Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = moving toes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6303 KB  
Article
Analysis of the Upper Limit of the Stability of High and Steep Slopes Supported by a Combination of Anti-Slip Piles and Reinforced Soil Under the Seismic Effect
by Wei Luo, Gequan Xiao, Zhi Tao, Jingyu Chen, Zhulong Gong and Haifeng Wang
Buildings 2025, 15(15), 2806; https://doi.org/10.3390/buildings15152806 - 7 Aug 2025
Viewed by 341
Abstract
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading [...] Read more.
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading effect needs an in-depth study. Based on the upper-bound theorem of limit analysis and the strength-reduction technique, this study establishes an upper-bound stability model for high–steep slopes that simultaneously considers seismic action and the combined reinforcement of anti-slide piles and reinforced soil. A closed-form safety factor is derived. The theoretical results are validated against published data, demonstrating satisfactory agreement. Finally, the MATLAB R2022a sequential quadratic programming method is used to optimize the objective function, and the Optum G2 2023 software is employed to analyze the factors influencing slope stability due to the interaction between anti-slide piles and geogrids. The research indicates that the horizontal seismic acceleration coefficient kh exhibits a significant negative correlation with the safety factor Fs. Increases in the tensile strength T of the reinforcing materials, the number of layers n, and the length l all significantly improve the safety factor Fs of the reinforced-soil slope. Additionally, as l increases, the potential slip plane of the slope shifts backward. For slope support systems combining anti-slide piles and reinforced soil, when the length of the geogrid is the same, adding anti-slide piles can significantly improve the slope’s safety factor. As anti-slide piles move from the toe to the crest of the slope, the safety factor first decreases and then increases, indicating that the optimal reinforcement position for anti-slide piles should be in the middle to lower part of the slope body. The length of the anti-slip piles should exceed the lowest layer of the geogrid to more effectively utilize the blocking effect of the pile ends on the slip surface. The research findings can provide a theoretical basis and practical guidance for parameter optimization in high–steep slope support engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 7363 KB  
Article
Numerical Simulation Study of Rainfall-Induced Saturated–Unsaturated Landslide Instability and Failure
by Zhuolin Wu, Gang Yang, Wen Li, Xiangling Chen, Fei Liu and Yong Zheng
Water 2025, 17(15), 2229; https://doi.org/10.3390/w17152229 - 26 Jul 2025
Viewed by 623
Abstract
Rainfall infiltration is a key factor affecting the stability of the slope. To study the impact of rainfall on the instability mechanism and stability of slopes, this paper employs numerical simulation to establish a rainfall infiltration slope model and conducts a saturated–unsaturated slope [...] Read more.
Rainfall infiltration is a key factor affecting the stability of the slope. To study the impact of rainfall on the instability mechanism and stability of slopes, this paper employs numerical simulation to establish a rainfall infiltration slope model and conducts a saturated–unsaturated slope flow and solid coupling numerical analysis. By combining the strength reduction method with the calculation of slope stability under rainfall infiltration, the safety factor of the slope is obtained. A comprehensive analysis is conducted from the perspectives of the seepage field, displacement field and other factors to examine the impact of heavy rainfall patterns and rainfall intensities on the instability mechanism and stability of the slope. The results indicate that heavy rainfall causes the transient saturation zone within the landslide body to continuously move upward, forming a continuous sliding surface inside the slope, which may lead to instability and sliding of the soil in the upper part of the slope toe. The heavy rainfall patterns significantly affect the temporal and spatial evolution of pore water pressure, displacement and safety factors of the slope. Pore water pressure and displacement show a positive correlation with the rainfall intensity at various times during heavy rainfall events. The pre-peak rainfall pattern causes the largest decrease in the safety factor of the slope, and the slope failure occurs earlier, which is the most detrimental to the stability of the slope. The rainfall intensity is inversely proportional to the safety factor. As the rainfall intensity increases, the decrease in the slope’s safety factor becomes more significant, and the time required for slope instability is also shortened. The results of this study provide a scientific basis for analyzing rainfall-induced slope instability and failure. Full article
Show Figures

Figure 1

13 pages, 3270 KB  
Article
Study on Lateral Water Migration Trend in Compacted Loess Subgrade Due to Extreme Rainfall Condition: Experiments and Theoretical Model
by Xueqing Hua, Yu Xi, Gang Li and Honggang Kou
Sustainability 2025, 17(15), 6761; https://doi.org/10.3390/su17156761 - 24 Jul 2025
Viewed by 385
Abstract
Water migration occurs in unsaturated loess subgrade due to extreme rainfall, making it prone to subgrade subsidence and other water damage disasters, which seriously impact road safety and sustainable development of the Loess Plateau. The study performed a rainfall test using a compacted [...] Read more.
Water migration occurs in unsaturated loess subgrade due to extreme rainfall, making it prone to subgrade subsidence and other water damage disasters, which seriously impact road safety and sustainable development of the Loess Plateau. The study performed a rainfall test using a compacted loess subgrade model based on a self-developed water migration test device. The effects of extreme rainfall on the water distribution, wetting front, and infiltration rate in the subgrade were systematically explored by setting three rainfall intensities (4.6478 mm/h, 9.2951 mm/h, and 13.9427 mm/h, namely J1 stage, J2stage, and J3 stage), and a lateral water migration model was proposed. The results indicated that the range of water content change areas constantly expands as rainfall intensity and time increase. The soil infiltration rate gradually decreased, and the ratio of surface runoff to infiltration rainfall increased. The hysteresis of lateral water migration refers to the physical phenomenon in which the internal water response of the subgrade is delayed in time and space compared to changes in boundary conditions. The sensor closest to the side of the slope changed first, with the most significant fluctuations. The farther away from the slope, the slower the response and the smaller the fluctuation. The bigger the rainfall intensity, the faster the wetting front moved horizontally. The migration rate at the slope toe is the highest. The migration rate of sensor W3 increased by 66.47% and 333.70%, respectively, in the J3 stage compared to the J2 and J1 stages. The results of the model and the measured data were in good agreement, with the R2 exceeding 0.90, which verifies the reliability of the model. The study findings are important for guiding the prevention and control of disasters caused by water damage to roadbeds in loess areas. Full article
Show Figures

Figure 1

15 pages, 3484 KB  
Article
Construction of a Mathematical Model of the Irregular Plantar and Complex Morphology of Mallard Foot and the Bionic Design of a High-Traction Wheel Grouser
by Jinrui Hu, Dianlei Han, Changwei Li, Hairui Liu, Lizhi Ren and Hao Pang
Biomimetics 2025, 10(6), 390; https://doi.org/10.3390/biomimetics10060390 - 11 Jun 2025
Viewed by 523
Abstract
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes [...] Read more.
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes and webbing on the anti-subsidence function during its locomotion on wet and soft substrates and to apply this to the bionic design of high-traction wheel grousers. A handheld three-dimensional laser scanner was used to scan the main locomotion postures of a mallard foot during ground contact, and the Geomagic Studio software was utilized to repair the scanned model. As a result, the main three-dimensional geometric models of a mallard foot during the process of touching the ground were obtained. The plantar morphology of a mallard foot was divided into three typical parts: the plantar irregular edge curve, the lateral webbing surface, and the medial webbing surface. The main morphological feature curves/surfaces were extracted through computer-aided design software for the fitting and construction of a mathematical model to obtain the fitting equations of the three typical parts, and the mathematical model construction of the plantar irregular morphology of the mallard foot was completed. In order to verify the sand-fixing and flow-limiting characteristics of this morphological feature, based on the discrete element method (DEM), the numerical simulation of the interaction between the plantar surface of the mallard foot and sand particles was carried out. The simulation results show that during the process of the mallard foot penetration into the loose medium, the lateral and medial webbing surfaces cause the particles under the foot to mainly move downward, effectively preventing the particles from spreading around and significantly enhancing the solidification effect of the particles under the sole. Based on the principle and technology of engineering bionics, the plantar morphology and movement attitude characteristics of the mallard were extracted, and the characteristics of concave middle and edge bulge were applied to the wheel grouser design of paddy field wheels. Two types of bionic wheel grousers with different curved surfaces were designed and compared with the traditional wheel grousers of the paddy field wheel. Through pressure-bearing simulation and experiments, the resistance of different wheel grousers during the process of penetrating into sand particles was compared, and the macro–micro behaviors of particle disturbance during the pressure-bearing process were analyzed. The results show that a bionic wheel grouser with unique curved surfaces can well encapsulate sand particles at the bottom of the wheel grouser, and it also has a greater penetration resistance, which plays a crucial role in improving the traction performance of the paddy field wheel and reducing the disturbance to the surrounding sand particles. This paper realizes the transformation from the biological model to the mathematical model of the plantar morphology of the mallard foot and applies it to the bionic design of the wheel grousers of the paddy field wheels, providing a new solution for improving the traction performance of mobile mechanisms on soft ground. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

16 pages, 4366 KB  
Article
Effects of Cyclical Climate Change on Water Temperature Characteristics of Permafrost Slopes
by Feike Duan, Lei Quan, Haowu Wang and Bo Tian
Appl. Sci. 2025, 15(6), 3403; https://doi.org/10.3390/app15063403 - 20 Mar 2025
Viewed by 499
Abstract
Under the action of freeze–thaw cycles, the internal temperature and water distribution of slope soils in cold regions change significantly, which directly affects the stability of slopes. In order to study the differences in hydrothermal reactions at different depths and their impacts on [...] Read more.
Under the action of freeze–thaw cycles, the internal temperature and water distribution of slope soils in cold regions change significantly, which directly affects the stability of slopes. In order to study the differences in hydrothermal reactions at different depths and their impacts on the stability of slopes. This study establishes both a freeze–thaw model and a hydrothermal coupling model, combining field measurements with numerical simulations to examine the dynamic changes in hydrothermal characteristics within the slope. The results indicate that the variation in slope temperature with depth can be divided into three stages: initial freezing, stable freezing, and thawing. In the freezing stage, the negative temperature gradient drives water to migrate towards the freezing front, forming segregated ice and inducing frost heave. In the thawing stage, the latent heat released by the phase change in segregated ice promotes water to move towards the slope toe, increasing the water content there and indirectly exacerbating the risk of slope instability. The heat and moisture transfer in frozen soil slopes shows non-linear and dynamic characteristics. The unique process of one-way freezing and two-way thawing makes the thawing rate 1.35 times that of the freezing rate, and this asymmetric characteristic is the key to understanding the mechanism of slope instability. Full article
Show Figures

Figure 1

15 pages, 8785 KB  
Article
A Comparative Study on the End-Bearing Capacity of Toe-Wing & Spiral Screw Piles in Cohesionless Soil
by Ahmad Waheed Sahil, Taro Uchimura, Adnan Anwar Malik and Md Raihanul Kabir
Buildings 2025, 15(4), 525; https://doi.org/10.3390/buildings15040525 - 8 Feb 2025
Viewed by 1607
Abstract
The use of screw piles has grown rapidly, yet their varied configurations and behavior in different soils remain key research areas. This study examines the performance of Toe-wing (Tsubasa) and Spiral screw piles with similar tip areas under similar ground conditions, focusing on [...] Read more.
The use of screw piles has grown rapidly, yet their varied configurations and behavior in different soils remain key research areas. This study examines the performance of Toe-wing (Tsubasa) and Spiral screw piles with similar tip areas under similar ground conditions, focusing on how the helix position (Wp) and tip embedment depth (Ed) affect the ultimate pile capacity. In the case of a fixed helix/toe-wing position with increasing pile tip depth, Spiral screw piles exhibited higher load-carrying resistance than toe-wing piles at relative densities of 55%, 80%, and 90% fine sand. Moreover, load-carrying resistance increased as the position of the helix/toe-wing increased (Wp > 0). For a fixed pile tip depth (Ed) and varying helix/toe-wing positions, spiral screw piles showed higher resistance than toe-wing piles when Wp < 90 mm. Moreover, the resistance decreased as the helix moved away (Wp/Dh > 0), and the pile tip acted independently when Wp/Dh > 1.38. Whereas, for toe-wing piles, ultimate pile capacity increased as the toe-wing moved away from the tip up to Wp/Dh = 2.15, then decreased to reflect the independent behavior of the toe-wing and pile tip. Empirical equations are presented to convert installation effort and ultimate capacity from one type to another. Full article
Show Figures

Figure 1

12 pages, 4114 KB  
Review
Painful Legs and Moving Toes Syndrome: Case Report and Review
by Mihael Tsalta-Mladenov, Vladina Dimitrova and Silva Andonova
Neurol. Int. 2024, 16(6), 1343-1354; https://doi.org/10.3390/neurolint16060102 - 4 Nov 2024
Viewed by 3050
Abstract
Introduction: Painful legs and moving toes (PLMT) syndrome is a rare movement disorder characterized by defuse lower limb neuropathic pain and spontaneous abnormal, involuntary toe movements. Objective: The objective was to present a rare case of PLMT syndrome with a triggering area in [...] Read more.
Introduction: Painful legs and moving toes (PLMT) syndrome is a rare movement disorder characterized by defuse lower limb neuropathic pain and spontaneous abnormal, involuntary toe movements. Objective: The objective was to present a rare case of PLMT syndrome with a triggering area in an adult patient due to multilevel discogenic pathology, to make a thorough review of this disorder and to provide a practical approach to its management. Case presentation: A 59-years-old male was admitted to the neurology ward with symptoms of defuse pain in the lower-back and the right leg accompanied by involuntary movements for the right toes intensified by tactile stimulation in the right upper thigh. Magnetic resonance imaging (MRI) revealed a multilevel discogenic pathology of the lumbar and cervical spine, with myelopathy at C5-C7 level. A medication with Pregabalin 300 mg/daily significantly improved both the abnormal toe movements and the leg pain. The clinical effect was constant during the 90-day follow-up without any adverse effects. Conclusion: Painful legs and moving toes (PLMT) is a condition that greatly affects the quality of life of patients, but which still remains less known by clinicians. Spontaneous resolution is rare, and oral medications are the first-line treatment. Pregabalin is a safe and effective treatment option for PLMT that should be considered early for the management of this condition. Other medication interventions, such as botulinum toxin injections, spinal blockade, or non-pharmacological treatment options like spinal cord stimulation, and surgical decompressions, are also recommended when the conservative treatment is ineffective in well-selected patients. Full article
(This article belongs to the Special Issue New Insights into Movement Disorders)
Show Figures

Figure 1

22 pages, 3038 KB  
Article
Benchmarking Large Language Model (LLM) Performance for Game Playing via Tic-Tac-Toe
by Oguzhan Topsakal and Jackson B. Harper
Electronics 2024, 13(8), 1532; https://doi.org/10.3390/electronics13081532 - 17 Apr 2024
Cited by 3 | Viewed by 6116
Abstract
This study investigates the strategic decision-making abilities of large language models (LLMs) via the game of Tic-Tac-Toe, renowned for its straightforward rules and definitive outcomes. We developed a mobile application coupled with web services, facilitating gameplay among leading LLMs, including Jurassic-2 Ultra by [...] Read more.
This study investigates the strategic decision-making abilities of large language models (LLMs) via the game of Tic-Tac-Toe, renowned for its straightforward rules and definitive outcomes. We developed a mobile application coupled with web services, facilitating gameplay among leading LLMs, including Jurassic-2 Ultra by AI21, Claude 2.1 by Anthropic, Gemini-Pro by Google, GPT-3.5-Turbo and GPT-4 by OpenAI, Llama2-70B by Meta, and Mistral Large by Mistral, to assess their rule comprehension and strategic thinking. Using a consistent prompt structure in 10 sessions for each LLM pair, we systematically collected data on wins, draws, and invalid moves across 980 games, employing two distinct prompt types to vary the presentation of the game’s status. Our findings reveal significant performance variations among the LLMs. Notably, GPT-4, GPT-3.5-Turbo, and Llama2 secured the most wins with the list prompt, while GPT-4, Gemini-Pro, and Mistral Large excelled using the illustration prompt. GPT-4 emerged as the top performer, achieving victory with the minimum number of moves and the fewest errors for both prompt types. This research introduces a novel methodology for assessing LLM capabilities using a game that can illuminate their strategic thinking abilities. Beyond enhancing our comprehension of LLM performance, this study lays the groundwork for future exploration into their utility in complex decision-making scenarios, offering directions for further inquiry and the exploration of LLM limits within game-based frameworks. Full article
Show Figures

Figure 1

19 pages, 11291 KB  
Article
A Bionic Walking Wheel for Enhanced Trafficability in Paddy Fields with Muddy Soil
by Duo Chen, Yan Xu, Yuqiu Song, Mingjin Xin, Liyan Wu, Aiju Kong, Huan Wang, Pengchao Dai and Hongpeng Yu
Biomimetics 2024, 9(2), 68; https://doi.org/10.3390/biomimetics9020068 - 24 Jan 2024
Cited by 7 | Viewed by 2146
Abstract
To improve wheel trafficability in soft and muddy soils such as paddy fields, a bionic walking wheel is designed based on the structural morphology and movement mode of the feet of waders living in marshes and mudflats, similar to the muddy soil of [...] Read more.
To improve wheel trafficability in soft and muddy soils such as paddy fields, a bionic walking wheel is designed based on the structural morphology and movement mode of the feet of waders living in marshes and mudflats, similar to the muddy soil of paddy fields. The bionic walking wheel adopts the arrangement of double-row wheel legs and staggered arrays to imitate the walking posture of waders. The two legs move alternately, cooperate with each other, and improve the smoothness of movement. The cam inside the bionic walking wheel is used to control the movement mode of the feet. The flippers open before touching the ground to increase the contact area and reduce sinking, and the toes bend and grip the ground while touching the ground to increase traction. Multi-rigid-body dynamics software (Adams View 2020) is used to simulate the movement of the wheel during the wading process, and the movement coordination and interference between the wheel legs are analyzed. The simulation results show that there is no interference between the parts and that the movement smoothness is good. The interaction between the bionic walking wheel and muddy soil was analyzed via coupled EDEM–ADAMS simulation, and the simulation analysis and experiments were conducted and compared with those for a common paddy wheel. The results showed that the bionic walking wheel designed in this paper improved the drawbar pull by 113.56% compared with that of a common paddy wheel and had better anti-sinking performance. By analyzing the effect of toe grip on traction, it was found that the soil under the feet can be disturbed to provide greater traction when the toe is bent downward. This study provides a reference for improving the trafficability of walking mechanisms in soft and muddy soils, such as paddy fields. Full article
Show Figures

Figure 1

18 pages, 3295 KB  
Article
Kinematic Analysis of Human Gait in Healthy Young Adults Using IMU Sensors: Exploring Relevant Machine Learning Features for Clinical Applications
by Xavier Marimon, Itziar Mengual, Carlos López-de-Celis, Alejandro Portela, Jacobo Rodríguez-Sanz, Iria Andrea Herráez and Albert Pérez-Bellmunt
Bioengineering 2024, 11(2), 105; https://doi.org/10.3390/bioengineering11020105 - 23 Jan 2024
Cited by 10 | Viewed by 5988
Abstract
Background: Gait is the manner or style of walking, involving motor control and coordination to adapt to the surrounding environment. Knowing the kinesthetic markers of normal gait is essential for the diagnosis of certain pathologies or the generation of intelligent ortho-prostheses for the [...] Read more.
Background: Gait is the manner or style of walking, involving motor control and coordination to adapt to the surrounding environment. Knowing the kinesthetic markers of normal gait is essential for the diagnosis of certain pathologies or the generation of intelligent ortho-prostheses for the treatment or prevention of gait disorders. The aim of the present study was to identify the key features of normal human gait using inertial unit (IMU) recordings in a walking test. Methods: Gait analysis was conducted on 32 healthy participants (age range 19–29 years) at speeds of 2 km/h and 4 km/h using a treadmill. Dynamic data were obtained using a microcontroller (Arduino Nano 33 BLE Sense Rev2) with IMU sensors (BMI270). The collected data were processed and analyzed using a custom script (MATLAB 2022b), including the labeling of the four relevant gait phases and events (Stance, Toe-Off, Swing, and Heel Strike), computation of statistical features (64 features), and application of machine learning techniques for classification (8 classifiers). Results: Spider plot analysis revealed significant differences in the four events created by the most relevant statistical features. Among the different classifiers tested, the Support Vector Machine (SVM) model using a Cubic kernel achieved an accuracy rate of 92.4% when differentiating between gait events using the computed statistical features. Conclusions: This study identifies the optimal features of acceleration and gyroscope data during normal gait. The findings suggest potential applications for injury prevention and performance optimization in individuals engaged in activities involving normal gait. The creation of spider plots is proposed to obtain a personalised fingerprint of each patient’s gait fingerprint that could be used as a diagnostic tool. A deviation from a normal gait pattern can be used to identify human gait disorders. Moving forward, this information has potential for use in clinical applications in the diagnosis of gait-related disorders and developing novel orthoses and prosthetics to prevent falls and ankle sprains. Full article
(This article belongs to the Special Issue Biomechanics of Human Movement and Its Clinical Applications)
Show Figures

Figure 1

22 pages, 14629 KB  
Article
Characterization of the Migration of Soil Particles in Lateritic Soils under the Effect of Rainfall
by Dezhi Cao, Fayou A, Yong Li, Taiqiang Yang and Qingsong Liao
Appl. Sci. 2023, 13(22), 12292; https://doi.org/10.3390/app132212292 - 14 Nov 2023
Viewed by 1673
Abstract
Rainfall is the main cause of erosion damage in loose slope deposits. During rainfall infiltration, fine particles in the soil mass will move with water infiltration, thus changing the localized particle distribution of the soil mass, which, in turn, causes changes in the [...] Read more.
Rainfall is the main cause of erosion damage in loose slope deposits. During rainfall infiltration, fine particles in the soil mass will move with water infiltration, thus changing the localized particle distribution of the soil mass, which, in turn, causes changes in the pore water pressure and volumetric water content within the slope and ultimately affects slope stability. In order to develop advanced soil and water conservation programs to prevent slope damage, it is crucial to understand and accurately reproduce the particle migration and aggregation characteristics of soils under different rainfall conditions. Therefore, this paper systematically investigates the soil particle migration characteristics of the soil body under rainfall conditions by simulating the internal erosion of the lateritic soil slope body under rainfall conditions via slope internal erosion simulation experiments and experimentally analyzing the migration and aggregation of fine particles in the slope body, as well as the changed rules regarding pore water pressure and volumetric water content at different locations of the slope body with rainfall. The results of this study show that (1) with the infiltration of rainfall, the fine particles in the slope body mainly infiltrate in the vertical direction in an early stage of rainfall; in a later stage, there is vertical downward and down-slope seepage. Therefore, fine particles always gather at the toe of the slope, which leads to relatively high water content and pore water pressure at the toe of the slope, and thus, the slope is always damaged from the toe of the slope. (2) Inside the slope, the fine particles always gather at the smallest pore diameter. With the enhancement of hydrodynamic force, they will be lost again, which leads to a sudden decrease in the local volumetric water content of the slope, and the pore space increases. Then, it is filled with seepage water, which makes the pore water pressure fluctuate or increase. (3) Based on the particle distribution parameter, the present study produced a distribution map of the fine particle content of the slope body under different rainfall intensities and established a model of the dynamic change of fine particles, which improves the understanding of the effect of the change in the fine particle composition of the slope body on the water content and the pore water pressure and may be helpful for the assessment of the initiation of the mudslides. Full article
Show Figures

Figure 1

12 pages, 3684 KB  
Review
Patient Position in Operative Endoscopy
by Lino Polese, Emilia Giugliano and Michele Valmasoni
J. Clin. Med. 2023, 12(21), 6822; https://doi.org/10.3390/jcm12216822 - 28 Oct 2023
Cited by 2 | Viewed by 5357
Abstract
It is well known by surgeons that patient positioning is fundamental to exposing the organs when performing an operation via laparoscopy, as gravity can help move the organs and facilitate the exposure of the surgical site. But is it also important for endoscopic [...] Read more.
It is well known by surgeons that patient positioning is fundamental to exposing the organs when performing an operation via laparoscopy, as gravity can help move the organs and facilitate the exposure of the surgical site. But is it also important for endoscopic procedures? This paper examines various types of endoscopic operations and addresses the issue of the patient’s position. The patient’s position can be changed not only by rotating the patient along the head–toe axis but also by tilting the surgical bed, as is undertaken during laparoscopic surgical procedures. In particular, it is useful to take into account the effect of gravity on lesion exposure, tumour traction during dissection, crushing by body weight, risk of sample drop, risk of damage to adjacent organs, and anatomical exposure for procedures with radiological support. The endoscopist should always keep in mind the patient’s anatomy and the position of the endoscope during operative procedures, not limited to considering only intraluminal vision. Full article
(This article belongs to the Special Issue Updates on Gastrointestinal Endoscopy Technology)
Show Figures

Figure 1

12 pages, 1669 KB  
Article
Effect of Laterally Moving Tactile Stimuli to Sole on Anticipatory Postural Adjustment of Gait Initiation in Healthy Males
by Hiroshi Kunimura, Hitoshi Oda, Taku Kawasaki, Ryo Tsujinaka, Naoki Hamada, Shiho Fukuda, Masakazu Matsuoka and Koichi Hiraoka
Brain Sci. 2023, 13(10), 1411; https://doi.org/10.3390/brainsci13101411 - 4 Oct 2023
Viewed by 1365
Abstract
This present study examined the effect of the laterally moving tactile stimuli (LMTS) to the sole on the anticipatory postural adjustment (APA) of the gait initiation. Thirteen healthy males participated in this study. A sound cue was provided at the beginning of each [...] Read more.
This present study examined the effect of the laterally moving tactile stimuli (LMTS) to the sole on the anticipatory postural adjustment (APA) of the gait initiation. Thirteen healthy males participated in this study. A sound cue was provided at the beginning of each trial. The participants took three steps forward from a quiet stance at their preferred time after the start cue. The LMTS were delivered to the sole after the start cue. The loci of the tactile stimuli moved from the left- to the right-most side of the sole and then moved from the right- to the left-most side of that in a stimuli cycle. The duration of one stimuli cycle was 960 ms, and this cycle was repeated 16 times in a trial. The APA did not onset at the specific direction or phase of the LMTS, indicating that they did not use any specific phase of the stimuli as a trigger for initiating the gait. The LMTS decreased the amplitude and increased the duration of the APA. Simultaneously, the LMTS increased the time between the APA onset and toe-off of the initial support leg, indicating that they moved slowly when initiating gait during the LMTS. Those findings are explained by the view that the suppression of the APA induced via the LMTS to the sole is caused by the slowing down of the gait initiation due to masking the tactile sensation of the sole. Full article
(This article belongs to the Special Issue Advances in the Study of Anticipatory Postural Adjustments)
Show Figures

Figure 1

14 pages, 18635 KB  
Article
Development of a Lizard-Inspired Robot for Mars Surface Exploration
by Guangming Chen, Long Qiao, Zhenwen Zhou, Lutz Richter and Aihong Ji
Biomimetics 2023, 8(1), 44; https://doi.org/10.3390/biomimetics8010044 - 18 Jan 2023
Cited by 13 | Viewed by 7204
Abstract
Exploring Mars is beneficial to increasing our knowledge, understanding the possibility of ancient microbial life there, and discovering new resources beyond the Earth to prepare for future human missions to Mars. To assist ambitious uncrewed missions to Mars, specific types of planetary rovers [...] Read more.
Exploring Mars is beneficial to increasing our knowledge, understanding the possibility of ancient microbial life there, and discovering new resources beyond the Earth to prepare for future human missions to Mars. To assist ambitious uncrewed missions to Mars, specific types of planetary rovers have been developed for performing tasks on Mars’ surface. Due to the fact that the surface is composed of granular soils and rocks of various sizes, contemporary rovers can have difficulties in moving on soft soils and climbing over rocks. To overcome such difficulties, this research develops a quadruped creeping robot inspired by the locomotion characteristics of the desert lizard. This biomimetic robot features a flexible spine, which allows swinging movements during locomotion. The leg structure utilizes a four-linkage mechanism, which ensures a steady lifting motion. The foot consists of an active ankle and a round pad with four flexible toes that are effective in grasping soils and rocks. To determine robot motions, kinematic models relating to foot, leg, and spine are established. Moreover, the coordinated motions between the trunk spine and leg are numerically verified. In addition, the mobility on granular soils and rocky surface are experimentally demonstrated, which can imply that this biomimetic robot is suitable for Mars surface terrains. Full article
(This article belongs to the Special Issue Biologically Inspired Robotics)
Show Figures

Figure 1

27 pages, 12499 KB  
Article
Radio-Frequency-Identification-Based 3D Human Pose Estimation Using Knowledge-Level Technique
by Saud Altaf, Muhammad Haroon, Shafiq Ahmad, Emad Abouel Nasr, Mazen Zaindin, Shamsul Huda and Zia ur Rehman
Electronics 2023, 12(2), 374; https://doi.org/10.3390/electronics12020374 - 11 Jan 2023
Cited by 6 | Viewed by 4118
Abstract
Human pose recognition is a new field of study that promises to have widespread practical applications. While there have been efforts to improve human position estimation with radio frequency identification (RFID), no major research has addressed the problem of predicting full-body poses. Therefore, [...] Read more.
Human pose recognition is a new field of study that promises to have widespread practical applications. While there have been efforts to improve human position estimation with radio frequency identification (RFID), no major research has addressed the problem of predicting full-body poses. Therefore, a system that can determine the human pose by analyzing the entire human body, from the head to the toes, is required. This paper presents a 3D human pose recognition framework based on ANN for learning error estimation. A workable laboratory-based multisensory testbed has been developed to verify the concept and validation of results. A case study was discussed to determine the conditions under which an acceptable estimation rate can be achieved in pose analysis. Using the Butterworth filtering technique, environmental factors are de-noised to reduce the system’s computational cost. The acquired signal is then segmented using an adaptive moving average technique to determine the beginning and ending points of an activity, and significant features are extracted to estimate the activity of each human pose. Experiments demonstrate that RFID transceiver-based solutions can be used effectively to estimate a person’s pose in real time using the proposed method. Full article
(This article belongs to the Special Issue Advances and Applications of Networking and Multimedia Technologies)
Show Figures

Figure 1

Back to TopTop