Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = multi-fidelity data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3177 KB  
Article
A Concept for Bio-Agentic Visual Communication: Bridging Swarm Intelligence with Biological Analogues
by Bryan Starbuck, Hanlong Li, Bryan Cochran, Marc Weissburg and Bert Bras
Biomimetics 2025, 10(9), 605; https://doi.org/10.3390/biomimetics10090605 - 9 Sep 2025
Abstract
Biological swarms communicate through decentralized, adaptive behaviors shaped by local interactions, selective attention, and symbolic signaling. These principles of animal communication enable robust coordination without centralized control or persistent connectivity. This work presents a proof of concept that identifies, evaluates, and translates biological [...] Read more.
Biological swarms communicate through decentralized, adaptive behaviors shaped by local interactions, selective attention, and symbolic signaling. These principles of animal communication enable robust coordination without centralized control or persistent connectivity. This work presents a proof of concept that identifies, evaluates, and translates biological communication strategies into a generative visual language for unmanned aerial vehicle (UAV) swarm agents operating in radio-frequency (RF)-denied environments. Drawing from natural exemplars such as bee waggle dancing, white-tailed deer flagging, and peacock feather displays, we construct a configuration space that encodes visual messages through trajectories and LED patterns. A large language model (LLM), preconditioned using retrieval-augmented generation (RAG), serves as a generative translation layer that interprets perception data and produces symbolic UAV responses. Five test cases evaluate the system’s ability to preserve and adapt signal meaning through within-modality fidelity (maintaining symbolic structure in the same modality) and cross-modal translation (transferring meaning across motion and light). Covariance and eigenvalue-decomposition analysis demonstrate that this bio-agentic approach supports clear, expressive, and decentralized communication, with motion-based signaling achieving near-perfect clarity and expressiveness (0.992, 1.000), while LED-only and multi-signal cases showed partial success, maintaining high expressiveness (~1.000) but with much lower clarity (≤0.298). Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

39 pages, 928 KB  
Review
Intelligence Architectures and Machine Learning Applications in Contemporary Spine Care
by Rahul Kumar, Conor Dougherty, Kyle Sporn, Akshay Khanna, Puja Ravi, Pranay Prabhakar and Nasif Zaman
Bioengineering 2025, 12(9), 967; https://doi.org/10.3390/bioengineering12090967 - 9 Sep 2025
Abstract
The rapid evolution of artificial intelligence (AI) and machine learning (ML) technologies has initiated a paradigm shift in contemporary spine care. This narrative review synthesizes advances across imaging-based diagnostics, surgical planning, genomic risk stratification, and post-operative outcome prediction. We critically assess high-performing AI [...] Read more.
The rapid evolution of artificial intelligence (AI) and machine learning (ML) technologies has initiated a paradigm shift in contemporary spine care. This narrative review synthesizes advances across imaging-based diagnostics, surgical planning, genomic risk stratification, and post-operative outcome prediction. We critically assess high-performing AI tools, such as convolutional neural networks for vertebral fracture detection, robotic guidance platforms like Mazor X and ExcelsiusGPS, and deep learning-based morphometric analysis systems. In parallel, we examine the emergence of ambient clinical intelligence and precision pharmacogenomics as enablers of personalized spine care. Notably, genome-wide association studies (GWAS) and polygenic risk scores are enabling a shift from reactive to predictive management models in spine surgery. We also highlight multi-omics platforms and federated learning frameworks that support integrative, privacy-preserving analytics at scale. Despite these advances, challenges remain—including algorithmic opacity, regulatory fragmentation, data heterogeneity, and limited generalizability across populations and clinical settings. Through a multidimensional lens, this review outlines not only current capabilities but also future directions to ensure safe, equitable, and high-fidelity AI deployment in spine care delivery. Full article
(This article belongs to the Special Issue Artificial Intelligence and Machine Learning in Spine Research)
Show Figures

Figure 1

24 pages, 4642 KB  
Article
Multi-Objective Design Optimization of Solid Rocket Motors via Surrogate Modeling
by Xinping Fan, Ran Wei, Yumeng He, Weihua Hui, Weijie Zhao, Futing Bao, Xiao Hou and Lin Sun
Aerospace 2025, 12(9), 805; https://doi.org/10.3390/aerospace12090805 - 7 Sep 2025
Viewed by 383
Abstract
To reduce the high computational cost and lengthy design cycles of traditional solid rocket motor (SRM) development, this paper proposes an efficient surrogate-assisted multi-objective optimization approach. A comprehensive performance model was first established, integrating internal ballistics, grain structural integrity, and cost estimation, to [...] Read more.
To reduce the high computational cost and lengthy design cycles of traditional solid rocket motor (SRM) development, this paper proposes an efficient surrogate-assisted multi-objective optimization approach. A comprehensive performance model was first established, integrating internal ballistics, grain structural integrity, and cost estimation, to enable holistic assessment of the coupled effects of key motor components. A parametric analysis framework was then developed to automate the model, facilitating seamless data exchange and coordination among sub-models through chain coupling. Leveraging this framework, a large-scale, high-fidelity dataset was generated via uniform sampling of the design space. The Kriging surrogate model with the highest global fitting accuracy was subsequently employed to replicate the integrated model’s complex responses and reveal underlying design principles. Finally, an enhanced NSGA-III algorithm incorporating a phased hybrid crossover operator was applied to improve global search performance and guide solution evolution along the Pareto front. Applied to a specific SRM, the proposed method achieved a 4.72% increase in total impulse and a 6.73% reduction in cost compared with the initial design, while satisfying all constraints. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

29 pages, 1761 KB  
Article
5G High-Precision Positioning in GNSS-Denied Environments Using a Positional Encoding-Enhanced Deep Residual Network
by Jin-Man Shen, Hua-Min Chen, Hui Li, Shaofu Lin and Shoufeng Wang
Sensors 2025, 25(17), 5578; https://doi.org/10.3390/s25175578 - 6 Sep 2025
Viewed by 1052
Abstract
With the widespread deployment of 5G technology, high-precision positioning in global navigation satellite system (GNSS)-denied environments is a critical yet challenging task for emerging 5G applications, enabling enhanced spatial resolution, real-time data acquisition, and more accurate geolocation services. Traditional methods relying on single-source [...] Read more.
With the widespread deployment of 5G technology, high-precision positioning in global navigation satellite system (GNSS)-denied environments is a critical yet challenging task for emerging 5G applications, enabling enhanced spatial resolution, real-time data acquisition, and more accurate geolocation services. Traditional methods relying on single-source measurements like received signal strength information (RSSI) or time of arrival (TOA) often fail in complex multipath conditions. To address this, the positional encoding multi-scale residual network (PE-MSRN) is proposed, a novel deep learning framework that enhances positioning accuracy by deeply mining spatial information from 5G channel state information (CSI). By designing spatial sampling with multigranular data and utilizing multi-source information in 5G CSI, a dataset covering a variety of positioning scenarios is proposed. The core of PE-MSRN is a multi-scale residual network (MSRN) augmented by a positional encoding (PE) mechanism. The positional encoding transforms raw angle of arrival (AOA) data into rich spatial features, which are then mapped into a 2D image, allowing the MSRN to effectively capture both fine-grained local patterns and large-scale spatial dependencies. Subsequently, the PE-MSRN algorithm that integrates ResNet residual networks and multi-scale feature extraction mechanisms is designed and compared with the baseline convolutional neural network (CNN) and other comparison methods. Extensive evaluations across various simulated scenarios, including indoor autonomous driving and smart factory tool tracking, demonstrate the superiority of our approach. Notably, PE-MSRN achieves a positioning accuracy of up to 20 cm, significantly outperforming baseline CNNs and other neural network algorithms in both accuracy and convergence speed, particularly under real measurement conditions with higher SNR and fine-grained grid division. Our work provides a robust and effective solution for developing high-fidelity 5G positioning systems. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

42 pages, 13345 KB  
Article
UAV Operations and Vertiport Capacity Evaluation with a Mixed-Reality Digital Twin for Future Urban Air Mobility Viability
by Junjie Zhao, Zhang Wen, Krishnakanth Mohanta, Stefan Subasu, Rodolphe Fremond, Yu Su, Ruechuda Kallaka and Antonios Tsourdos
Drones 2025, 9(9), 621; https://doi.org/10.3390/drones9090621 - 3 Sep 2025
Viewed by 392
Abstract
This study presents a high-fidelity digital twin (DT) framework designed to evaluate and improve vertiport operations for Advanced Air Mobility (AAM). By integrating Unreal Engine, AirSim, and Cesium, the framework enables real-time simulation of Unmanned Aerial Vehicles (UAVs), including unmanned electric vertical take-off [...] Read more.
This study presents a high-fidelity digital twin (DT) framework designed to evaluate and improve vertiport operations for Advanced Air Mobility (AAM). By integrating Unreal Engine, AirSim, and Cesium, the framework enables real-time simulation of Unmanned Aerial Vehicles (UAVs), including unmanned electric vertical take-off and landing (eVTOL) operations under nominal and disrupted conditions, such as adverse weather and engine failures. The DT supports interactive visualisation and risk-free analysis of decision-making protocols, vertiport layouts, and UAV handling strategies across multi-scenarios. To validate system realism, mixed-reality experiments involving physical UAVs, acting as surrogates for eVTOL platforms, demonstrate consistency between simulations and real-world flight behaviours. These UAV-based tests confirm the applicability of the DT environment to AAM. Intelligent algorithms detect Final Approach and Take-Off (FATO) areas and adjust flight paths for seamless take-off and landing. Live environmental data are incorporated for dynamic risk assessment and operational adjustment. A structured capacity evaluation method is proposed, modelling constraints including turnaround time, infrastructure limits, charging requirements, and emergency delays. Mitigation strategies, such as ultra-fast charging and reconfiguring the layout, are introduced to restore throughput. This DT provides a scalable, drone-integrated, and data-driven foundation for vertiport optimisation and regulatory planning, supporting safe and resilient integration into the AAM ecosystem. Full article
Show Figures

Figure 1

21 pages, 10827 KB  
Article
Smart Monitoring of Power Transformers in Substation 4.0: Multi-Sensor Integration and Machine Learning Approach
by Fabio Henrique de Souza Duz, Tiago Goncalves Zacarias, Ronny Francis Ribeiro Junior, Fabio Monteiro Steiner, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi and Luiz Eduardo Borges-da-Silva
Sensors 2025, 25(17), 5469; https://doi.org/10.3390/s25175469 - 3 Sep 2025
Viewed by 450
Abstract
Power transformers are critical components in electrical power systems, where failures can cause significant outages and economic losses. Traditional maintenance strategies, typically based on offline inspections, are increasingly insufficient to meet the reliability requirements of modern digital substations. This work presents an integrated [...] Read more.
Power transformers are critical components in electrical power systems, where failures can cause significant outages and economic losses. Traditional maintenance strategies, typically based on offline inspections, are increasingly insufficient to meet the reliability requirements of modern digital substations. This work presents an integrated multi-sensor monitoring framework that combines online frequency response analysis (OnFRA® 4.0), capacitive tap-based monitoring (FRACTIVE® 4.0), dissolved gas analysis, and temperature measurements. All data streams are synchronized and managed within a SCADA system that supports real-time visualization and historical traceability. To enable automated fault diagnosis, a Random Forest classifier was trained using simulated datasets derived from laboratory experiments that emulate typical transformer and bushing degradation scenarios. Principal Component Analysis was employed for dimensionality reduction, improving model interpretability and computational efficiency. The proposed model achieved perfect classification metrics on the simulated data, demonstrating the feasibility of combining high-fidelity monitoring hardware with machine learning techniques for anomaly detection. Although no in-service failures have been recorded to date, the monitoring infrastructure is already tested and validated through laboratory conditions, enabling continuous data acquisition. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

28 pages, 19672 KB  
Article
A Multi-Fidelity Data Fusion Approach Based on Semi-Supervised Learning for Image Super-Resolution in Data-Scarce Scenarios
by Hongzheng Zhu, Yingjuan Zhao, Ximing Qiao, Jinshuo Zhang, Jingnan Ma and Sheng Tong
Sensors 2025, 25(17), 5373; https://doi.org/10.3390/s25175373 - 31 Aug 2025
Viewed by 490
Abstract
Image super-resolution (SR) techniques can significantly enhance visual quality and information density. However, existing methods often rely on large amounts of paired low- and high-resolution (LR-HR) data, which limits their generalization and robustness when faced with data scarcity, distribution inconsistencies, and missing high-frequency [...] Read more.
Image super-resolution (SR) techniques can significantly enhance visual quality and information density. However, existing methods often rely on large amounts of paired low- and high-resolution (LR-HR) data, which limits their generalization and robustness when faced with data scarcity, distribution inconsistencies, and missing high-frequency details. To tackle the challenges of image reconstruction in data-scarce scenarios, this paper proposes a semi-supervised learning-driven multi-fidelity fusion (SSLMF) method, which integrates multi-fidelity data fusion (MFDF) and semi-supervised learning (SSL) to reduce reliance on high-fidelity data. More specifically, (1) an MFDF strategy is employed to leverage low-fidelity data for global structural constraints, enhancing information compensation; (2) an SSL mechanism is introduced to reduce data dependence by using only a small amount of labeled HR samples along with a large quantity of unlabeled multi-fidelity data. This framework significantly improves data efficiency and reconstruction quality. We first validate the reconstruction accuracy of SSLMF on benchmark functions and then apply it to image reconstruction tasks. The results demonstrate that SSLMF can effectively model both linear and nonlinear relationships among multi-fidelity data, maintaining high performance even with limited high-fidelity samples. Finally, its cross-disciplinary potential is illustrated through an audio restoration case study, offering a novel solution for efficient image reconstruction, especially in data-scarce scenarios where high-fidelity samples are limited. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 1007 KB  
Review
Comprehensive Medication Management for Hypertension in the United States: A Scoping Review of Therapeutic, Humanistic, Safety and Economic Outcomes
by Dalia Regos-Stewart, Noel C. Barragan, Scott Weber, Alexander Cantres, Devin Lee, Luis Larios, Evans Pope, Steven Chen and Tony Kuo
Encyclopedia 2025, 5(3), 133; https://doi.org/10.3390/encyclopedia5030133 - 30 Aug 2025
Viewed by 507
Abstract
Emerging research has shown that pharmacist-led comprehensive medication management (CMM) can be an effective strategy for controlling hypertension. A synthesis of the evidence on the overall effects of CMM on clinical, quality, and economic outcomes could help inform and contribute to improvements in [...] Read more.
Emerging research has shown that pharmacist-led comprehensive medication management (CMM) can be an effective strategy for controlling hypertension. A synthesis of the evidence on the overall effects of CMM on clinical, quality, and economic outcomes could help inform and contribute to improvements in programming and practice. Presently, such a synthesis is limited in the literature. To address this gap, we conducted a scoping review of CMM effects on these outcomes, organized by 4 domains: therapeutic, humanistic, safety and economic. Using predefined search terms for articles on studies published between 2010 and 2024, we performed a literature search utilizing these terms to search the MEDLINE, Cochrane Library and CINAHL databases. For each of the identified studies, we applied a multi-stage screening process to extract data, chart results, and synthesize findings. The process took into account methodology of study design, patient population involved, CMM implementation, relevance of outcomes to clinical improvement, and factors that were deemed relevant to study selection. In total, 49 experimental, observational, and simulation-based studies were included in the scoping review. The synthesis focused on outcomes most frequently reported and those rigorously evaluated by the studies in the review. They included clinical measures of blood pressure reduction and control, frequency and duration of healthcare visits, and changes in medication therapy regimen and medication adherence. Overall, CMM interventions were found to have significantly favorable effects on systolic blood pressure reduction, hypertension control, and medication changes. Other outcomes, which showed positive effects, included self-reported patient experience and behaviors, emergency department visits, hospitalizations, mortality, and program costs and related savings from implementing a CMM program. Some results, however, were mixed. For example, a number of studies reported outcomes data without significance testing and many generally lacked consistent characterization of their programming and implementation processes. Future research and practice evaluations should include these elements in their documentation. Furthermore, a more consistent approach to implementing CMM in the field may lead to better support of program delivery fidelity, helping to optimize CMM, moving it from demonstrated efficacy to intervention effectiveness in the real world. Full article
(This article belongs to the Section Medicine & Pharmacology)
Show Figures

Figure 1

21 pages, 19080 KB  
Article
Provenance Evolution Since the Middle Pleistocene in the Western Bohai Sea, North China: Integrated Rare Earth Element Geochemistry and Sedimentological Records
by Shuyu Wu, Jun Liu and Yongcai Feng
J. Mar. Sci. Eng. 2025, 13(9), 1632; https://doi.org/10.3390/jmse13091632 - 26 Aug 2025
Viewed by 1004
Abstract
Despite extensive research on sediment provenance in the Bohai Sea (BS), a significant knowledge gap persists concerning long-term provenance evolution, particularly in the western BS since the Middle Pleistocene. This shortcoming limits reconstructions of paleoenvironmental evolution and its interplay with climatic variability and [...] Read more.
Despite extensive research on sediment provenance in the Bohai Sea (BS), a significant knowledge gap persists concerning long-term provenance evolution, particularly in the western BS since the Middle Pleistocene. This shortcoming limits reconstructions of paleoenvironmental evolution and its interplay with climatic variability and sea-level fluctuations. This study presents integrated Rare Earth Element (REE) geochemical and sedimentological analyses of sediments from core DZQ01 in the western BS. The mean ΣREE concentration of 178.78 μg/g is characterized by pronounced light REE (LREE) enrichment relative to heavy REE (HREE). Chondrite- and upper continental crust (UCC)-normalized patterns exhibit distinct negative Eu anomalies, variable Ce anomalies, marked LREE enrichment, and pronounced LREE/HREE fractionation. Grain size exerts the dominant control on REE distribution, whereas the weak correlation between HREE fractionation parameter indices (e.g., Gd/Yb) and redox-sensitive proxies (e.g., δEuUCC and δCeUCC) confirms their fidelity as provenance indicators. When integrated with the δEuUCC-δCeUCC diagram, discriminant functions, and paleoenvironmental proxies (Rb/Sr and Mg/Ca ratios), the data indicate that, during interglacial highstands, the Yellow River (YR) was the principal source, delivering fine-grained terrigenous material from the Loess Plateau and thereby elevating REE concentrations. Conversely, glacial lowstands shifted the depositional environment to subaerial conditions, with the YR, Hai River, and Luan River supplying a coarse-fine admixture. Multi-river provenance and dilution by coarse detritus collectively lowered REE concentrations during these intervals. Full article
Show Figures

Figure 1

26 pages, 62819 KB  
Article
Low-Light Image Dehazing and Enhancement via Multi-Feature Domain Fusion
by Jiaxin Wu, Han Ai, Ping Zhou, Hao Wang, Haifeng Zhang, Gaopeng Zhang and Weining Chen
Remote Sens. 2025, 17(17), 2944; https://doi.org/10.3390/rs17172944 - 25 Aug 2025
Viewed by 611
Abstract
The acquisition of nighttime remote-sensing visible-light images is often accompanied by low-illumination effects and haze interference, resulting in significant image quality degradation and greatly affecting subsequent applications. Existing low-light enhancement and dehazing algorithms can handle each problem individually, but their simple cascade cannot [...] Read more.
The acquisition of nighttime remote-sensing visible-light images is often accompanied by low-illumination effects and haze interference, resulting in significant image quality degradation and greatly affecting subsequent applications. Existing low-light enhancement and dehazing algorithms can handle each problem individually, but their simple cascade cannot effectively address unknown real-world degradations. Therefore, we design a joint processing framework, WFDiff, which fully exploits the advantages of Fourier–wavelet dual-domain features and innovatively integrates the inverse diffusion process through differentiable operators to construct a multi-scale degradation collaborative correction system. Specifically, in the reverse diffusion process, a dual-domain feature interaction module is designed, and the joint probability distribution of the generated image and real data is constrained through differentiable operators: on the one hand, a global frequency-domain prior is established by jointly constraining Fourier amplitude and phase, effectively maintaining the radiometric consistency of the image; on the other hand, wavelets are used to capture high-frequency details and edge structures in the spatial domain to improve the prediction process. On this basis, a cross-overlapping-block adaptive smoothing estimation algorithm is proposed, which achieves dynamic fusion of multi-scale features through a differentiable weighting strategy, effectively solving the problem of restoring images of different sizes and avoiding local inconsistencies. In view of the current lack of remote-sensing data for low-light haze scenarios, we constructed the Hazy-Dark dataset. Physical experiments and ablation experiments show that the proposed method outperforms existing single-task or simple cascade methods in terms of image fidelity, detail recovery capability, and visual naturalness, providing a new paradigm for remote-sensing image processing under coupled degradations. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

21 pages, 4917 KB  
Article
A High-Capacity Reversible Data Hiding Scheme for Encrypted Hyperspectral Images Using Multi-Layer MSB Block Labeling and ERLE Compression
by Yijie Lin, Chia-Chen Lin, Zhe-Min Yeh, Ching-Chun Chang and Chin-Chen Chang
Future Internet 2025, 17(8), 378; https://doi.org/10.3390/fi17080378 - 21 Aug 2025
Viewed by 338
Abstract
In the context of secure and efficient data transmission over the future Internet, particularly for remote sensing and geospatial applications, reversible data hiding (RDH) in encrypted hyperspectral images (HSIs) has emerged as a critical technology. This paper proposes a novel RDH scheme specifically [...] Read more.
In the context of secure and efficient data transmission over the future Internet, particularly for remote sensing and geospatial applications, reversible data hiding (RDH) in encrypted hyperspectral images (HSIs) has emerged as a critical technology. This paper proposes a novel RDH scheme specifically designed for encrypted HSIs, offering enhanced embedding capacity without compromising data security or reversibility. The approach introduces a multi-layer block labeling mechanism that leverages the similarity of most significant bits (MSBs) to accurately locate embeddable regions. To minimize auxiliary information overhead, we incorporate an Extended Run-Length Encoding (ERLE) algorithm for effective label map compression. The proposed method achieves embedding rates of up to 3.79 bits per pixel per band (bpppb), while ensuring high-fidelity reconstruction, as validated by strong PSNR metrics. Comprehensive security evaluations using NPCR, UACI, and entropy confirm the robustness of the encryption. Extensive experiments across six standard hyperspectral datasets demonstrate the superiority of our method over existing RDH techniques in terms of capacity, embedding rate, and reconstruction quality. These results underline the method’s potential for secure data embedding in next-generation Internet-based geospatial and remote sensing systems. Full article
Show Figures

Figure 1

26 pages, 2825 KB  
Article
Towards a Unified Modeling and Simulation Framework for Space Systems: Integrating Model-Based Systems Engineering with Open Source Multi-Domain Simulation Environments
by Serena Campioli, Giacomo Luccisano, Davide Ferretto and Fabrizio Stesina
Aerospace 2025, 12(8), 745; https://doi.org/10.3390/aerospace12080745 - 21 Aug 2025
Viewed by 566
Abstract
The increasing complexity of modern space systems requires a more integrated and scalable approach to their design, analysis, and verification. Model-Based Systems Engineering (MBSE) has emerged as a powerful methodology for managing the complexity of systems through formalized modeling practices, but its integration [...] Read more.
The increasing complexity of modern space systems requires a more integrated and scalable approach to their design, analysis, and verification. Model-Based Systems Engineering (MBSE) has emerged as a powerful methodology for managing the complexity of systems through formalized modeling practices, but its integration with dynamic and domain-specific simulations remains limited. This paper presents the first version of the unified Modeling and Simulation (M&S) framework MOSAiC (Modeling and Simulation Architecture for integrated Complex systems), which connects MBSE with open source, multi-domain simulation environments, with the goal of improving traceability, reusability, and fidelity in the system lifecycle. The architecture proposed here leverages ARCADIA-based models as authoritative sources, interfacing with simulation tools through standardized data exchanges and co-simulation strategies. Using a representative space mission scenario, the framework ability to align functional and physical models with specialized simulations is demonstrated. Results show improved consistency between system models and simulation artifacts, reduced integration costs, and improved early validation of design choices. This work supports the broader vision of digital engineering for space systems, suggesting that a modular, standards-based approach to unifying MBSE and simulation can significantly improve system understanding and development efficiency. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
Show Figures

Figure 1

25 pages, 3532 KB  
Article
Sustainable Design and Lifecycle Prediction of Crusher Blades Through a Digital Replica-Based Predictive Prototyping Framework and Data-Efficient Machine Learning
by Hilmi Saygin Sucuoglu, Serra Aksoy, Pinar Demircioglu and Ismail Bogrekci
Sustainability 2025, 17(16), 7543; https://doi.org/10.3390/su17167543 - 21 Aug 2025
Viewed by 450
Abstract
Sustainable product development demands components that last longer, consume less energy, and can be refurbished within circular supply chains. This study introduces a digital replica-based predictive prototyping workflow for industrial crusher blades that meets these goals. Six commercially used blade geometries (A–F) were [...] Read more.
Sustainable product development demands components that last longer, consume less energy, and can be refurbished within circular supply chains. This study introduces a digital replica-based predictive prototyping workflow for industrial crusher blades that meets these goals. Six commercially used blade geometries (A–F) were recreated as high-fidelity finite-element models and subjected to an identical 5 kN cutting load. Comparative simulations revealed that a triple-edged hooked profile (Blade A) reduced peak von Mises stress by 53% and total deformation by 71% compared with a conventional flat blade, indicating lower drive-motor power and slower wear. To enable fast virtual prototyping and condition-based maintenance, deformation was subsequently predicted using a data-efficient machine-learning model. Multi-view image augmentation enlarged the experimental dataset from 6 to 60 samples, and an XGBoost regressor, trained on computer-vision geometry features and engineering parameters, achieved R2 = 0.996 and MAE = 0.005 mm in five-fold cross-validation. Feature-importance analysis highlighted applied stress, safety factor, and edge design as the dominant predictors. The integrated method reduces development cycles, reduces material loss via iteration, extends the life of blades, and facilitates refurbishment decisions, providing a foundation for future integration into digital twin systems to support sustainable product development and predictive maintenance in heavy-duty manufacturing. Full article
(This article belongs to the Special Issue Achieving Sustainability in New Product Development and Supply Chain)
Show Figures

Figure 1

23 pages, 3505 KB  
Article
Digital Imaging Simulation and Closed-Loop Verification Model of Infrared Payloads in Space-Based Cloud–Sea Scenarios
by Wen Sun, Yejin Li, Fenghong Li and Peng Rao
Remote Sens. 2025, 17(16), 2900; https://doi.org/10.3390/rs17162900 - 20 Aug 2025
Viewed by 622
Abstract
Driven by the rising demand for digitalization and intelligent development of infrared payloads, next-generation systems must be developed within compressed timelines. High-precision digital modeling and simulation techniques offer essential data sources but often falter in complex space-based scenarios due to the limited availability [...] Read more.
Driven by the rising demand for digitalization and intelligent development of infrared payloads, next-generation systems must be developed within compressed timelines. High-precision digital modeling and simulation techniques offer essential data sources but often falter in complex space-based scenarios due to the limited availability of infrared characteristic data, hindering evaluation of the payload effectiveness. To address this, we propose a digital imaging simulation and verification (DISV) model for high-fidelity infrared image generation and closed-loop validation in the context of cloud–sea target detection. Based on on-orbit infrared imagery, we construct a cloud cluster database via morphological operations and generate physically consistent backgrounds through iterative optimization. The DISV model subsequently calculates scene infrared radiation, integrating radiance computations with an electron-count-based imaging model for radiance-to-grayscale conversion. Closed-loop verification via blackbody radiance inversion is performed to confirm the model’s accuracy. The mid-wave infrared (MWIR, 3–5 µm) system achieves mean square errors (RSMEs) < 0.004, peak signal-to-noise ratios (PSNRs) > 49 dB, and a structural similarity index measure (SSIM) > 0.997. The long-wave infrared (LWIR, 8–12 µm) system yields RMSEs < 0.255, PSNRs > 47 dB, and an SSIM > 0.994. Under 20–40% cloud coverage, the target radiance inversion errors remain below 4.81% and 7.30% for the MWIR and LWIR, respectively. The DISV model enables infrared image simulation across multi-domain scenarios, offering vital support for optimizing on-orbit payload performance. Full article
Show Figures

Figure 1

11 pages, 1384 KB  
Article
Reverse Design of Three-Band Terahertz Metamaterial Sensor
by Hongyi Ge, Wenyue Cao, Shun Wang, Xiaodi Ji, Yuying Jiang, Xinxin Liu, Yitong Zhou, Yuan Zhang, Qingcheng Sun and Yuxin Wang
Nanomaterials 2025, 15(16), 1265; https://doi.org/10.3390/nano15161265 - 16 Aug 2025
Viewed by 422
Abstract
Terahertz metamaterial devices (TMDs) have demonstrated promising applications in biomass detection, wireless communications, and security inspection. Nevertheless, conventional design methodologies for such devices suffer from extensive iterative optimizations and significant dependence on empirical expertise, substantially prolonging the development cycle. This study proposes a [...] Read more.
Terahertz metamaterial devices (TMDs) have demonstrated promising applications in biomass detection, wireless communications, and security inspection. Nevertheless, conventional design methodologies for such devices suffer from extensive iterative optimizations and significant dependence on empirical expertise, substantially prolonging the development cycle. This study proposes a reverse design framework leveraging a deep neural network (DNN) to enable rapid and efficient TMD synthesis, exemplified through a three-band terahertz metamaterial sensor. The developed DNN model achieves high-fidelity predictions (mean squared error = 0.03) and enables rapid inference for structural parameter generation. Experimental validation across four distinct target absorption spectra confirms high consistency between simulated and target responses, with near-identical triple-band resonance characteristics. Benchmarking against traditional CST-based optimization reveals a 36-fold acceleration in design throughput (200-device parameterization reduced from 36 h to 1 h). This work demonstrates a promising strategy for data-driven reverse design of multi-peak terahertz metamaterials, combining computational efficiency with rigorous electromagnetic performance. Full article
Show Figures

Figure 1

Back to TopTop