Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,924)

Search Parameters:
Keywords = multi-time scales

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1825 KB  
Article
IM-ZDD: A Feature-Enhanced Inverse Mapping Framework for Zero-Day Attack Detection in Internet of Vehicles
by Tao Chen, Gongyu Zhang and Bingfeng Xu
Sensors 2025, 25(19), 6197; https://doi.org/10.3390/s25196197 (registering DOI) - 6 Oct 2025
Abstract
In the Internet of Vehicles (IoV), zero-day attacks pose a significant security threat. These attacks are characterized by unknown patterns and limited sample availability. Traditional anomaly detection methods often fail because they rely on oversimplified assumptions, hindering their ability to model complex normal [...] Read more.
In the Internet of Vehicles (IoV), zero-day attacks pose a significant security threat. These attacks are characterized by unknown patterns and limited sample availability. Traditional anomaly detection methods often fail because they rely on oversimplified assumptions, hindering their ability to model complex normal IoV behavior. This limitation results in low detection accuracy and high false alarm rates. To overcome these challenges, we propose a novel zero-day attack detection framework based on Feature-Enhanced Inverse Mapping (IM-ZDD). The framework introduces a two-stage process. In the first stage, a feature enhancement module mitigates data scarcity by employing an innovative multi-generator, multi-discriminator Conditional GAN (CGAN) with dynamic focusing loss to generate a large-scale, high-quality synthetic normal dataset characterized by sharply defined feature boundaries. In the second stage, a learning-based inverse mapping module is trained exclusively on this synthetic data. Through adversarial training, the module learns a precise inverse mapping function, thereby establishing a compact and expressive representation of normal behavior. During detection, samples that cannot be effectively mapped are identified as attacks. Experimental results on the F2MD platform show IM-ZDD achieves superior accuracy and a low false alarm rate, yielding an average AUC of 98.25% and F1-Score of 96.41%, surpassing state-of-the-art methods by up to 4.4 and 10.8 percentage points. Moreover, with a median detection latency of only 3 ms, the framework meets real-time requirements, providing a robust solution for zero-day attack detection in data-scarce IoV environments. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

23 pages, 24211 KB  
Article
BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity
by Huihui Sun and Rui-Feng Wang
Horticulturae 2025, 11(10), 1202; https://doi.org/10.3390/horticulturae11101202 - 5 Oct 2025
Abstract
Accurate real-time detection of blueberry maturity is vital for automated harvesting. However, existing methods often fail under occlusion, variable lighting, and dense fruit distribution, leading to reduced accuracy and efficiency. To address these challenges, we designed a lightweight deep learning framework that integrates [...] Read more.
Accurate real-time detection of blueberry maturity is vital for automated harvesting. However, existing methods often fail under occlusion, variable lighting, and dense fruit distribution, leading to reduced accuracy and efficiency. To address these challenges, we designed a lightweight deep learning framework that integrates improved feature extraction, attention-based fusion, and progressive transfer learning to enhance robustness and adaptability To overcome these challenges, we propose BMDNet-YOLO, a lightweight model based on an enhanced YOLOv8n. The backbone incorporates a FasterPW module with parallel convolution and point-wise weighting to improve feature extraction efficiency and robustness. A coordinate attention (CA) mechanism in the neck enhances spatial-channel feature selection, while adaptive weighted concatenation ensures efficient multi-scale fusion. The detection head employs a heterogeneous lightweight structure combining group and depthwise separable convolutions to minimize parameter redundancy and boost inference speed. Additionally, a three-stage transfer learning framework (source-domain pretraining, cross-domain adaptation, and target-domain fine-tuning) improves generalization. Experiments on 8,250 field-collected and augmented images show BMDNet-YOLO achieves 95.6% mAP@0.5, 98.27% precision, and 94.36% recall, surpassing existing baselines. This work offers a robust solution for deploying automated blueberry harvesting systems. Full article
18 pages, 1278 KB  
Article
MixModel: A Hybrid TimesNet–Informer Architecture with 11-Dimensional Time Features for Enhanced Traffic Flow Forecasting
by Chun-Chi Ting, Kuan-Ting Wu, Hui-Ting Christine Lin and Shinfeng Lin
Mathematics 2025, 13(19), 3191; https://doi.org/10.3390/math13193191 - 5 Oct 2025
Abstract
The growing demand for reliable long-term traffic forecasting has become increasingly critical in the development of intelligent transportation systems (ITS). However, capturing both strong periodic patterns and long-range temporal dependencies presents a significant challenge, and existing approaches often fail to balance these factors [...] Read more.
The growing demand for reliable long-term traffic forecasting has become increasingly critical in the development of intelligent transportation systems (ITS). However, capturing both strong periodic patterns and long-range temporal dependencies presents a significant challenge, and existing approaches often fail to balance these factors effectively, resulting in unstable or suboptimal predictions. To address this issue, we propose MixModel , a novel hybrid framework that integrates TimesNet and Informer to leverage their complementary strengths. Specifically, the TimesNet branch extracts periodic variations through frequency-domain decomposition and multi-scale convolution, while the Informer branch employs ProbSparse attention to efficiently capture long-range dependencies across extended horizons. By unifying these capabilities, MixModel achieves enhanced forecasting accuracy, robustness, and stability compared with state-of-the-art baselines. Extensive experiments on real-world highway datasets demonstrate the effectiveness of our model, highlighting its potential for advancing large-scale urban traffic management and planning. To the best of our knowledge, MixModel is the first hybrid framework that explicitly bridges frequency-domain periodic modeling and efficient long-range dependency learning for long-term traffic forecasting, establishing a new benchmark for future research in Intelligent Transportation Systems. Full article
14 pages, 1517 KB  
Article
Temporal Diversity Shifts in Subtidal Tubastraea-Invaded Rocky Shores of Arraial do Cabo Bay, Southeastern Brazil
by Bruno Pereira Masi, Marcio Alves Siqueira, Alexandre R. da Silva, Luciana Altvater, Alexandre D. Kassuga and Ricardo Coutinho
Diversity 2025, 17(10), 695; https://doi.org/10.3390/d17100695 (registering DOI) - 4 Oct 2025
Abstract
Invasive species can alter community composition and ecosystem functioning. In the subtidal rocky shores of Arraial do Cabo Bay, southeastern Brazil, the invasive coral Tubastraea spp. has established populations, raising concerns about long-term impacts on native benthic communities. This study investigates temporal shifts [...] Read more.
Invasive species can alter community composition and ecosystem functioning. In the subtidal rocky shores of Arraial do Cabo Bay, southeastern Brazil, the invasive coral Tubastraea spp. has established populations, raising concerns about long-term impacts on native benthic communities. This study investigates temporal shifts in β-diversity across 44 fixed plots containing Tubastraea spp., monitored over 383 days. Underwater photographic surveys and multivariate analyses identified nine distinct benthic community types, each forming mosaic structures of sessile organisms. Temporal β-diversity analyses revealed that only the group characterized by Tubastraea, crustose calcareous algae and the zoantharian Palythoa caribaeorum showed significant differences between species gains and losses over time, suggesting temporal-scale dependency. Key contributors to community dissimilarity included P. caribaeorum, crustose calcareous algae, turf, the sponge genus Darwinella, and Tubastraea. This study highlights the importance of considering both spatial and temporal heterogeneity when assessing the ecological impact of marine invasive species. Our findings underscore the need for multi-scale monitoring to fully understand the dynamics of tropical subtidal ecosystems under biological invasion. While numerous studies report a correlation between Tubastraea abundance and shifts in ecological diversity, this relationship may be weak, as critical drivers such as the complexity of community organization are rarely accounted for. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

15 pages, 3389 KB  
Article
Photovoltaic Decomposition Method Based on Multi-Scale Modeling and Multi-Feature Fusion
by Zhiheng Xu, Peidong Chen, Ran Cheng, Yao Duan, Qiang Luo, Huahui Zhang, Zhenning Pan and Wencong Xiao
Energies 2025, 18(19), 5271; https://doi.org/10.3390/en18195271 (registering DOI) - 4 Oct 2025
Abstract
Deep learning-based Non-Intrusive Load Monitoring (NILM) methods have been widely applied to residential load identification. However, photovoltaic (PV) loads exhibit strong non-stationarity, high dependence on weather conditions, and strong coupling with multi-source data, which limit the accuracy and generalization of existing models. To [...] Read more.
Deep learning-based Non-Intrusive Load Monitoring (NILM) methods have been widely applied to residential load identification. However, photovoltaic (PV) loads exhibit strong non-stationarity, high dependence on weather conditions, and strong coupling with multi-source data, which limit the accuracy and generalization of existing models. To address these challenges, this paper proposes a multi-scale and multi-feature fusion framework for PV disaggregation, consisting of three modules: Multi-Scale Time Series Decomposition (MTD), Multi-Feature Fusion (MFF), and Temporal Attention Decomposition (TAD). These modules jointly capture short-term fluctuations, long-term trends, and deep dependencies across multi-source features. Experiments were conducted on real residential datasets from southern China. Results show that, compared with representative baselines such as SGN-Conv and MAT-Conv, the proposed method reduces MAE by over 60% and SAE by nearly 70% for some users, and it achieves more than 45% error reduction in cross-user tests. These findings demonstrate that the proposed approach significantly enhances both accuracy and generalization in PV load disaggregation. Full article
Show Figures

Figure 1

28 pages, 4490 KB  
Article
Conflict-Free 3D Path Planning for Multi-UAV Based on Jump Point Search and Incremental Update
by Yuan Lu, De Yan, Zhiqiang Wan and Chuanyan Feng
Drones 2025, 9(10), 688; https://doi.org/10.3390/drones9100688 (registering DOI) - 4 Oct 2025
Abstract
To address the challenges of frequent path conflicts and prolonged computation times in path planning for large-scale multi-UAV operations within urban low-altitude airspace, this study proposes a conflict-free path planning method integrating 3D Jump Point Search (JPS) and an incremental update mechanism. A [...] Read more.
To address the challenges of frequent path conflicts and prolonged computation times in path planning for large-scale multi-UAV operations within urban low-altitude airspace, this study proposes a conflict-free path planning method integrating 3D Jump Point Search (JPS) and an incremental update mechanism. A hierarchical algorithmic architecture is employed: the lower level utilizes the 3D-JPS algorithm for efficient single-UAV path planning, while the upper level implements a conflict detection and resolution mechanism based on a dual-objective cost function and incremental updates for multi-UAV coordination. Large-scale UAV path planning simulations were conducted using a 3D grid model representing urban low-altitude airspace, with performance comparisons made against traditional methods. The results demonstrate that the proposed algorithm significantly reduces the number of path search nodes and exhibits superior computational efficiency for large-scale UAV path planning. Specifically, under high-density scenarios of 120 UAVs per square kilometer, the proposed DOCBS + IJPS method can reduce the conflict-free path planning time by 35.56% compared to the traditional CBS + A* conflict search and resolution algorithm. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

28 pages, 1334 KB  
Article
A Scalable Two-Level Deep Reinforcement Learning Framework for Joint WIP Control and Job Sequencing in Flow Shops
by Maria Grazia Marchesano, Guido Guizzi, Valentina Popolo and Anastasiia Rozhok
Appl. Sci. 2025, 15(19), 10705; https://doi.org/10.3390/app151910705 - 3 Oct 2025
Abstract
Effective production control requires aligning strategic planning with real-time execution under dynamic and stochastic conditions. This study proposes a scalable dual-agent Deep Reinforcement Learning (DRL) framework for the joint optimisation of Work-In-Process (WIP) control and job sequencing in flow-shop environments. A strategic DQN [...] Read more.
Effective production control requires aligning strategic planning with real-time execution under dynamic and stochastic conditions. This study proposes a scalable dual-agent Deep Reinforcement Learning (DRL) framework for the joint optimisation of Work-In-Process (WIP) control and job sequencing in flow-shop environments. A strategic DQN agent regulates global WIP to meet throughput targets, while a tactical DQN agent adaptively selects dispatching rules at the machine level on an event-driven basis. Parameter sharing in the tactical agent ensures inherent scalability, overcoming the combinatorial complexity of multi-machine scheduling. The agents coordinate indirectly via a shared simulation environment, learning to balance global stability with local responsiveness. The framework is validated through a discrete-event simulation integrating agent-based modelling, demonstrating consistent performance across multiple production scales (5–15 machines) and process time variabilities. Results show that the approach matches or surpasses analytical benchmarks and outperforms static rule-based strategies, highlighting its robustness, adaptability, and potential as a foundation for future Hierarchical Reinforcement Learning applications in manufacturing. Full article
(This article belongs to the Special Issue Intelligent Manufacturing and Production)
22 pages, 605 KB  
Article
Urban Climate Integration Framework (UCIF): A Multi-Scale, Phased Model
by Spenser Robinson
Land 2025, 14(10), 1990; https://doi.org/10.3390/land14101990 - 3 Oct 2025
Abstract
Urban climate readiness requires multi-dimensional implementation strategies that operate effectively across both spatial scales and time horizons. This article introduces a multi-scale, phased model designed to support integrated climate action by distinguishing between metropolitan and building levels and addressing three core domains: physical [...] Read more.
Urban climate readiness requires multi-dimensional implementation strategies that operate effectively across both spatial scales and time horizons. This article introduces a multi-scale, phased model designed to support integrated climate action by distinguishing between metropolitan and building levels and addressing three core domains: physical resilience, decarbonization, and social/community engagement. The framework conceptualizes metropolitan and building scales as analytically distinct but operationally linked, allowing strategies to reflect the different systems, stakeholders, and capacities at each level. It also outlines a three-phase progression—Initial (assessment and goal setting), Readiness (planning and implementation), and Steady-State (monitoring and iterative adjustment)—to support staged, adaptive deployment. Each phase includes sample metrics and SMART goals that can be tailored to local context and tracked over time. By integrating theoretical insights with practical implementation tools, the framework offers a flexible yet rigorous approach for advancing urban sustainability. It emphasizes the importance of aligning technical interventions with institutional capacity and community participation to enhance effectiveness and equity. This model contributes to both planning theory and applied sustainability efforts by providing a structured pathway for cities to enhance climate readiness across systems and scales. Full article
Show Figures

Figure 1

37 pages, 10380 KB  
Article
FEWheat-YOLO: A Lightweight Improved Algorithm for Wheat Spike Detection
by Hongxin Wu, Weimo Wu, Yufen Huang, Shaohua Liu, Yanlong Liu, Nannan Zhang, Xiao Zhang and Jie Chen
Plants 2025, 14(19), 3058; https://doi.org/10.3390/plants14193058 - 3 Oct 2025
Abstract
Accurate detection and counting of wheat spikes are crucial for yield estimation and variety selection in precision agriculture. However, challenges such as complex field environments, morphological variations, and small target sizes hinder the performance of existing models in real-world applications. This study proposes [...] Read more.
Accurate detection and counting of wheat spikes are crucial for yield estimation and variety selection in precision agriculture. However, challenges such as complex field environments, morphological variations, and small target sizes hinder the performance of existing models in real-world applications. This study proposes FEWheat-YOLO, a lightweight and efficient detection framework optimized for deployment on agricultural edge devices. The architecture integrates four key modules: (1) FEMANet, a mixed aggregation feature enhancement network with Efficient Multi-scale Attention (EMA) for improved small-target representation; (2) BiAFA-FPN, a bidirectional asymmetric feature pyramid network for efficient multi-scale feature fusion; (3) ADown, an adaptive downsampling module that preserves structural details during resolution reduction; and (4) GSCDHead, a grouped shared convolution detection head for reduced parameters and computational cost. Evaluated on a hybrid dataset combining GWHD2021 and a self-collected field dataset, FEWheat-YOLO achieved a COCO-style AP of 51.11%, AP@50 of 89.8%, and AP scores of 18.1%, 50.5%, and 61.2% for small, medium, and large targets, respectively, with an average recall (AR) of 58.1%. In wheat spike counting tasks, the model achieved an R2 of 0.941, MAE of 3.46, and RMSE of 6.25, demonstrating high counting accuracy and robustness. The proposed model requires only 0.67 M parameters, 5.3 GFLOPs, and 1.6 MB of storage, while achieving an inference speed of 54 FPS. Compared to YOLOv11n, FEWheat-YOLO improved AP@50, AP_s, AP_m, AP_l, and AR by 0.53%, 0.7%, 0.7%, 0.4%, and 0.3%, respectively, while reducing parameters by 74%, computation by 15.9%, and model size by 69.2%. These results indicate that FEWheat-YOLO provides an effective balance between detection accuracy, counting performance, and model efficiency, offering strong potential for real-time agricultural applications on resource-limited platforms. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
21 pages, 899 KB  
Article
Gated Fusion Networks for Multi-Modal Violence Detection
by Bilal Ahmad, Mustaqeem Khan and Muhammad Sajjad
AI 2025, 6(10), 259; https://doi.org/10.3390/ai6100259 - 3 Oct 2025
Abstract
Public safety and security require an effective monitoring system to detect violence through visual, audio, and motion data. However, current methods often fail to utilize the complementary benefits of visual and auditory modalities, thereby reducing their overall effectiveness. To enhance violence detection, we [...] Read more.
Public safety and security require an effective monitoring system to detect violence through visual, audio, and motion data. However, current methods often fail to utilize the complementary benefits of visual and auditory modalities, thereby reducing their overall effectiveness. To enhance violence detection, we present a novel multimodal method in this paper that detects motion, audio, and visual information from the input to recognize violence. We designed a framework comprising two specialized components: a gated fusion module and a multi-scale transformer, which enables the efficient detection of violence in multimodal data. To ensure a seamless and effective integration of features, a gated fusion module dynamically adjusts the contribution of each modality. At the same time, a multi-modal transformer utilizes multiple instance learning (MIL) to identify violent behaviors more accurately from input data by capturing complex temporal correlations. Our model fully integrates multi-modal information using these techniques, improving the accuracy of violence detection. In this study, we found that our approach outperformed state-of-the-art methods with an accuracy of 86.85% using the XD-Violence dataset, thereby demonstrating the potential of multi-modal fusion in detecting violence. Full article
15 pages, 2076 KB  
Article
Forecasting Urban Water Demand Using Multi-Scale Artificial Neural Networks with Temporal Lag Optimization
by Elias Farah and Isam Shahrour
Water 2025, 17(19), 2886; https://doi.org/10.3390/w17192886 - 3 Oct 2025
Abstract
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization [...] Read more.
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization to predict daily and hourly water consumption across heterogeneous user profiles. Using high-resolution smart metering data from the SunRise Smart City Project in Lille, France, four demand nodes were analyzed: a District Metered Area (DMA), a student residence, a university restaurant, and an engineering school. Results demonstrate that incorporating lagged consumption variables substantially improves prediction accuracy, with daily R2 values increasing from 0.490 to 0.827 at the DMA and from 0.420 to 0.806 at the student residence. At the hourly scale, the 1-h lag model consistently outperformed other configurations, achieving R2 up to 0.944 at the DMA, thus capturing both peak and off-peak consumption dynamics. The findings confirm that short-term autocorrelation is a dominant driver of demand variability, and that ANN-based forecasting enhanced by temporal lag features provides a robust, computationally efficient tool for real-time water network management. Beyond improving forecasting performance, the proposed methodology supports operational applications such as leakage detection, anomaly identification, and demand-responsive planning, contributing to more sustainable and resilient urban water systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

20 pages, 3740 KB  
Article
Wildfire Target Detection Algorithms in Transmission Line Corridors Based on Improved YOLOv11_MDS
by Guanglun Lei, Jun Dong, Yi Jiang, Li Tang, Li Dai, Dengyong Cheng, Chuang Chen, Daochun Huang, Tianhao Peng, Biao Wang and Yifeng Lin
Appl. Sci. 2025, 15(19), 10688; https://doi.org/10.3390/app151910688 - 3 Oct 2025
Abstract
To address the issues of small-target missed detection, false alarms from cloud/fog interference, and low computational efficiency in traditional wildfire detection for transmission line corridors, this paper proposes a YOLOv11_MDS detection model by integrating Multi-Scale Convolutional Attention (MSCA) and Distribution-Shifted Convolution (DSConv). The [...] Read more.
To address the issues of small-target missed detection, false alarms from cloud/fog interference, and low computational efficiency in traditional wildfire detection for transmission line corridors, this paper proposes a YOLOv11_MDS detection model by integrating Multi-Scale Convolutional Attention (MSCA) and Distribution-Shifted Convolution (DSConv). The MSCA module is embedded in the backbone and neck to enhance multi-scale dynamic feature extraction of flame and smoke through collaborative depth strip convolution and channel attention. The DSConv with a quantized dynamic shift mechanism is introduced to significantly reduce computational complexity while maintaining detection accuracy. The improved model, as shown in experiments, achieves an mAP@0.5 of 88.21%, which is 2.93 percentage points higher than the original YOLOv11. It also demonstrates a 3.33% increase in recall and a frame rate of 242 FPS, with notable improvements in detecting small targets (pixel occupancy < 1%). Generalization tests demonstrate mAP improvements of 0.4% and 0.7% on benchmark datasets, effectively resolving false/missed detection in complex backgrounds. This study provides an engineering solution for real-time wildfire monitoring in transmission lines with balanced accuracy and efficiency. Full article
Show Figures

Figure 1

26 pages, 12288 KB  
Article
An Optimal Scheduling Method for Power Grids in Extreme Scenarios Based on an Information-Fusion MADDPG Algorithm
by Xun Dou, Cheng Li, Pengyi Niu, Dongmei Sun, Quanling Zhang and Zhenlan Dou
Mathematics 2025, 13(19), 3168; https://doi.org/10.3390/math13193168 - 3 Oct 2025
Abstract
With the large-scale integration of renewable energy into distribution networks, the intermittency and uncertainty of renewable generation pose significant challenges to the voltage security of the power grid under extreme scenarios. To address this issue, this paper proposes an optimal scheduling method for [...] Read more.
With the large-scale integration of renewable energy into distribution networks, the intermittency and uncertainty of renewable generation pose significant challenges to the voltage security of the power grid under extreme scenarios. To address this issue, this paper proposes an optimal scheduling method for power grids under extreme scenarios, based on an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. By simulating potential extreme scenarios in the power system and formulating targeted secure scheduling strategies, the proposed method effectively reduces trial-and-error costs. First, the time series clustering method is used to construct the extreme scene dataset based on the principle of maximizing scene differences. Then, a mathematical model of power grid optimal dispatching is constructed with the objective of ensuring voltage security, with explicit constraints and environmental settings. Then, an interactive scheduling model of distribution network resources is designed based on a multi-agent algorithm, including the construction of an agent state space, an action space, and a reward function. Then, an improved MADDPG multi-agent algorithm based on specific information fusion is proposed, and a hybrid optimization experience sampling strategy is developed to enhance the training efficiency and stability of the model. Finally, the effectiveness of the proposed method is verified by the case studies of the distribution network system. Full article
(This article belongs to the Special Issue Artificial Intelligence and Game Theory)
Show Figures

Figure 1

23 pages, 15968 KB  
Article
YOLOv8n-RMB: UAV Imagery Rubber Milk Bowl Detection Model for Autonomous Robots’ Natural Latex Harvest
by Yunfan Wang, Lin Yang, Pengze Zhong, Xin Yang, Chuanchuan Su, Yi Zhang and Aamir Hussain
Agriculture 2025, 15(19), 2075; https://doi.org/10.3390/agriculture15192075 - 3 Oct 2025
Abstract
Natural latex harvest is pushing the boundaries of unmanned agricultural production in rubber milk collection via integrated robots in hilly and mountainous regions, such as the fixed and mobile tapping robots widely deployed in forests. As there are bad working conditions and complex [...] Read more.
Natural latex harvest is pushing the boundaries of unmanned agricultural production in rubber milk collection via integrated robots in hilly and mountainous regions, such as the fixed and mobile tapping robots widely deployed in forests. As there are bad working conditions and complex natural environments surrounding rubber trees, the real-time and precision assessment of rubber milk yield status has emerged as a key requirement for improving the efficiency and autonomous management of these kinds of large-scale automatic tapping robots. However, traditional manual rubber milk yield status detection methods are limited in their ability to operate effectively under conditions involving complex terrain, dense forest backgrounds, irregular surface geometries of rubber milk, and the frequent occlusion of rubber milk bowls (RMBs) by vegetation. To address this issue, this study presents an unmanned aerial vehicle (UAV) imagery rubber milk yield state detection method, termed YOLOv8n-RMB, in unstructured field environments instead of manual watching. The proposed method improved the original YOLOv8n by integrating structural enhancements across the backbone, neck, and head components of the network. First, a receptive field attention convolution (RFACONV) module is embedded within the backbone to improve the model’s ability to extract target-relevant features in visually complex environments. Second, within the neck structure, a bidirectional feature pyramid network (BiFPN) is applied to strengthen the fusion of features across multiple spatial scales. Third, in the head, a content-aware dynamic upsampling module of DySample is adopted to enhance the reconstruction of spatial details and the preservation of object boundaries. Finally, the detection framework is integrated with the BoT-SORT tracking algorithm to achieve continuous multi-object association and dynamic state monitoring based on the filling status of RMBs. Experimental evaluation shows that the proposed YOLOv8n-RMB model achieves an AP@0.5 of 94.9%, an AP@0.5:0.95 of 89.7%, a precision of 91.3%, and a recall of 91.9%. Moreover, the performance improves by 2.7%, 2.9%, 3.9%, and 9.7%, compared with the original YOLOv8n. Plus, the total number of parameters is kept within 3.0 million, and the computational cost is limited to 8.3 GFLOPs. This model meets the requirements of yield assessment tasks by conducting computations in resource-limited environments for both fixed and mobile tapping robots in rubber plantations. Full article
(This article belongs to the Special Issue Plant Diagnosis and Monitoring for Agricultural Production)
Show Figures

Figure 1

18 pages, 716 KB  
Article
Metacognitive Modulation of Cognitive-Emotional Dynamics Under Social-Evaluative Stress: An Integrated Behavioural–EEG Study
by Katia Rovelli, Angelica Daffinà and Michela Balconi
Appl. Sci. 2025, 15(19), 10678; https://doi.org/10.3390/app151910678 - 2 Oct 2025
Abstract
Background/Objectives: Decision-making under socially evaluative stress engages a dynamic interplay between cognitive control, emotional appraisal, and motivational systems. Contemporary models of multi-level co-regulation posit that these systems operate in reciprocal modulation, redistributing processing resources to prioritise either rapid socio-emotional alignment or deliberate evaluation [...] Read more.
Background/Objectives: Decision-making under socially evaluative stress engages a dynamic interplay between cognitive control, emotional appraisal, and motivational systems. Contemporary models of multi-level co-regulation posit that these systems operate in reciprocal modulation, redistributing processing resources to prioritise either rapid socio-emotional alignment or deliberate evaluation depending on situational demands. Methods: Adopting a neurofunctional approach, a novel dual-task protocol combining the MetaCognition–Stress Convergence Paradigm (MSCP) and the Social Stress Test Neuro-Evaluation (SST-NeuroEval), a simulated social–evaluative speech task calibrated across progressive emotional intensities, was implemented. Twenty professionals from an HR consultancy firm participated in the study, with concurrent recording of frontal-temporoparietal electroencephalography (EEG) and bespoke psychometric indices: the MetaStress-Insight Index and the TimeSense Scale. Results: Findings revealed that decision contexts with higher socio-emotional salience elicited faster, emotionally guided choices (mean RT difference emotional vs. cognitive: −220 ms, p = 0.026), accompanied by oscillatory signatures (frontal delta: F(1,19) = 13.30, p = 0.002; gamma: F(3,57) = 14.93, p ≤ 0.001) consistent with intensified socio-emotional integration and contextual reconstruction. Under evaluative stress, oscillatory activity shifted across phases, reflecting the transition from anticipatory regulation to reactive engagement, in line with models of phase-dependent stress adaptation. Across paradigms, convergences emerged between decision orientation, subjective stress, and oscillatory patterns, supporting the view that cognitive–emotional regulation operates as a coordinated, multi-level system. Conclusions: These results underscore the importance of integrating behavioural, experiential, and neural indices to characterise how individuals adaptively regulate decision-making under socially evaluative stress and highlight the potential of dual-paradigm designs for advancing theory and application in cognitive–affective neuroscience. Full article
(This article belongs to the Special Issue Brain Functional Connectivity: Prediction, Dynamics, and Modeling)
Show Figures

Figure 1

Back to TopTop