, adipose tissue, and systemic metabolism; (3) Gut–Liver Axis: the role of microbiota-modified bile acids (FXR/TGR5 pathways) and bacterial endotoxins in non-alcoholic fatty liver disease (NAFLD) and hepatic insulin resistance; (4) Gut–Kidney Axis: how gut-derived toxins and nutrient handling intersect with diabetic kidney disease and how incretin-based and SGLT2 inhibitor therapies leverage gut–kidney communication. Shared mechanisms (microbial SCFAs improving insulin sensitivity, LPS driving inflammation via TLR4, and aryl hydrocarbon receptor ligands modulating immunity) are synthesized into a unified model. An integrated understanding of Gut-X axes reveals new opportunities for treating and preventing T2D. Modulating the gut microbiome and its metabolites (through diet, pharmaceuticals, or microbiota therapies) can improve glycemic control and ameliorate complications by simultaneously influencing pancreatic islet function, hepatic metabolism, and systemic inflammation. However, translating these insights into clinical practice requires addressing gaps with robust human studies. This review provides a state-of-the-art synthesis for researchers and clinicians, underlining the gut as a nexus for multi-organ metabolic regulation in T2D and a fertile target for next-generation therapies. Full article
(This article belongs to the Special Issue Dietary Regulation of Glucose and Lipid Metabolism in Diabetes)
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Development and Characterization of a Novel Erucyl Ultra-Long-Chain Gemini Surfactant
by Guiqiang Fei and Banghua Liu
Polymers 2025, 17(16), 2257; https://doi.org/10.3390/polym17162257 - 21 Aug 2025
Abstract
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and [...] Read more.
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and 1,3-bis(dimethylamino)propanediol, with an overall yield of 78.6%. FT-IR and 1H NMR characterization confirmed the presence of C22 ultra-long chains, cis double bonds, amide bonds, and quaternary ammonium headgroups in the product structure. Performance tests showed that EUCGS exhibited an extremely low critical micelle concentration (CMC = 0.018 mmol/L) and excellent ability to reduce surface tension (γCMC = 30.0 mN/m). Rheological property studies indicated that EUCGS solutions gradually exhibited significant non-Newtonian fluid characteristics with increasing concentration, and wormlike micelles with a network structure could self-assemble at a concentration of 1.0 mmol/L. Dynamic rheological tests revealed that the solutions showed typical Maxwell fluid behavior and significant shear-thinning properties, which originated from the orientation and disruption of the wormlike micelle network structure under shear stress. In the presence of 225 mmol/L NaCl, the apparent viscosity of a 20 mmol/L EUCGS solution increased from 86 mPa·s to 256 mPa·s. A temperature resistance evaluation showed that EUCGS solutions had a good temperature resistance at high shear rates and 100 °C. The performance evaluation of fracturing fluids indicates that the proppant settling rate (0.25 cm/min) of the EUCGS-FFS system at 90 °C is significantly superior to that of the conventional system. It features the low dosage and high efficiency of the breaker, with the final core damage rate being only 0.9%. The results demonstrate that the EUCGS achieves a synergistic optimization of high-efficiency interfacial activity, controllable rheological properties, and excellent thermal–salt stability through precise molecular structure design, providing a new material choice for the development of intelligent responsive clean fracturing fluids. Full article
Show Figures

Graphical abstract

72 pages, 1538 KiB  
Review
Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(16), 8072; https://doi.org/10.3390/ijms26168072 - 21 Aug 2025
Abstract
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the [...] Read more.
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the most relevant and timely advances in ALS biomarker discovery, in order to begin to bring molecular, imaging, genetic, and digital areas together for potential integration into a precision medicine approach to ALS. Our goal is to begin to display how several biomarkers in development (e.g., neurofilament light chain (NfL), phosphorylated neurofilament heavy chain (pNfH), TDP-43 aggregates, mitochondrial stress markers, inflammatory markers, etc.) are changing our understanding of ALS and ALS dynamics. We will attempt to provide a framework for thinking about biomarkers in a systematic way where our candidates are not signals alone but part of a tethered pathophysiological cascade. We are particularly interested in the fast progressor phenotype, a devastating and under-characterized subset of ALS due to a rapid axonal degeneration, early respiratory failure, and very short life span. We will try to highlight the salient molecular features of this ALS subtype, including SOD1 A5V toxicity, C9orf72 repeats, FUS variants, mitochondrial collapse, and impaired autophagy mechanisms, and relate these features to measurable blood and CSF (biomarkers) and imaging platforms. We will elaborate on several interesting tools, for example, single-cell transcriptomics, CSF exosomal cargo analysis, MRI techniques, and wearable sensor outputs that are developing into high-resolution windows of disease progression and onset. Instead of providing a static catalog, we plan on providing a conceptual roadmap to integrate biomarker panels that will allow for earlier diagnosis, real-time disease monitoring, and adaptive therapeutic trial design. We hope this synthesis will make a meaningful contribution to the shift from observational neurology to proactive biologically informed clinical care in ALS. Although there are still considerable obstacles to overcome, the intersection of a precise molecular or genetic association approach, digital phenotyping, and systems-level understandings may ultimately redefine how we monitor, care for, and treat this challenging neurodegenerative disease. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis (ALS): Pathogenesis and Treatments)
Show Figures

Figure 1

16 pages, 9200 KiB  
Article
Construction of Donor–Acceptor Heterojunctions via Microphase Separation of Discotic Liquid Crystals with Ambipolar Transport
by Heng Liu, Mingsi Xie, Yaohong Liu, Gaojun Jia, Ruijuan Liao, Ao Zhang, Yi Fang, Xiaoli Song, Chunxiu Zhang and Haifeng Yu
Molecules 2025, 30(16), 3441; https://doi.org/10.3390/molecules30163441 - 21 Aug 2025
Abstract
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results [...] Read more.
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results suggest that all the blends formed liquid crystalline phases, where both compounds in the blends self-assembled separately into columns yet cooperatively contributed to the overall hexagonal or tetragonal columnar mesophase structure. The charge carrier mobilities were characterized using a time-of-flight technique. The phase-separated columnar nanostructures of the donor and acceptor components play an important role in the formation of molecular heterojunctions exhibiting highly efficient ambipolar charge transport, with mobilities on the order of 10−3 cm2 V−1 s−1. These blends with ambipolar transport properties have great potential for application in non-fullerene organic solar cells, particularly in bulk heterojunction architectures. Full article
Show Figures

Figure 1

19 pages, 2270 KiB  
Article
Integrated Proteomic and Molecular Identification of Thermophilic Geobacillus Strains from Algerian Desert Sands and Their Enzymatic Potential
by Amaria Ilhem Hammadi, Mohamed Merzoug, Marwa Aireche, Zohra Yasmine Zater, Keltoum Bendida, Chaimaa Naila Brakna, Slimane Choubane, Svetoslav Dimitrov Todorov and Djamal Saidi
Life 2025, 15(8), 1327; https://doi.org/10.3390/life15081327 - 21 Aug 2025
Abstract
Thermophilic microorganisms are among the key natural sources of thermostable enzymes, found not only in geothermal areas but also in arid environments. In this study, eight Geobacillus strains were isolated from the arid sands of Aïn Sefra (Naâma, Algeria) and characterized both phenotypically [...] Read more.
Thermophilic microorganisms are among the key natural sources of thermostable enzymes, found not only in geothermal areas but also in arid environments. In this study, eight Geobacillus strains were isolated from the arid sands of Aïn Sefra (Naâma, Algeria) and characterized both phenotypically and genetically. All strains exhibited an optimal growth temperature of 70 °C, with most showing alkaliphilic pH preferences. Proteomic and molecular analyses (MALDI-TOF MS, 16S rRNA) identified Geobacillus kaustophilus as predominant, with BOX-PCR and RAPD-PCR revealing notable intraspecies diversity. All strains synthesized at least one thermostable enzyme (protease, amylase, laccase, or DNase) at their optimal temperature (70 °C), positioning them as promising candidates for biotechnological processes requiring extreme thermal conditions. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Graphical abstract

5 pages, 149 KiB  
Editorial
Pathogens of Wild Birds: Prevalence and Molecular and Morphological Characterization
by Alazne Díez-Fernández and Rafael Gutiérrez-López
Pathogens 2025, 14(8), 825; https://doi.org/10.3390/pathogens14080825 - 20 Aug 2025
Abstract
Wild birds are exposed to multiple infections by pathogenic microorganisms [...] Full article
17 pages, 3868 KiB  
Article
Differential Metabolomics and Cardiac Function in Trained vs. Untrained Yili Performance Horses
by Tongliang Wang, Jun Meng, Xixi Yang, Yaqi Zeng, Xinkui Yao and Wanlu Ren
Animals 2025, 15(16), 2444; https://doi.org/10.3390/ani15162444 - 20 Aug 2025
Abstract
This study aimed to investigate the effects of training on cardiac structure and function, as well as plasma metabolite profiles in horses, in order to uncover the molecular regulatory mechanisms and cardiac remodeling under long-term exercise. We hypothesize that long-term standardized training induces [...] Read more.
This study aimed to investigate the effects of training on cardiac structure and function, as well as plasma metabolite profiles in horses, in order to uncover the molecular regulatory mechanisms and cardiac remodeling under long-term exercise. We hypothesize that long-term standardized training induces physiological cardiac remodeling and differential metabolomic changes in Yili horses, which correlate with improved athletic performance. The study focuses on physiological exercise-induced cardiac remodeling, characterized by increased left ventricular wall thickness and chamber size. A total of 18 Yili horses, a unique Chinese equine breed, were included in the study of equine exercise physiology. Twelve horses underwent six months of standardized training followed by three 1000 m performance tests. Based on final rankings, they were divided into an advanced group (AG, top six horses) and a habitual group (HG, bottom six horses). The remaining six untrained horses served as the untrained group (UG), with only free-range activity. Echocardiographic results revealed significant differences (p < 0.05) between the trained and untrained groups in cardiac parameters such as LVID, LVFW, LVM, AODd, IVSs, HR, EDV, ESV, LADs, LVLD, MVD, PADs, and SV. Further comparison between AG and HG showed significant differences in AODd, EESV, HR, IVSd, LVIDs, LVM, RVDd, and RVDs (p < 0.05). Metabolomic analysis identified 465 differential metabolites between AG and HG, 456 between AG and UG, and 379 between HG and UG, with 106 overlapping metabolites among all three groups. Plasma metabolomics revealed significant negative correlations between specific long-chain lysophosphatidylcholines (LPCs) and cardiac structural parameters (LVIDd, LVFWD, LVIDs, LVLD, MVD, and LADs), whereas LPC (O-18:2) showed an opposite trend. Key metabolites such as 3-hydroxybutanoic acid, carnitine C4:0, carnitine isoC4:0, hippuric acid, and uric acid were significantly lower in AG compared to HG and UG, with uric acid levels negatively correlated with LVID and LVM. Glycerophospholipid metabolism emerged as the core pathway differentiating exercise capacity among all groups. Notably, efferocytosis (vs. HG and UG) and tryptophan metabolism/aromatic amino acid biosynthesis (vs. HG) were specifically enriched in AG. These findings provide a novel theoretical basis and research perspective for optimizing racehorse training strategies and exploring the metabolic regulation of the athletic heart. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

25 pages, 15459 KiB  
Article
Effect of Fiber Type on the Thermomechanical Performance of High-Density Polyethylene (HDPE) Composites with Continuous Reinforcement
by José Luis Colón Quintana, Scott Tomlinson and Roberto A. Lopez-Anido
J. Compos. Sci. 2025, 9(8), 450; https://doi.org/10.3390/jcs9080450 - 20 Aug 2025
Abstract
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or [...] Read more.
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or limited thermal conditions, this work examines continuous fiber architectures under five operational environments derived from Army Regulation 70-38, reflecting realistic defense-relevant extremes. Differential scanning calorimetry (DSC) was used to identify melting transitions for GF/HDPE and UHMWPE/HDPE, which guided the selection of test conditions for thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). TMA revealed anisotropic thermal expansion consistent with fiber orientation, while DMA, via strain sweep, temperature ramp, frequency sweep, and stress relaxation, quantified their temperature- and time-dependent viscoelastic behavior. The frequency-dependent storage modulus highlighted multiple resonant modes, and stress relaxation data were fitted with high accuracy (R2 > 0.99) to viscoelastic models, yielding model parameters that can be used for predictive simulations of time-dependent material behavior. A comparative analysis between the two material systems showed that UHMWPE/HDPE offers enhanced unidirectional stiffness and better low-temperature performance. At the same time, GF/HDPE exhibits lower thermal expansion, better transverse stiffness, and greater stability at elevated temperatures. These differences highlight the impact of fiber type on thermal and mechanical responses, informing material selection for applications that require directional load-bearing or dimensional control under thermal cycling. By integrating thermal and viscoelastic characterization across realistic operational profiles, this study provides a foundational dataset for the application of continuous fiber thermoplastic tapes in structural components exposed to harsh thermal and mechanical conditions. Full article
Show Figures

Figure 1

15 pages, 1709 KiB  
Article
N-Lactoyl Phenylalanine Disrupts Insulin Signaling, Induces Inflammation, and Impairs Mitochondrial Respiration in Cell Models
by Laila Hedaya, Khaled Naja, Shamma Almuraikhy, Najeha Anwardeen, Asma A. Elashi, Maha Al-Asmakh, Susu M. Zughaier, Meritxell Espino-Guarch, Osama Y. Aldirbashi, Gavin P. Davey and Mohamed A. Elrayess
Cells 2025, 14(16), 1296; https://doi.org/10.3390/cells14161296 - 20 Aug 2025
Abstract
N-lactoyl amino acids (Lac-AAs) are key players that regulate appetite and body weight. The most prominent and well-studied member is N-lactoyl phenylalanine (Lac-Phe), which can be induced by food intake, exercise and metformin treatment. However, its broader metabolic impact remains insufficiently characterized. This [...] Read more.
N-lactoyl amino acids (Lac-AAs) are key players that regulate appetite and body weight. The most prominent and well-studied member is N-lactoyl phenylalanine (Lac-Phe), which can be induced by food intake, exercise and metformin treatment. However, its broader metabolic impact remains insufficiently characterized. This study investigates the effects of Lac-Phe on insulin signaling, inflammation, and mitochondrial respiration using HepG2 and differentiated C2C12 cell models, as well as isolated rat brain mitochondria and synaptosomes. Our results demonstrate that Lac-Phe significantly impairs insulin-stimulated phosphorylation of key proteins in the insulin signaling pathway, particularly in skeletal muscle cells, indicating disrupted insulin signaling. Additionally, Lac-Phe exposure increases the secretion of pro-inflammatory cytokines in C2C12 skeletal muscle cells and markedly impairs mitochondrial respiration in HepG2 liver cells and rat brain-derived synaptosomes, but not in isolated mitochondria. These findings highlight potential adverse metabolic effects of Lac-Phe, especially when administered at high concentrations, and underscore the necessity of conducting a comprehensive risk assessment and dose optimization before considering Lac-Phe or related Lac-AAs as therapeutic agents. Our work provides important insights into the molecular liabilities associated with Lac-Phe and calls for further studies to balance its therapeutic promise against possible metabolic risks. Full article
(This article belongs to the Special Issue Biomarkers and Therapeutic Targets in Insulin Resistance)
Show Figures

Figure 1

Back to TopTop