Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (548)

Search Parameters:
Keywords = molybdenum oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3452 KB  
Article
Formation of Protective Coatings on TZM Molybdenum Alloy by Complex Aluminosiliconizing and Application of a Preceramic Layer
by Tetiana Loskutova, Volodymyr Taran, Manja Krüger, Nadiia Kharchenko, Myroslav Karpets, Yaroslav Stelmakh, Georg Hasemann and Michael Scheffler
Coatings 2025, 15(10), 1168; https://doi.org/10.3390/coatings15101168 - 5 Oct 2025
Viewed by 219
Abstract
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective [...] Read more.
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective coatings. In this study, we investigate the influence of a two-step coating process on the properties and performance of the TZM molybdenum alloy. In the first step, pack cementation was performed. Simultaneous surface saturation with aluminum and silicon, a process known as aluminosiliconizing, was conducted at 1000 °C for 6 h. The saturating mixture comprised powders of aluminum, silicon, aluminum oxide, and ammonium chloride. The second step involved the application of a pre-ceramic coating based on polyhydrosiloxane modified with silicon and boron. This treatment effectively eliminated pores and cracks within the coating. Thermodynamic calculations were carried out to evaluate the likelihood of aluminizing and siliconizing reactions under the applied conditions. Aluminosiliconizing of the TZM alloy resulted in the formation of a protective layer 20–30 µm thick. The multiphase structure of this layer included intermetallics (Al63Mo37, MoAl3), nitrides (Mo2N, AlN, Si3N4), oxide (Al2O3), and a solid solution α-Mo(Al). Subsequent treatment with silicon- and boron-modified polyhydrosiloxane led to the development of a thicker surface layer, 130–160 µm in thickness, composed of crystalline Si, amorphous SiO2, and likely amorphous boron. A transitional oxide layer ((Al,Si)2O3) 5–7 µm thick was also observed. The resulting coating demonstrated excellent structural integrity and chemical inertness in an argon atmosphere at temperatures up to 1100 °C. High-temperature stability at 800 °C was observed for both coating types: aluminosiliconizing, and aluminosiliconizing followed by the pre-ceramic coating. Moreover, additional oxide layers of SiO2 and B2O3 formed on the two-step coated TZM alloy during heating at 800 °C for 24 h. These layers acted as an effective barrier, preventing the evaporation of the substrate material. Full article
Show Figures

Figure 1

14 pages, 1641 KB  
Article
The Effect of Electrochemical Surface Properties on Molybdenite Flotation in Seawater
by Yang Chen, Na Zhang and Haoran Cui
Minerals 2025, 15(10), 1049; https://doi.org/10.3390/min15101049 - 3 Oct 2025
Viewed by 187
Abstract
Seawater has been widely used in copper–molybdenum flotation plants due to the shortage of fresh water and the high cost of seawater desalination, especially in arid regions. There have been many studies concerning the molybdenite flotation in seawater. Due to the complication of [...] Read more.
Seawater has been widely used in copper–molybdenum flotation plants due to the shortage of fresh water and the high cost of seawater desalination, especially in arid regions. There have been many studies concerning the molybdenite flotation in seawater. Due to the complication of seawater flotation, it is difficult to identify the key factors affecting molybdenite recoveries. It is known that the unique structure of molybdenite plays an important role in molybdenite flotation. The anisotropic property of molybdenite leads to the different surface properties of basal and edge plane surfaces. Electrochemical properties of sulfides have a significant effect on the surface properties which affect the flotation performance. Therefore, it is important to understand the surface electrochemical properties such as surface chemistry, redox processes, and reaction kinetics of molybdenite’s two different surfaces in seawater, and to determine what affects the molybdenite flotation behaviors in seawater. In this study, the surface properties of molybdenite basal and edge plane surfaces in both fresh water and seawater were investigated through various electrochemical techniques. Open circuit potential (OCP) measurement indicated that edge plane surfaces were easier to be oxidized than basal plane surfaces. Cyclic voltammetry (CV) studies showed that the basal plane surfaces were stable with a low electrochemical reactivity, while the edge plane surfaces had relatively high electrochemical reactivity. In addition, the redox property of the molybdenite surface was enhanced in seawater, which is a key to the improvement of fine molybdenite flotation in seawater. Electrochemical impedance spectroscopy (EIS) measurements further confirmed the stability of basal plane surfaces and indicated a greater charge transfer ability of edge plane surfaces in seawater. Different molybdenite particle sizes with different basal and edge ratios were applied in the flotation in both fresh water and seawater; the results illustrated that molybdenite flotation was enhanced in seawater especially to fine particles. The flotation and electrochemical studies reveal that the electrochemical reactivity of edge plane surface plays an important role in molybdenite seawater flotation. Full article
(This article belongs to the Special Issue Advances in Fine Particles and Bubbles Flotation, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 9703 KB  
Article
Study on the Corrosion Behavior of Additively Manufactured NiCoCrFeyMox High-Entropy Alloys in Chloride Environments
by Chaoqun Xie, Yaqing Hou, Youpeng Song, Zhishan Mi, Fafa Li, Wei Guo and Dupeng He
Materials 2025, 18(19), 4544; https://doi.org/10.3390/ma18194544 - 30 Sep 2025
Viewed by 359
Abstract
This study aims to determine the optimal Mo content for corrosion resistance in two alloys, FeCoCrNiMox and Fe0.5CoCrNiMox. The alloys were fabricated using laser powder bed fusion (LPBF) technology with varying Mo contents (x = 0, 0.05, 0.1, [...] Read more.
This study aims to determine the optimal Mo content for corrosion resistance in two alloys, FeCoCrNiMox and Fe0.5CoCrNiMox. The alloys were fabricated using laser powder bed fusion (LPBF) technology with varying Mo contents (x = 0, 0.05, 0.1, 0.15). The corrosion behavior of these alloys was investigated in 3.5 wt.% NaCl solution at room temperature and 60 °C using electrochemical testing and X-ray photoelectron spectroscopy (XPS). The results show that all alloys exhibit good corrosion resistance at room temperature. However, at 60 °C, both alloys without Mo addition exhibit severe corrosion, while the Fe0.5CoCrNiMo0.1 alloy demonstrates the best corrosion resistance while maintaining the highest strength. The enhanced corrosion resistance is attributed to the optimal molybdenum addition, which refines the passive film structure and promotes the formation of Cr2O3. Furthermore, molybdenum oxide exists as MoO42− ions on the surface of the passive film, significantly improving the alloy’s corrosion resistance in chloride-containing environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 4518 KB  
Article
Nitric Acid Purification of Molybdenite Concentrate: Copper-Iron Removal and Development of a Comprehensive Dissolution Kinetics Model
by Hossein Shalchian, Payam Ghorbanpour, Behzad Nateq, Marco Passadoro, Pietro Romano, Francesco Vegliò and Nicolò Maria Ippolito
Minerals 2025, 15(9), 982; https://doi.org/10.3390/min15090982 - 16 Sep 2025
Viewed by 335
Abstract
The selective removal of impurities from molybdenite concentrates is crucial for producing high-purity molybdenum products. In this study, the purification of molybdenite concentrate was investigated using nitric acid as both a leaching medium and oxidizing agent. Leaching experiments were carried out under various [...] Read more.
The selective removal of impurities from molybdenite concentrates is crucial for producing high-purity molybdenum products. In this study, the purification of molybdenite concentrate was investigated using nitric acid as both a leaching medium and oxidizing agent. Leaching experiments were carried out under various conditions of temperature (22–78 °C) and nitric acid concentration (0.12–0.48 M). The results demonstrated that while molybdenite remained mostly undissolved, copper and iron were effectively leached, with near-complete removal at 78 °C in 0.24 M HNO3 after 6 h. Compared with other acid systems, nitric acid leaching experiments in this study demonstrated higher efficiency and selectivity under relatively moderate conditions of concentration and temperature. Kinetic analyses were performed based on the shrinking core model (SCM) and extended by developing a comprehensive rate equation that incorporates both nitric acid concentration and reactive surface effects. Fitting the developed model to experimental data revealed distinct kinetic regimes below and above 50 °C, suggesting a mechanism shift from surface chemical reaction control to diffusion through an ash layer. The purified molybdenite was characterized by SEM-EDS and ICP-OES, confirming almost complete elimination of Cu and Fe impurities. This work highlights nitric acid as a promising and efficient medium for selective leaching of molybdenite concentrates and provides a comprehensive kinetic model applicable across different leaching conditions. Full article
Show Figures

Figure 1

12 pages, 11479 KB  
Article
MoS2-PtX2 Vertical Heterostructures
by Nikolay Minev, Blagovest Napoleonov, Dimitre Dimitrov, Vladimira Videva, Velichka Strijkova, Denitsa Nicheva, Ivalina Avramova, Tamara Petkova and Vera Marinova
Nanomaterials 2025, 15(18), 1415; https://doi.org/10.3390/nano15181415 - 15 Sep 2025
Viewed by 404
Abstract
This study reports the successful fabrication and characterization of two-dimensional (2D) vertical heterostructures composed of a semiconducting molybdenum disulfide (MoS2) layer stacked with semimetallic platinum dichalcogenides (PtSe2 and PtTe2). The heterostructures were created using a versatile fabrication method [...] Read more.
This study reports the successful fabrication and characterization of two-dimensional (2D) vertical heterostructures composed of a semiconducting molybdenum disulfide (MoS2) layer stacked with semimetallic platinum dichalcogenides (PtSe2 and PtTe2). The heterostructures were created using a versatile fabrication method that combines chemical vapor deposition (CVD) to grow high-quality MoS2 nanolayers with thermally assisted conversion (TAC) for the synthesis of the Pt-based layers. The final MoS2/PtSe2 and MoS2/PtTe2 heterostructures were then assembled via a dry transfer process, ensuring high structural integrity. The quality and properties of these heterostructures were investigated using a range of advanced spectroscopic techniques. Raman spectroscopy confirmed the presence of characteristic vibrational modes for each material, validating successful formation. X-ray photoelectron spectroscopy (XPS) analysis further confirmed the elemental composition and oxidation states, though it also revealed the presence of elemental Pt0 and oxidized Te+4 in the PtTe2 layer, suggesting an incomplete conversion. Importantly, the photoluminescence (PL) spectra showed a significant quenching effect, a clear sign of strong interlayer charge transfer, which is essential for optoelectronic applications. Finally, UV-Vis-NIR spectrophotometry demonstrated the combined optical properties of the stacked layers, with the Pt-based layers causing broadening and a blue-shift in the MoS2 exciton peaks, indicating altered electronic and optical behavior. This research provides valuable insights into the synthesis and fundamental properties of MoS2/PtX2 heterostructures, highlighting their potential for next-generation electronic and optoelectronic devices. Full article
Show Figures

Graphical abstract

11 pages, 2281 KB  
Article
Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction
by Xuyang Xu, Zefei Wu, Weifeng Hu, Ning Sun, Zijun Li, Zhe Feng, Yinuo Zhao and Longlu Wang
Catalysts 2025, 15(9), 879; https://doi.org/10.3390/catal15090879 - 13 Sep 2025
Viewed by 432
Abstract
Transition metal dichalcogenides (TMSs), exemplified by molybdenum disulfide (MoS2), exhibit significant potential as alternatives to noble metals (e.g., Pt) for the hydrogen evolution reaction (HER). However, conventional synthesis methods of MoSx often suffer from active site loss, harsh reaction conditions, [...] Read more.
Transition metal dichalcogenides (TMSs), exemplified by molybdenum disulfide (MoS2), exhibit significant potential as alternatives to noble metals (e.g., Pt) for the hydrogen evolution reaction (HER). However, conventional synthesis methods of MoSx often suffer from active site loss, harsh reaction conditions, or undesirable oxidation, limiting their practical applicability. The development of MoSx with high-density active sites remains a formidable challenge. Herein, we propose a novel strategy employing [Mo3S13]2− clusters as precursors to construct three-dimensional amorphous MoSx nanosheets through optimized hydrothermal and solvent evaporation-induced self-assembly approaches. Comprehensive characterization confirms the material’s unique amorphous lamellar structure, featuring preserved [Mo3S13]2− units and engineered interlayer dislocations that facilitate enhanced electron transfer and active site exposure. This work not only establishes [Mo3S13]2− clusters as effective building blocks for high-performance MoSx catalysts, but also provides a scalable and environmentally benign synthesis route for the large-scale production of such nanostructured a-MoSx. Our findings facilitate the rational design of non-noble HER catalysts via structural engineering, with broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

11 pages, 1332 KB  
Article
Unlocking the Biochemical Potential of Diadema setosum Tests: A Pathway Toward Circular Marine Bioeconomy
by Bilge Bilgin Fıçıcılar and Koray Korkmaz
Molecules 2025, 30(18), 3700; https://doi.org/10.3390/molecules30183700 - 11 Sep 2025
Viewed by 657
Abstract
This study investigates the biochemical and elemental composition of the test of Diadema setosum (D. setosum), a sea urchin species increasingly processed in Turkey, where the shell is commonly treated as industrial waste. Specimens were collected from the Mediterranean and [...] Read more.
This study investigates the biochemical and elemental composition of the test of Diadema setosum (D. setosum), a sea urchin species increasingly processed in Turkey, where the shell is commonly treated as industrial waste. Specimens were collected from the Mediterranean and Aegean Seas, and the test material was subjected to amino acid profiling, protein quantification, and X-ray fluorescence (XRF) analysis. The results revealed a considerable protein content (8.03%) and a rich amino acid spectrum dominated by glycine, aspartic acid, and arginine, supporting the presence of residual structural proteins even after processing. Mineral analysis showed a high calcium oxide concentration (43.19%), alongside significant levels of magnesium, phosphorus, strontium, and trace elements such as zinc, copper, and molybdenum. Rare earth elements and radionuclides including neodymium, samarium, and uranium were also detected, suggesting sediment interaction. These findings suggest that D. setosum tests could represent a sustainable source of bioavailable minerals and proteinaceous material, with prospective applications in fish or livestock feed, hydroxyapatite synthesis, or calcium oxide production, pending further validation. Full article
Show Figures

Graphical abstract

30 pages, 6580 KB  
Article
Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products
by Ana Kuprešanin, Marija Pavlović, Ljiljana Šašić Zorić, Milinko Perić, Stefan Jarić, Teodora Knežić, Ljiljana Janjušević, Zorica Novaković, Marko Radović, Mila Djisalov, Nikola Kanas, Jovana Paskaš and Zoran Pavlović
Biosensors 2025, 15(9), 584; https://doi.org/10.3390/bios15090584 - 5 Sep 2025
Viewed by 955
Abstract
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in [...] Read more.
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in genetically modified (GM) plants, combining the loop-mediated isothermal amplification (LAMP) method with electrodes functionalized by two-dimensional (2D) nanomaterials. The sensor design exploits the high surface area and excellent conductivity of reduced graphene oxide, Ti3C2Tx, and molybdenum disulfide (MoS2) to enhance signal transduction. Furthermore, we used a “green synthesis” method for Ti3C2Tx preparation that eliminates the use of hazardous hydrofluoric acid (HF) and hydrochloric acid (HCl), providing a safer and more sustainable approach for nanomaterial production. Within this framework, the performance of various custom-fabricated electrodes, including laser-patterned gold leaf films, physical vapor deposition (PVD)-deposited gold electrodes, and screen-printed gold electrodes, is evaluated and compared with commercial screen-printed gold electrodes. Additionally, gold and carbon electrodes were electrochemically covered by gold nanoparticles (AuNPs), and their properties were compared. Several electrochemical methods were used during the DNA detection, and their importance and differences in excitation signal were highlighted. Electrochemical properties, sensitivity, selectivity, and reproducibility are characterized for each electrode type to assess the influence of fabrication methods and material composition on sensor performance. The developed biosensing systems exhibit high sensitivity, specificity, and rapid response, highlighting their potential as practical tools for on-site GMO screening and regulatory compliance monitoring. This work advances electrochemical nucleic acid detection by integrating environmentally-friendly nanomaterial synthesis with robust biosensing technology. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Graphical abstract

13 pages, 2701 KB  
Article
Surface Enhancement of CoCrMo Bioimplant Alloy via Nanosecond and Femtosecond Laser Processing with Thermal Treatment
by Hsuan-Kai Lin, Po-Wei Chang, Yu-Ming Ding, Yu-Ting Lyu, Yuan-Jen Chang and Wei-Hua Lu
Metals 2025, 15(9), 980; https://doi.org/10.3390/met15090980 - 1 Sep 2025
Viewed by 522
Abstract
With an aging population, the number of joint replacement surgeries is on the rise. One of the most common implant materials is cobalt–chromium–molybdenum (CoCrMo) alloy. Hence, the surface properties of this alloy have attracted increasing attention. In this study, nanosecond and femtosecond laser [...] Read more.
With an aging population, the number of joint replacement surgeries is on the rise. One of the most common implant materials is cobalt–chromium–molybdenum (CoCrMo) alloy. Hence, the surface properties of this alloy have attracted increasing attention. In this study, nanosecond and femtosecond laser processing, followed by annealing, was employed to modify the CoCrMo surface. The effects of the treatment conditions on the surface morphology, structure, composition, hardness, roughness, contact angle, wear properties, and corrosion current were studied. Femtosecond laser processing with an energy density of 1273 mJ/cm2, followed by heat treatment at 160 °C for 2 h, produced laser-induced periodic surface structures (LIPSS) without altering the chemical composition of the alloy and rendered the surface superhydrophobic. In contrast, nanosecond laser treatment at higher laser energy densities promoted the formation of an oxide layer, which improved the hardness and corrosion resistance of the substrate. Overall, the CoCrMo samples processed using the femtosecond laser system exhibited superior corrosion and wear resistance, with a protection efficiency of approximately 92%. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Figure 1

14 pages, 2274 KB  
Article
Molybdenum-Induced Oxidative and Inflammatory Injury and Metabolic Pathway Disruption in Goat Pancreas
by Longfei Li, Yang Ran and Xiaoyun Shen
Metabolites 2025, 15(8), 541; https://doi.org/10.3390/metabo15080541 - 9 Aug 2025
Viewed by 518
Abstract
Background: Molybdenum (Mo) is an essential trace element for animals, but too much intake can cause adverse effects. Due to the metabolic characteristics of goats and other ruminants, they are more susceptible to the cumulative effects of Mo toxicity. A high Mo [...] Read more.
Background: Molybdenum (Mo) is an essential trace element for animals, but too much intake can cause adverse effects. Due to the metabolic characteristics of goats and other ruminants, they are more susceptible to the cumulative effects of Mo toxicity. A high Mo intake can cause multi-organ toxicity in ruminants, but the mechanism of damage to the pancreas is still unclear. The aim of this study was to systematically analyze the key regulatory pathways of pancreatic injury induced by Mo in goats using a metabolomics approach. Methods: Twenty male Yudong Black goats (22.34 ± 1.87 kg, six months) were randomly divided into a control group (fed a basal diet) and the Mo group (fed a basal diet supplemented with 50 mg·kg−1 Na2MoO4·2H2O). After 60 days of continuous feeding, their pancreatic tissues were collected and the mineral elements, antioxidant capacity, and inflammatory factors were examined. Untargeted metabolomics based on HILIC UHPLC-Q-EXACTIVE MS was used to analyze changes in metabolites. The core regulatory mechanisms were revealed by KEGG enrichment analysis. Results: The results demonstrated that goats in the Mo group showed obvious clinical signs, such as lethargy, loss of appetite, and unsteady gait. The pancreatic tissue of goats in the Mo group exhibited significantly elevated levels of Mo and copper, accompanied by a marked reduction in antioxidant capacity and concurrent increases in inflammatory cytokine levels. Between the Mo group and control group, 167 differentially expressed metabolites were identified. KEGG enrichment analysis showed that it disrupted multiple metabolic pathways, including glycine, serine, and threonine metabolism, cysteine and methionine metabolism, and butanoate metabolism. Conclusions: This study mainly revealed, at the metabolomics level, that Mo exposure would disrupt the metabolic pathways related to antioxidant capacity in goat pancreata. It provides new insights into the molecular mechanisms of Mo-induced pancreatic injury in goats. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

20 pages, 3002 KB  
Review
Nitrate–Nitrite Interplay in the Nitrogen Biocycle
by Biplab K. Maiti, Isabel Moura and José J. G. Moura
Molecules 2025, 30(14), 3023; https://doi.org/10.3390/molecules30143023 - 18 Jul 2025
Viewed by 1103
Abstract
The nitrogen cycle (N-cycle) is a cornerstone of global biogeochemistry, regulating nitrogen availability and affecting atmospheric chemistry, agricultural productivity, and ecological balance. Central to this cycle is the reversible interplay between nitrate (NO3) and nitrite (NO2), mediated [...] Read more.
The nitrogen cycle (N-cycle) is a cornerstone of global biogeochemistry, regulating nitrogen availability and affecting atmospheric chemistry, agricultural productivity, and ecological balance. Central to this cycle is the reversible interplay between nitrate (NO3) and nitrite (NO2), mediated by molybdenum-dependent enzymes—Nitrate reductases (NARs) and Nitrite oxidoreductases (NXRs). Despite catalyzing opposite reactions, these enzymes exhibit remarkable structural and mechanistic similarities. This review aims to elucidate the molecular underpinnings of nitrate reduction and nitrite oxidation by dissecting their enzymatic architectures, redox mechanisms, and evolutionary relationships. By focusing on recent structural, spectroscopic, and thermodynamic data, we explore how these two enzyme families represent “two sides of the same coin” in microbial nitrogen metabolism. Special emphasis is placed on the role of oxygen atom transfer (OAT) as a unifying mechanistic principle, the influence of environmental redox conditions, and the emerging evidence of bidirectional catalytic potential. Understanding this dynamic enzymatic interconversion provides insight into the flexibility and resilience of nitrogen-transforming pathways, with implications for environmental management, biotechnology, and synthetic biology. Full article
Show Figures

Figure 1

23 pages, 4276 KB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 483
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

28 pages, 3287 KB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Cited by 2 | Viewed by 1773
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

34 pages, 8503 KB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 785
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

6 pages, 1563 KB  
Proceeding Paper
Contrast Enhancement in 2D Nanomaterial SEM Images
by Angela Longo, Mariano Palomba, Filippo Giubileo and Gianfranco Carotenuto
Eng. Proc. 2025, 87(1), 81; https://doi.org/10.3390/engproc2025087081 - 23 Jun 2025
Viewed by 477
Abstract
Owing to their large size and flexibility, 2D nanostructures (e.g., graphene, graphene oxide, single-layer molybdenum disulfide, etc.) are technologically exploited in a supported form. Glass, silicon, and polymers are typical substrates. In the characterization of these 2D nanostructures, important morphological information (e.g., size, [...] Read more.
Owing to their large size and flexibility, 2D nanostructures (e.g., graphene, graphene oxide, single-layer molybdenum disulfide, etc.) are technologically exploited in a supported form. Glass, silicon, and polymers are typical substrates. In the characterization of these 2D nanostructures, important morphological information (e.g., size, shape factor, presence of defects, etc.) can be obtained through an investigation based on scanning electron microscopy (SEM). However, the observation of these extremely thin 2D nanostructures is characterized by poor contrast, and therefore, all morphological features are not clearly visible in SEM micrographs. Herein, it is shown that under a high sample tilting condition, SEM observations are also capable of providing images with very good contrast. Such high sample tilting can be obtained by positioning the sample vertically and then conveniently reducing this angle (90°) by tilting the sample up to achieve a well-focused image. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop