Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = mucosal and systemic ETEC immunity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1186 KB  
Article
Potential for a Combined Oral Inactivated Whole-Cell Vaccine Against ETEC and Shigella: Preclinical Studies Supporting Feasibility
by Manuela Terrinoni, Jan Holmgren, Kevin Ross Turbyfill, Lillian Van De Verg, Nicole Maier and Richard Walker
Vaccines 2025, 13(5), 513; https://doi.org/10.3390/vaccines13050513 - 13 May 2025
Viewed by 1183
Abstract
Background: Enteric disease caused by Shigella, Campylobacter, and enterotoxigenic Escherichia coli (ETEC) represents a significant global health burden, particularly among children in low-resource settings. However, no licensed vaccines are currently available for these bacterial pathogens. Given the wide range of enteric [...] Read more.
Background: Enteric disease caused by Shigella, Campylobacter, and enterotoxigenic Escherichia coli (ETEC) represents a significant global health burden, particularly among children in low-resource settings. However, no licensed vaccines are currently available for these bacterial pathogens. Given the wide range of enteric pathogens and the constraints posed by an increasingly crowded infant immunization schedule, the development of combination vaccines or combined administration of individual oral vaccines may offer a practical approach to address this unmet need. Objectives: In this study, we evaluated the combined administration of two multicomponent oral vaccine candidates: ETVAX, targeting ETEC, and a trivalent whole-cell vaccine targeting Shigella. Methods: The vaccine candidates were administered orally in mice, both individually and in combination, with and without the inclusion of the double-mutant heat-labile toxin (dmLT) adjuvant. Results: The results demonstrated systemic and intestinal-mucosal immune responses to the key protective antigens following both individual and combined vaccine administration. Importantly, the combination of the two vaccines did not compromise the elicitation of specific antibody responses. The inclusion of dmLT as an adjuvant significantly enhanced immune responses to several antigens, highlighting its potential to improve vaccine efficacy. Conclusions: These findings underscore the feasibility of combining ETEC and Shigella vaccine candidates into a single formulation without compromising immunogenicity. This combined approach has the potential to provide broad protective coverage, thereby mitigating the global impact of enteric diseases and streamlining vaccine delivery within existing childhood immunization programs. Our results support further development of this combination vaccine strategy as a promising tool in combating enteric infections and improving health outcomes, particularly among young children in endemic regions who are vulnerable to enteric disease. Full article
(This article belongs to the Special Issue Recent Scientific Advances in Vaccines for Shigella)
Show Figures

Figure 1

14 pages, 1894 KB  
Article
Heat-Labile Enterotoxin Decreases Macrophage Phagocytosis of Enterotoxigenic Escherichia coli
by Ian E. Hollifield, Natalya I. Motyka, Kaylynn A. Fernando and Jacob P. Bitoun
Microorganisms 2023, 11(8), 2121; https://doi.org/10.3390/microorganisms11082121 - 21 Aug 2023
Cited by 4 | Viewed by 2487
Abstract
Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can [...] Read more.
Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal immunity to establish intestinal residency remains unclear. Macrophages are innate immune cells that can be exploited by enteric pathogens to evade mucosal immunity, so we interrogated the ability of ETEC and other E. coli pathovars to survive within macrophages. Using gentamicin protection assays, we show that ETEC H10407 is phagocytosed more readily than other ETEC and non-ETEC isolates. Furthermore, we demonstrate that ETEC H10407, at high bacterial burdens, causes nitrite accumulation in macrophages, which is indicative of a proinflammatory macrophage nitric oxide killing response. However, at low bacterial burdens, ETEC H10407 remains viable within macrophages for an extended period without nitrite accumulation. We demonstrate that LT, but not ST, intoxication decreases the number of ETEC phagocytosed by macrophages. Furthermore, we now show that macrophages exposed simultaneously to LPS and LT produce IL-33, which is a cytokine implicated in promoting macrophage alternative activation, iron recycling, and intestinal repair. Lastly, iron restriction using deferoxamine induces IL-33 receptor (IL-33R) expression and allows ETEC to escape macrophages. Altogether, these data demonstrate that LT provides ETEC with the ability to decrease the perceived ETEC burden and suppresses the initiation of inflammation. Furthermore, these data suggest that host IL-33/IL-33R signaling may augment pathways that promote iron restriction to facilitate ETEC escape from macrophages. These data could help explain novel mechanisms of immune subversion that may contribute to asymptomatic ETEC carriage. Full article
Show Figures

Figure 1

15 pages, 4328 KB  
Article
Evaluation of the Safety, Tolerability and Immunogenicity of ShigETEC, an Oral Live Attenuated Shigella-ETEC Vaccine in Placebo-Controlled Randomized Phase 1 Trial
by Petra Girardi, Shushan Harutyunyan, Irene Neuhauser, Katharina Glaninger, Orsolya Korda, Gábor Nagy, Eszter Nagy, Valéria Szijártó, Denes Pall, Krisztina Szarka, Gábor Kardos, Tamás Henics and Frank J. Malinoski
Vaccines 2022, 10(2), 340; https://doi.org/10.3390/vaccines10020340 - 21 Feb 2022
Cited by 19 | Viewed by 4134
Abstract
Background: Shigella spp. and enterotoxigenic Escherichia coli (ETEC) cause high morbidity and mortality worldwide, yet no licensed vaccines are available to prevent corresponding infections. A live attenuated non-invasive Shigella vaccine strain lacking LPS O-antigen and expressing the ETEC toxoids, named ShigETEC was characterized [...] Read more.
Background: Shigella spp. and enterotoxigenic Escherichia coli (ETEC) cause high morbidity and mortality worldwide, yet no licensed vaccines are available to prevent corresponding infections. A live attenuated non-invasive Shigella vaccine strain lacking LPS O-antigen and expressing the ETEC toxoids, named ShigETEC was characterized previously in non-clinical studies. Methods: ShigETEC was evaluated in a two-staged, randomized, double-blind and placebo-controlled Phase I clinical trial. A single dose of increasing amounts of the vaccine was given to determine the maximum tolerated dose and increasing number of immunizations were administered with an interval based on the duration of shedding observed. Results: Oral immunization with ShigETEC was well tolerated and safe up to 4-time dosing with 5 × 1010 colony forming units. ShigETEC induced robust systemic immune responses against the Shigella vaccine strain, with IgA serum antibody dominance, as well as mucosal antibody responses evidenced by specific IgA in stool samples and in ALS (Antibodies in Lymphocyte Supernatant). Anti- ETEC toxin responses were detected primarily in the 4-times immunized cohort and for the heat-labile toxin correlated with neutralizing capacity. Conclusion: ShigETEC is a promising vaccine candidate that is scheduled for further testing in controlled human challenge studies for efficacy as well as in children in endemic setting for safety and immunogenicity. Full article
(This article belongs to the Special Issue Frontiers in Shigella Vaccine Development)
Show Figures

Figure 1

14 pages, 2548 KB  
Article
Oral Immunogenicity of Enterotoxigenic Escherichia coli Outer Membrane Vesicles Encapsulated into Zein Nanoparticles Coated with a Gantrez® AN–Mannosamine Polymer Conjugate
by Melibea Berzosa, Alzbeta Nemeskalova, Alba Calvo, Gemma Quincoces, María Collantes, Felix Pareja, Carlos Gamazo and Juan Manuel Irache
Pharmaceutics 2022, 14(1), 123; https://doi.org/10.3390/pharmaceutics14010123 - 4 Jan 2022
Cited by 5 | Viewed by 2879
Abstract
Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development is challenging since this pathotype expresses a wide variety of antigenically diverse virulence factors whose genes can be modified due to ETEC genetic plasticity. To overcome this challenge, we propose the use of outer membrane vesicles (OMVs) isolated from two ETEC clinical strains. In these OMVs, proteomic studies revealed the presence of important immunogens, such as heat-labile toxin, colonization factors, adhesins and mucinases. Furthermore, these vesicles proved to be immunogenic after subcutaneous administration in BALB/c mice. Since ETEC is an enteropathogen, it is necessary to induce both systemic and mucosal immunity. For this purpose, the vesicles, free or encapsulated in zein nanoparticles coated with a Gantrez®–mannosamine conjugate, were administered orally. Biodistribution studies showed that the encapsulation of OMVs delayed the transit through the gut. These results were confirmed by in vivo study, in which OMV encapsulation resulted in higher levels of specific antibodies IgG2a. Further studies are needed to evaluate the protection efficacy of this vaccine approach. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Oral Immunotherapy)
Show Figures

Figure 1

18 pages, 1013 KB  
Review
Maternal Vaccination. Immunization of Sows during Pregnancy against ETEC Infections
by Jose Matías, Melibea Berzosa, Yadira Pastor, Juan M. Irache and Carlos Gamazo
Vaccines 2017, 5(4), 48; https://doi.org/10.3390/vaccines5040048 - 6 Dec 2017
Cited by 30 | Viewed by 9433
Abstract
The immunology of pregnancy is an evolving consequence of multiple reciprocal interactions between the maternal and the fetal-placental systems. The immune response must warrant the pregnancy outcome (including tolerance to paternal antigens), but at the same time, efficiently respond to pathogenic challenges. Enterotoxigenic [...] Read more.
The immunology of pregnancy is an evolving consequence of multiple reciprocal interactions between the maternal and the fetal-placental systems. The immune response must warrant the pregnancy outcome (including tolerance to paternal antigens), but at the same time, efficiently respond to pathogenic challenges. Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in neonatal and recently weaned pigs. This review aims to give an overview of the current rationale on the maternal vaccination strategies for the protection of the newborn pig against ETEC. Newborn piglets are immunodeficient and naturally dependent on the maternal immunity transferred by colostrum for protection—a maternal immunity that can be obtained by vaccinating the sow during pregnancy. Our current knowledge of the interactions between the pathogen strategies, virulence factors, and the host immune system is aiding the better design of vaccination strategies in this particular and challenging host status. Challenges include the need for better induction of immunity at the mucosal level with the appropriate use of adjuvants, able to induce the most appropriate and long-lasting protective immune response. These include nanoparticle-based adjuvants for oral immunization. Experiences can be extrapolated to other species, including humans. Full article
Show Figures

Figure 1

Back to TopTop