Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = monotone basis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1337 KB  
Article
Sinusoidal Approximation Theorem for Kolmogorov–Arnold Networks
by Sergei Gleyzer, Hanh Nguyen, Dinesh P. Ramakrishnan and Eric A. F. Reinhardt
Mathematics 2025, 13(19), 3157; https://doi.org/10.3390/math13193157 - 2 Oct 2025
Abstract
The Kolmogorov–Arnold representation theorem states that any continuous multivariable function can be exactly represented as a finite superposition of continuous single-variable functions. Subsequent simplifications of this representation involve expressing these functions as parameterized sums of a smaller number of unique monotonic functions. Kolmogorov–Arnold [...] Read more.
The Kolmogorov–Arnold representation theorem states that any continuous multivariable function can be exactly represented as a finite superposition of continuous single-variable functions. Subsequent simplifications of this representation involve expressing these functions as parameterized sums of a smaller number of unique monotonic functions. Kolmogorov–Arnold Networks (KANs) have been recently proposed as an alternative to multilayer perceptrons. KANs feature learnable nonlinear activations applied directly to input values, modeled as weighted sums of basis spline functions. This approach replaces the linear transformations and sigmoidal post-activations used in traditional perceptrons. In this work, we propose a novel KAN variant by replacing both the inner and outer functions in the Kolmogorov–Arnold representation with weighted sinusoidal functions of learnable frequencies. We particularly fix the phases of the sinusoidal activations to linearly spaced constant values and provide a proof of their theoretical validity. We also conduct numerical experiments to evaluate its performance on a range of multivariable functions, comparing it with fixed-frequency Fourier transform methods, basis spline KANs (B-SplineKANs), and multilayer perceptrons (MLPs). We show that it outperforms the fixed-frequency Fourier transform B-SplineKAN and achieves comparable performance to MLP. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

23 pages, 4891 KB  
Article
Scenario-Based Wildfire Boundary-Threat Indexing at the Wildland–Urban Interface Using Dynamic Fire Simulations
by Yeshvant Matey, Raymond de Callafon and Ilkay Altintas
Fire 2025, 8(10), 377; https://doi.org/10.3390/fire8100377 - 23 Sep 2025
Viewed by 99
Abstract
Conventional wildfire assessment products emphasize regional-scale ignition likelihood and potential spread derived from fuels and weather. While useful for broad planning, they do not directly support boundary-aware, scenario-specific decision-making for localized threats to communities in the Wildland–Urban Interface (WUI). This limitation constrains the [...] Read more.
Conventional wildfire assessment products emphasize regional-scale ignition likelihood and potential spread derived from fuels and weather. While useful for broad planning, they do not directly support boundary-aware, scenario-specific decision-making for localized threats to communities in the Wildland–Urban Interface (WUI). This limitation constrains the ability of fire managers to effectively prioritize mitigation efforts and response strategies for ignition events that may lead to severe local impacts. This paper introduces WUI-BTI—a scenario-based, simulation-driven boundary-threat index for the Wildland–Urban Interface that quantifies consequences conditional on an ignition under standardized meteorology, rather than estimating risk. WUI-BTI evaluates ignition locations—referred to as Fire Amplification Sites (FAS)—based on their potential to compromise the defined boundary of a community. For each ignition location, a high-resolution fire spread simulation is conducted. The resulting fire perimeter dynamics are analyzed to extract three key metrics: (1) the minimum distance of fire approach to the community boundary (Dmin) for non-breaching fires; and for breaching fires, (2) the time required for the fire to reach the boundary (Tp), and (3) the total length of the community boundary affected by the fire (Lc). These raw outputs are mapped through monotone, sigmoid-based transformations to yield a single, interpretable score: breaching fires are scored by the product of an inverse-time urgency term and an extent term, whereas non-breaching fires are scored by proximity alone. The result is a continuous boundary-threat surface that ranks ignition sites by their potential to rapidly and substantially compromise a community boundary. By converting complex simulation outputs into scenario-specific, boundary-aware intelligence, WUI-BTI provides a transparent, quantitative basis for prioritizing fuel treatments, pre-positioning suppression resources, and guiding protective strategies in the WUI for fire managers, land use planners, and emergency response agencies. The framework complements regional hazard layers (e.g., severity classifications) by resolving fine-scale, consequence-focused priorities for specific communities. Full article
Show Figures

Figure 1

29 pages, 23339 KB  
Article
Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing
by Xiaofei Yang, Qinglin Li, Shuailong Yu, Pengrui Feng, Meixue Zhang, Wenjuan Chen and Guang Yang
Plants 2025, 14(18), 2876; https://doi.org/10.3390/plants14182876 - 16 Sep 2025
Viewed by 363
Abstract
In cold and arid regions, the mechanical properties and influencing mechanisms of the root–soil interface during the thawing stage remain poorly understood. This study focuses on Alhagi sparsifolia root–clayey sand composites to investigate the effects of temperature (−10 °C to 25 °C), initial [...] Read more.
In cold and arid regions, the mechanical properties and influencing mechanisms of the root–soil interface during the thawing stage remain poorly understood. This study focuses on Alhagi sparsifolia root–clayey sand composites to investigate the effects of temperature (−10 °C to 25 °C), initial soil water content (4–12%), and naturally varying root diameter (4.50–5.05 mm) on root pullout behaviour, and integrates endoscopic macro-observation, environmental scanning electron microscopy (ESEM), soil water migration tests, and nuclear magnetic resonance (NMR) techniques to reveal the dominant influencing mechanisms. Key findings reveal the following: (1) An increase in soil water content from 4% to 12%, and a temperature rise from −10 °C to 25 °C led to a maximum reduction in the average peak pullout force (FT) of roots exceeding 95%. (2) There is a non-monotonic relationship between root diameter and pull-out force, which can be attributed to two distinct failure modes: a newly observed failure mode known as root bark peeling, occurring under high soil moisture conditions (≥8%), and a commonly observed failure mode referred to as partial soil detachment, occurring under low soil moisture conditions (≤6%). (3) The coupling effects of temperature and water content reveal that the increase in temperature predominantly contributes to strength loss (>63%) during the ice–water phase transition (−10 °C to 0 °C), while soil water content primarily influences root pullout behaviour in the liquid water stage (5 °C to 25 °C). (4) As the temperature rises, in soils with low water content (4–6%), the reinforcing effect of roots appears to stabilize at −1 °C, whereas in soils with high water content (8–12%), stabilization occurs only beyond 5 °C. These findings enhance the understanding of root–soil interactions in thawing environments and provide a theoretical basis for soil bioengineering techniques aimed at slope stabilization in cold and arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1983 KB  
Article
Non-Destructive Evaluation of HTV’s Thermal-Oxidative Aging Using Terahertz Dielectric Spectroscopy
by Tengyi Zhang, Li Cheng, Shuo Zhang, Bo Tao and Yipu Tang
Materials 2025, 18(17), 4176; https://doi.org/10.3390/ma18174176 - 5 Sep 2025
Viewed by 708
Abstract
Thermal oxidative aging failure of high-temperature vulcanized silicone rubber (HTV) in high-voltage insulators is the core hidden danger of power grid security. In this study, terahertz time domain spectroscopy (THz-TDS) and attenuated total reflection infrared spectroscopy (ATR-FTIR) were combined to reveal the quantitative [...] Read more.
Thermal oxidative aging failure of high-temperature vulcanized silicone rubber (HTV) in high-voltage insulators is the core hidden danger of power grid security. In this study, terahertz time domain spectroscopy (THz-TDS) and attenuated total reflection infrared spectroscopy (ATR-FTIR) were combined to reveal the quantitative structure–activity relationship between dielectric response and chemical group evolution of HTV during accelerated aging at 200 °C for 80 days. In this study, HTV flat samples were made in the laboratory, and the dielectric spectrum of HTV in the range of 0.1 THz to 0.4 THz was extracted by a terahertz time–domain spectrum platform. ATR-FTIR was used to analyze the functional group change trend of HTV during aging, and the three-stage evolution of the dielectric real part (0.16 THz), the dynamics of the carbonyl group, the monotonic rise of the dielectric imaginary part (0.17 THz), and the linear response of silicon-oxygen bond breaking were obtained by combining the double Debye relaxation theory. Finally, three aging stages of HTV were characterized by dielectric loss angle data. The model can warn about the critical point of early oxidation and main chain fracture and identify the risk of insulation failure in advance compared with traditional methods. This study provides a multi-scale physical basis for nondestructive life assessment in a silicon rubber insulator. Full article
Show Figures

Figure 1

20 pages, 3199 KB  
Article
When Robust Isn’t Resilient: Quantifying Budget-Driven Trade-Offs in Connectivity Cascades with Concurrent Self-Healing
by Waseem Al Aqqad
Network 2025, 5(3), 35; https://doi.org/10.3390/network5030035 - 3 Sep 2025
Viewed by 354
Abstract
Cascading link failures continue to imperil power grids, transport networks, and cyber-physical systems, yet the relationship between a network’s robustness at the moment of attack and its subsequent resiliency remains poorly understood. We introduce a dynamic framework in which connectivity-based cascades and distributed [...] Read more.
Cascading link failures continue to imperil power grids, transport networks, and cyber-physical systems, yet the relationship between a network’s robustness at the moment of attack and its subsequent resiliency remains poorly understood. We introduce a dynamic framework in which connectivity-based cascades and distributed self-healing act concurrently within each time-step. Failure is triggered when a node’s active-neighbor ratio falls below a threshold φ; healing activates once the global fraction of inactive nodes exceeds trigger T and is limited by budget B. Two real data sets—a 332-node U.S. airport graph and a 1133-node university e-mail graph—serve as testbeds. For each graph we sweep the parameter quartet (φ,B,T,attackmode) and record (i) immediate robustness R, (ii) 90% recovery time T90, and (iii) cumulative average damage. Results show that targeted hub removal is up to three times more damaging than random failure, but that prompt healing with B0.12 can halve T90. Scatter-plot analysis reveals a non-monotonic correlation: high-R states recover quickly only when B and T are favorable, whereas low-R states can rebound rapidly under ample budgets. A multiplicative fit T90Bβg(T)h(R) (with β1) captures these interactions. The findings demonstrate that structural hardening alone cannot guarantee fast recovery; resource-aware, early-triggered self-healing is the decisive factor. The proposed model and data-driven insights provide a quantitative basis for designing infrastructure that is both robust to failure and resilient in restoration. Full article
Show Figures

Figure 1

23 pages, 3785 KB  
Article
Dual Kriging with a Nonlinear Hybrid Gaussian RBF–Polynomial Trend: The Theory and Application to PM2.5 Estimation in Northern Thailand
by Somlak Utudee, Pharunyou Chanthorn and Sompop Moonchai
Mathematics 2025, 13(17), 2811; https://doi.org/10.3390/math13172811 - 1 Sep 2025
Viewed by 387
Abstract
Accurate spatial interpolation of environmental data requires utilizing flexible models that can capture complex spatial patterns. In this paper, we present two improved dual kriging (DK) models comprising a nonlinear trend function that combines Gaussian radial basis functions with a first-order polynomial. The [...] Read more.
Accurate spatial interpolation of environmental data requires utilizing flexible models that can capture complex spatial patterns. In this paper, we present two improved dual kriging (DK) models comprising a nonlinear trend function that combines Gaussian radial basis functions with a first-order polynomial. The proposed model, DK–RBFP, and its extension, DK–RBFPGA, which includes k-means clustering and a genetic algorithm for parameter optimization, respectively, exhibit enhanced performance in capturing spatial variation. The complete monotonicity of the covariance function and the strict positive definiteness of the coefficient matrix provide theoretical support for the uniqueness of the DK solution. When applied to datasets of PM2.5 concentrations for northern Thailand, both models perform better than the conventional DK model using a second-order polynomial trend (DK–POLY), as evidenced by accuracy metrics including the mean absolute percentage error (MAPE), the mean squared error (MSE), and the root mean square error (RMSE). The outcomes indicate that integrating nonlinear trend components with data-driven optimization significantly enhances accuracy and flexibility in environmental spatial predictions. Full article
Show Figures

Figure 1

37 pages, 11050 KB  
Article
A Dual-Mode Competitive Risk Framework for Electronic Devices Using the Fréchet-Chen Model
by Luis Carlos Méndez-González, Luis Alberto Rodríguez-Picón, Isidro Jesús González-Hernández, Iván Juan Carlos Pérez-Olguín and Abel Eduardo Quezada-Carreón
Electronics 2025, 14(16), 3276; https://doi.org/10.3390/electronics14163276 - 18 Aug 2025
Viewed by 244
Abstract
Electronic devices (EDs) exhibit complex failure patterns throughout their lifetime, with failure modes (FaM) can be monotonic, non-monotonic, or a combination of both. This complexity is increased by using advanced semiconductors and flexible electronics, which introduce variability in degradation mechanisms. Although multiple reliability [...] Read more.
Electronic devices (EDs) exhibit complex failure patterns throughout their lifetime, with failure modes (FaM) can be monotonic, non-monotonic, or a combination of both. This complexity is increased by using advanced semiconductors and flexible electronics, which introduce variability in degradation mechanisms. Although multiple reliability models exist, many lack flexibility or practical applicability in this context. This work proposes a novel competing risk (CR) model that combines the Fréchet and Chen distributions, called Fréchet-Chen Competitive Risk (FCCR). This model allows for modeling the minimum time to failure between two relevant FaMs. Its key mathematical properties and applicability to real-life scenarios are analyzed. Parameter estimation is performed using maximum likelihood (MLE) and Bayesian inference (BEM) using Hamiltonian Monte Carlo (HMC), which provides a robust basis for analysis. Two case studies with real-life ED data validate the model, demonstrating its superior fit and predictive capability compared to classical models. Furthermore, the effect of FCCR parameters on system behavior is explored, highlighting its usefulness in accurately modeling complex failure patterns in EDs. Full article
Show Figures

Figure 1

15 pages, 322 KB  
Article
Characterization of the Best Approximation and Establishment of the Best Proximity Point Theorems in Lorentz Spaces
by Dezhou Kong, Zhihao Xu, Yun Wang and Li Sun
Axioms 2025, 14(8), 600; https://doi.org/10.3390/axioms14080600 - 1 Aug 2025
Viewed by 290
Abstract
Since the monotonicity of the best approximant is crucial to establish partial ordering methods, in this paper, we, respectively, characterize the best approximants in Banach function spaces and Lorentz spaces Γp,w, in which we especially focus on the monotonicity [...] Read more.
Since the monotonicity of the best approximant is crucial to establish partial ordering methods, in this paper, we, respectively, characterize the best approximants in Banach function spaces and Lorentz spaces Γp,w, in which we especially focus on the monotonicity characterizations. We first study monotonicity characterizations of the metric projection operator onto sublattices in general Banach function spaces by the property Hg. The sufficient and necessary conditions for monotonicity of the metric projection onto cones and sublattices are then, respectively, established in Γp,w. The Lorentz spaces Γp,w are also shown to be reflexive under the condition RBp, which is the basis for the existence of the best approximant. As applications, by establishing the partial ordering methods based on the obtained monotonicity characterizations, the solvability and approximation theorems for best proximity points are deduced without imposing any contractive and compact conditions in Γp,w. Our results extend and improve many previous results in the field of the approximation and partial ordering theory. Full article
(This article belongs to the Section Mathematical Analysis)
22 pages, 4555 KB  
Article
Elastic–Plastic Analysis of Asperity Based on Wave Function
by Zijian Xu, Min Zhu, Wenjuan Wang, Ming Guo, Shengao Wang, Xiaohan Lu and Ziwei Li
Materials 2025, 18(15), 3507; https://doi.org/10.3390/ma18153507 - 26 Jul 2025
Viewed by 349
Abstract
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by [...] Read more.
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by the hyperbolic tangent function, and the fully plastic phase was improved by the projected area theory. The model broke through the limitations of the spherical assumption and was able to capture the stress concentration and plastic flow phenomena. The results show that the contact pressure in the elastic phase was 22% higher than that of the spherical shape, the plastic strain in the elastoplastic phase was 52% lower than that of the spherical shape, and the fully plastic phase reduced the contact area error by 20%. The improved hyperbolic tangent function eliminated the unphysical oscillation phenomenon in the elastoplastic phase and ensured the continuity and monotonicity of the contact variables, with an error of <5% from the finite element analysis. Meanwhile, extending the proposed model, we developed a rough surface contact model, and it was verified that the wavy asperity could better match the mechanical properties of the real rough surface and exhibited progressive stiffness reduction during the plastic flow process. The model in this paper can provide a theoretical basis for predicting stress distribution, plastic evolution, and multi-scale mechanical behavior in the connection interface. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 1542 KB  
Article
The Research on Multi-Objective Maintenance Optimization Strategy Based on Stochastic Modeling
by Guixu Xu, Pengwei Jiang, Weibo Ren, Yanfeng Li and Zhongxin Chen
Machines 2025, 13(8), 633; https://doi.org/10.3390/machines13080633 - 22 Jul 2025
Viewed by 435
Abstract
The traditional approach that separates remaining useful life prediction from maintenance strategy design often fails to support efficient decision-making. Effective maintenance requires a comprehensive consideration of prediction accuracy, cost control, and equipment safety. To address this issue, this paper proposes a multi-objective maintenance [...] Read more.
The traditional approach that separates remaining useful life prediction from maintenance strategy design often fails to support efficient decision-making. Effective maintenance requires a comprehensive consideration of prediction accuracy, cost control, and equipment safety. To address this issue, this paper proposes a multi-objective maintenance optimization method based on stochastic modeling. First, a multi-sensor data fusion technique is developed, which maps multidimensional degradation signals into a composite degradation state indicator using evaluation metrics such as monotonicity, tendency, and robustness. Then, a linear Wiener process model is established to characterize the degradation trajectory of equipment, and a closed-form analytical solution of its reliability function is derived. On this basis, a multi-objective optimization model is constructed, aiming to maximize equipment safety and minimize maintenance cost. The proposed method is validated using the NASA aircraft engine degradation dataset. The experimental results demonstrate that, while ensuring system reliability, the proposed approach significantly reduces maintenance costs compared to traditional periodic maintenance strategies, confirming its effectiveness and practical value. Full article
Show Figures

Figure 1

17 pages, 7633 KB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 330
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

22 pages, 323 KB  
Article
A System of Parabolic Laplacian Equations That Are Interrelated and Radial Symmetry of Solutions
by Xingyu Liu
Symmetry 2025, 17(7), 1112; https://doi.org/10.3390/sym17071112 - 10 Jul 2025
Viewed by 277
Abstract
We utilize the moving planes technique to prove the radial symmetry along with the monotonic characteristics of solutions for a system of parabolic Laplacian equations. In this system, the solutions of the two equations are interdependent, with the solution of one equation depending [...] Read more.
We utilize the moving planes technique to prove the radial symmetry along with the monotonic characteristics of solutions for a system of parabolic Laplacian equations. In this system, the solutions of the two equations are interdependent, with the solution of one equation depending on the function of the other. By use of the maximal regularity theory that has been established for fractional parabolic equations, we ensure the solvability of these systems. Our initial step is to formulate a narrow region principle within a parabolic cylinder. This principle serves as a theoretical basis for implementing the moving planes method. Following this, we focus our attention on parabolic systems with fractional Laplacian equations and deduce that the solutions are radial symmetric and monotonic when restricted to the unit ball. Full article
(This article belongs to the Special Issue Advance in Functional Equations, Second Edition)
Show Figures

Figure 1

18 pages, 8183 KB  
Article
Experimental Study on Rheological Behavior of Firefighting Foams
by Youquan Bao, Huiqiang Zhi, Lu Wang, Yakun Fan and Junqi Wang
Materials 2025, 18(14), 3236; https://doi.org/10.3390/ma18143236 - 9 Jul 2025
Viewed by 382
Abstract
The rheological behavior of firefighting foam is the basis for analyzing foam flow and foam spreading. This experimental study investigates the complex rheological behavior of rapidly aging firefighting foams, specifically focusing on alcohol-resistant aqueous film-forming foam. The primary objective is to characterize the [...] Read more.
The rheological behavior of firefighting foam is the basis for analyzing foam flow and foam spreading. This experimental study investigates the complex rheological behavior of rapidly aging firefighting foams, specifically focusing on alcohol-resistant aqueous film-forming foam. The primary objective is to characterize the time-dependent viscoelasticity, yielding, and viscous flow of firefighting foam under controlled shear conditions, addressing the significant challenge posed by its rapid structural evolution (drainage and coarsening) during measurement. Using a cylindrical Couette rheometer, conductivity measurements for the liquid fraction, and microscopy for the bubble size analysis, the study quantifies how foam aging impacts key rheological parameters. The results show that the creep and relaxation response of the firefighting foam in the linear viscoelastic region conforms to the Burgers model. The firefighting foam shows ductile yielding and significant shear thinning, and its flow curve under slow shear can be well represented by the Herschel–Bulkley model. Foam drainage and coarsening have competitive effects on the rheology of the firefighting foam, which results in monotonic and nonmonotonic variations in the rheological response in the linear and nonlinear viscoelastic regions, respectively. The work reveals that established empirical relationships between rheology, liquid fraction, and bubble size for general aqueous foams are inadequate for firefighting foams, highlighting the need for foam-specific constitutive models. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Figure 1

34 pages, 1302 KB  
Article
Integrated Information in Relational Quantum Dynamics (RQD)
by Arash Zaghi
Appl. Sci. 2025, 15(13), 7521; https://doi.org/10.3390/app15137521 - 4 Jul 2025
Viewed by 522
Abstract
We introduce a quantum integrated-information measure Φ for multipartite states within the Relational Quantum Dynamics (RQD) framework. Φ(ρ) is defined as the minimum quantum Jensen–Shannon distance between an n-partite density operator ρ and any product state over a bipartition of [...] Read more.
We introduce a quantum integrated-information measure Φ for multipartite states within the Relational Quantum Dynamics (RQD) framework. Φ(ρ) is defined as the minimum quantum Jensen–Shannon distance between an n-partite density operator ρ and any product state over a bipartition of its subsystems. We prove that its square root induces a genuine metric on state space and that Φ is monotonic under all completely positive trace-preserving maps. Restricting the search to bipartitions yields a unique optimal split and a unique closest product state. From this geometric picture, we derive a canonical entanglement witness directly tied to Φ and construct an integration dendrogram that reveals the full hierarchical correlation structure of ρ. We further show that there always exists an “optimal observer”—a channel or basis—that preserves Φ better than any alternative. Finally, we propose a quantum Markov blanket theorem: the boundary of the optimal bipartition isolates subsystems most effectively. Our framework unites categorical enrichment, convex-geometric methods, and operational tools, forging a concrete bridge between integrated information theory and quantum information science. Full article
(This article belongs to the Special Issue Quantum Communication and Quantum Information)
Show Figures

Figure A1

16 pages, 9182 KB  
Article
Analysis of the Energy Loss Characteristics of a Francis Turbine Under Off-Design Conditions with Sand-Laden Flow Based on Entropy Generation Theory
by Xudong Lu, Kang Xu, Zhongquan Wang, Yu Xiao, Yaogang Xu, Changjiu Huang, Jiayang Pang and Xiaobing Liu
Water 2025, 17(13), 2002; https://doi.org/10.3390/w17132002 - 3 Jul 2025
Viewed by 418
Abstract
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid [...] Read more.
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid two-phase flow throughout the entire flow passage of the turbine at the Gengda Hydropower Station (Minjiang River Basin section, 103°17′ E and 31°06′ N). The energy loss characteristics under different off-design conditions are analyzed on the basis of the average sediment concentration during the flood season (2.9 kg/m3) and a median particle diameter of 0.058 mm. The results indicate that indirect entropy generation and wall entropy generation are the primary contributors to total energy loss, while direct entropy generation accounts for less than 1%. As the guide vane opening increases, the proportion of wall entropy generation initially rises and then decreases, while the total indirect entropy generation exhibits a non-monotonic trend dominated by the flow pattern in the draft tube. Entropy generation on the runner walls increases steadily with larger openings, whereas entropy generation on the draft tube walls first decreases and then increases. The variation in entropy generation on the guide vanes remains relatively small. These findings provide technical support for the optimal design and operation of turbines in sediment-rich rivers. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop