Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = multi-wavelength control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3577 KB  
Article
Hyperspectral Remote Sensing and Artificial Intelligence for High-Resolution Soil Moisture Prediction
by Ki-Sung Kim, Junwon Lee, Jeongjun Park, Gigwon Hong and Kicheol Lee
Water 2025, 17(21), 3069; https://doi.org/10.3390/w17213069 - 27 Oct 2025
Viewed by 212
Abstract
Reliable field estimation of soil moisture supports hydrology and water resources management. This study develops a drone-based hyperspectral approach in which visible and near-infrared reflectance is paired one-to-one with gravimetric water content measured by oven drying, yielding 1000 matched samples. After standardization, outlier [...] Read more.
Reliable field estimation of soil moisture supports hydrology and water resources management. This study develops a drone-based hyperspectral approach in which visible and near-infrared reflectance is paired one-to-one with gravimetric water content measured by oven drying, yielding 1000 matched samples. After standardization, outlier control, ranked wavelength selection, and light feature engineering, several predictors were evaluated. Conventional machine learning methods, including simple and multiple regression and tree-based ensembles, were limited by band collinearity and piecewise approximations and therefore failed to meet the accuracy target. Gradient boosting reached the target but used different trade-offs in variable sensitivity. An artificial neural network with three hidden layers, rectified linear unit activations, and dropout was trained using a feature count sweep and early stopping. With ten predictors, the model achieved a coefficient of determination of 0.9557, demonstrating accurate mapping from hyperspectral reflectance to gravimetric water content and providing a reproducible framework suitable for larger, multi date acquisitions and operational decision support. Full article
Show Figures

Figure 1

8 pages, 4158 KB  
Article
A Wideband Multi-Linear Polarization Reconfigurable Antenna with Artificial Magnetic Conductor
by Shixing Yu, Kaisheng Yang and Yingmeng Zhang
Electronics 2025, 14(21), 4170; https://doi.org/10.3390/electronics14214170 - 25 Oct 2025
Viewed by 153
Abstract
This paper presents a wideband multi-linear polarization reconfigurable antenna featuring five linear polarization states. We use the semi-ellipsoidal dipoles as the main radiators to broaden the operating bandwidth; the states of linear polarizations are switched by controlling the ON/OFF of PIN diodes between [...] Read more.
This paper presents a wideband multi-linear polarization reconfigurable antenna featuring five linear polarization states. We use the semi-ellipsoidal dipoles as the main radiators to broaden the operating bandwidth; the states of linear polarizations are switched by controlling the ON/OFF of PIN diodes between feeding pads and dipoles to excite a specific pair of dipoles. A 7 × 7 AMC array is added below the antenna to obtain a small height of 0.14 λ00 is the free space wavelength at the operating frequency). Prototypes of the designed antenna are fabricated, and experimental results illustrate that the proposed antenna yields an impedance bandwidth of 50% (from 2.25 GHz to 3.75 GHz) for all polarization states, stable radiation patterns, and low cross-polarization within the operating band. In addition, the maximum gain reaches 8.1 dBi. The proposed five linear-polarized switching antenna with wide band and low-profile features can be applied in reconfigurable conformal array antennas, thus flexibly realizing linear polarization reconfiguration of conformal arrays in radar and military platforms. Full article
Show Figures

Figure 1

17 pages, 3501 KB  
Article
Analysis of Dynamic Stability Control of Light Source in Immersion DUV Lithography
by Yihua Zhu, Dandan Han, Chuang Wu, Sen Deng and Yayi Wei
Micromachines 2025, 16(11), 1207; https://doi.org/10.3390/mi16111207 - 23 Oct 2025
Viewed by 362
Abstract
Immersion deep ultraviolet (DUV) lithography remains an indispensable core technology in advanced integrated circuit manufacturing, particularly when combined with multiple patterning techniques to achieve sub-10 nm feature patterning. However, at advanced technology nodes, dynamic instabilities of DUV light sources—including spectral characteristics (bandwidth fluctuations, [...] Read more.
Immersion deep ultraviolet (DUV) lithography remains an indispensable core technology in advanced integrated circuit manufacturing, particularly when combined with multiple patterning techniques to achieve sub-10 nm feature patterning. However, at advanced technology nodes, dynamic instabilities of DUV light sources—including spectral characteristics (bandwidth fluctuations, and center wavelength drift), coherence variations, and pulse-to-pulse energy instability—can adversely affect imaging contrast, normalized image log-slope (NILS), and critical dimension (CD) uniformity. To quantitatively assess the impact of laser parameter fluctuations on NILS and CD, this work establishes systematic physical models for imaging perturbations caused by multi-parameter laser output instabilities under immersion DUV lithography. Through simulations, we evaluate the influence of laser parameter variations on the imaging fidelity of representative line/space (L/S) and tip-to-line (T2L) structures, thereby validating the proposed perturbation model. Research demonstrates that the spectral attributes (bandwidth fluctuation and center wavelength drift), coherence variations, and pulse energy instability collectively induce non-uniform electric field intensity distribution within photoresist, degrading NILS, and amplifying CD variation, which ultimately compromise pattern fidelity and chip yield. Notably, at advanced nodes, pulse energy fluctuation exerts a significantly greater influence on imaging errors compared to bandwidth and wavelength variations. To satisfy the 10% process window requirement for 45 nm linewidths, pulse energy fluctuations should be rigorously confined within 1%. This research provides theoretical foundations and practical insights for the design of dynamic stability control of light source and process optimization of next-generation DUV light sources. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

19 pages, 2469 KB  
Article
Tuning Multi-Wavelength Reflection Properties of Porous Silicon Bragg Reflectors Using Silver-Nanoparticle-Assisted Electrochemical Etching
by Sheng-Yang Huang, Hsiao-Han Hsu, Amal Muhammed Musthafa, I-An Lin, Chia-Man Chou and Vincent K. S. Hsiao
Micromachines 2025, 16(11), 1198; https://doi.org/10.3390/mi16111198 - 22 Oct 2025
Viewed by 303
Abstract
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm [...] Read more.
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm2), the transition from single-peak to multi-peak reflection spectra was successfully achieved. The results demonstrate that at a concentration of 10 mg/mL silver nanoparticles, up to four distinct reflection bands can be obtained. A systematic investigation was conducted on the influence of etching cycles (4–20 cycles) and silver nanoparticle concentration on the optical performance and microstructure. SEM analysis revealed well-defined periodic multilayer structures, while XPS analysis confirmed the presence of metallic silver on the porous silicon surface. This work provides a simple, controllable, and cost-effective approach to the development of multifunctional photonic devices, with promising applications in laser optics, solar cells, chemical sensing, and surface-enhanced Raman scattering. Full article
(This article belongs to the Special Issue Micro-Nano Photonics: From Design and Fabrication to Application)
Show Figures

Figure 1

15 pages, 3114 KB  
Article
Impact of Extrinsic Defects in Wavelength Separation Coatings on the Process of Laser-Induced Damage
by Shichen Shen, Xinda Zhou, Yinbo Zheng, Jie Li, Tianhao Zhang, Linjie Zhao, Liqun Chai and Mingjun Chen
Micromachines 2025, 16(11), 1191; https://doi.org/10.3390/mi16111191 - 22 Oct 2025
Viewed by 254
Abstract
Wavelength separation coatings can effectively separate the fundamental frequency (1ω) and third harmonic (3ω) laser beams. However, the laser-induced damage threshold (LIDT) of the surface defect-free WS coatings for the 3ω laser is 1.68 J/cm2 (obtained in the preliminary experiment), significantly lower [...] Read more.
Wavelength separation coatings can effectively separate the fundamental frequency (1ω) and third harmonic (3ω) laser beams. However, the laser-induced damage threshold (LIDT) of the surface defect-free WS coatings for the 3ω laser is 1.68 J/cm2 (obtained in the preliminary experiment), significantly lower than the ideal LIDT of the fused silica substrate (80 J/cm2). This is directly correlated with extrinsic defects such as nanoscale defects and nodular defects introduced during the coating manufacturing process. Moreover, the damage in WS coatings caused by extrinsic defects is a complex physical process involving multiple physical phenomena such as material melting, vaporization, and ejection. The mechanism by which extrinsic defects interact with lasers to form damage is not yet fully elucidated. To address this, a multi-physics coupling model considering photoelectric, thermal and stress was established to simulate the incident laser propagation within coatings, the temperature distribution and thermal stress distribution of the coating material. This model systematically investigates the influence of defect location, type, and size on the laser-induced damage process. It is found that when a 10 nm-diameter defect is located at the 32nd layer of the coatings, the light intensity enhancement factor (LIEF) for 3ω laser can reach up to 5 times that for the 1ω laser. The variation in thermal stress induced by changes in defect size is jointly determined by the defect-induced modulation effect and the interference effect realized by the coating. This work theoretically reveals the mechanism of extrinsic defects in the laser damage. It provides effective guidance for establishing control standards for extrinsic defects during the optical coating process. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

28 pages, 3909 KB  
Article
VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers
by Nikolay N. Ledentsov, Nikolay Ledentsov, Vitaly A. Shchukin, Alexander N. Ledentsov, Oleg Yu. Makarov, Ilya E. Titkov, Markus Lindemann, Thomas de Adelsburg Ettmayer, Nils C. Gerhardt, Martin R. Hofmann, Xin Chen, Jason E. Hurley, Hao Dong and Ming-Jun Li
Photonics 2025, 12(10), 1037; https://doi.org/10.3390/photonics12101037 - 21 Oct 2025
Viewed by 416
Abstract
Substantial improvements in the performance of optical interconnects based on multi-mode fibers are required to support emerging single-channel data transmission rates of 200 Gb/s and 400 Gb/s. Future optical components must combine very high modulation bandwidths—supporting signaling at 100 Gbaud and 200 Gbaud—with [...] Read more.
Substantial improvements in the performance of optical interconnects based on multi-mode fibers are required to support emerging single-channel data transmission rates of 200 Gb/s and 400 Gb/s. Future optical components must combine very high modulation bandwidths—supporting signaling at 100 Gbaud and 200 Gbaud—with reduced spectral width to mitigate chromatic-dispersion-induced pulse broadening and increased brightness to further restrict flux-confining area in multi-mode fibers and thereby increase the effective modal bandwidth (EMB). A particularly promising route to improved performance within standard oxide-confined VCSEL technology is the introduction of multiple isolated or optically coupled oxide-confined apertures, which we refer to collectively as multi-aperture (MA) VCSEL arrays. We show that properly designed MA VCSELs exhibit narrow emission spectra, narrow far-field profiles and extended intrinsic modulation bandwidths, enabling longer-reach data transmission over both multi-mode (MMF) and single-mode fibers (SMF). One approach uses optically isolated apertures with lateral dimensions of approximately 2–3 µm arranged with a pitch of 10–12 µm or less. Such devices demonstrate relaxation oscillation frequencies of around 30 GHz in continuous-wave operation and intrinsic modulation bandwidths approaching 50 GHz. Compared with a conventional single-aperture VCSELs of equivalent oxide-confined area, MA designs can reduce the spectral width (root mean square values < 0.15 nm), lower series resistance (≈50 Ω) and limit junction overheating through more efficient multi-spot heat dissipation at the same total current. As each aperture lases in a single transverse mode, these devices exhibit narrow far-field patterns. In combination with well-defined spacing between emitting spots, they permit tailored restricted launch conditions in MMFs, enhancing effective modal bandwidth. In another MA approach, the apertures are optically coupled such that self-injection locking (SIL) leads to lasing in a single supermode. One may regard one of the supermodes as acting as a master mode controlling the other one. Streak-camera studies reveal post-pulse oscillations in the SIL regime at frequencies up to 100 GHz. MA VCSELs enable a favorable combination of wavelength chirp and chromatic dispersion, extending transmission distances over MMFs beyond those expected for zero-chirp sources and supporting transfer bandwidths up to 60 GHz over kilometer-length SMF links. Full article
Show Figures

Figure 1

9 pages, 1454 KB  
Article
Dual-Wavelength Phase Transition Random Lasers with Switchable Modes
by Ran Zhu, Junhua Tong, Xiaoyu Shi, Chengyou Lin and Tianrui Zhai
Crystals 2025, 15(10), 853; https://doi.org/10.3390/cryst15100853 - 30 Sep 2025
Viewed by 444
Abstract
Multi-wavelength random lasers with switchable modes have advantages in the fields of novel light source and information security. Here, we propose a dual-wavelength phase transition random laser, which can modulate lasing modes arbitrarily assisted by the phase transition hydrogel. Once the phase transition [...] Read more.
Multi-wavelength random lasers with switchable modes have advantages in the fields of novel light source and information security. Here, we propose a dual-wavelength phase transition random laser, which can modulate lasing modes arbitrarily assisted by the phase transition hydrogel. Once the phase transition occurs in hydrogel, the scattering properties of light in the random system changes, affecting the optical feedback mechanism and enabling reversible switching of the dual-wavelength random laser mode between incoherent and coherent states. More appealing, random lasing mixed incoherent mode and coherent mode have been obtained for the first time by controlling the local phase transition of the sample. Based on these properties, an information encryption system is constructed by encoding spectral fingerprints at different modes. This work provides an effective way to precisely control the output modes at different wavelengths in the multi-wavelength random laser, further expanding the application of random lasers in multifunctional light sources, color imaging, and information safety. Full article
(This article belongs to the Special Issue Organic Photonics: Organic Optical Functional Materials and Devices)
Show Figures

Figure 1

21 pages, 12217 KB  
Article
Low-Energy Nanoporous Silicon Processing Technology for Next-Generation Optoelectronic Devices
by Chao-Ching Chiang and Philip Nathaniel Immanuel
Coatings 2025, 15(9), 1090; https://doi.org/10.3390/coatings15091090 - 17 Sep 2025
Viewed by 488
Abstract
This study develops a low-energy, high-precision nanoporous silicon process technology combining electrochemical etching with multi-wavelength laser irradiation and ultrasonic vibration to precisely control the size, porosity, and distribution of the nanoporous silicon structure and examines its potential applications in next-generation optoelectronic devices. This [...] Read more.
This study develops a low-energy, high-precision nanoporous silicon process technology combining electrochemical etching with multi-wavelength laser irradiation and ultrasonic vibration to precisely control the size, porosity, and distribution of the nanoporous silicon structure and examines its potential applications in next-generation optoelectronic devices. This approach overcomes the challenges of poor pore uniformity and structural stability in conventional processes. The effects of different laser parameters, electrochemical conditions, and plasma bonding on the morphology are systematically analyzed. Additionally, the luminescence of the nanoporous silicon layer and its effectiveness in porous silicon diode devices were evaluated. Under 633 nm laser irradiation at 20 mW, the porosity reached 31.24%, exceeding that obtained with longer-wavelength lasers. The PS diode devices exhibited stable electroluminescence with a clear negative differential resistance (NDR) effect at 0~5.6 V. This technique is expected to significantly reduce energy consumption and simplify the manufacturing of silicon-based light-emitting devices. It also offers a scalable solution for next-generation silicon-based optoelectronic devices and advances the development of solid-state lighting and optoelectronics research. Full article
Show Figures

Graphical abstract

20 pages, 3854 KB  
Article
Accurate Classification of Multi-Cultivar Watermelons via GAF-Enhanced Feature Fusion Convolutional Neural Networks
by Changqing An, Maozhen Qu, Yiran Zhao, Zihao Wu, Xiaopeng Lv, Yida Yu, Zichao Wei, Xiuqin Rao and Huirong Xu
Foods 2025, 14(16), 2860; https://doi.org/10.3390/foods14162860 - 18 Aug 2025
Viewed by 582
Abstract
The online rapid classification of multi-cultivar watermelon, including seedless and seeded types, has far-reaching significance for enhancing quality control in the watermelon industry. However, interference in one-dimensional spectra affects the high-accuracy classification of multi-cultivar watermelons with similar appearances. This study proposed an innovative [...] Read more.
The online rapid classification of multi-cultivar watermelon, including seedless and seeded types, has far-reaching significance for enhancing quality control in the watermelon industry. However, interference in one-dimensional spectra affects the high-accuracy classification of multi-cultivar watermelons with similar appearances. This study proposed an innovative method integrating Gramian Angular Field (GAF), feature fusion, and Squeeze-and-Excitation (SE)-guided convolutional neural networks (CNN) based on VIS-NIR transmittance spectroscopy. First, one-dimensional spectra of 163 seedless and 160 seeded watermelons were converted into two-dimensional Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) images. Subsequently, a dual-input CNN architecture was designed to fuse discriminative features from both GASF and GADF images. Feature visualization of high-weight channels of the input images in convolutional layer revealed distinct spectral features between seedless and seeded watermelons. With the fusion of distinguishing feature information, the developed CNN model achieved a classification accuracy of 95.1% on the prediction set, outperforming traditional models based on one-dimensional spectra. Remarkably, wavelength optimization through competitive adaptive reweighted sampling (CARS) reduced GAF image generation time to 55.19% of full-wavelength processing, while improving classification accuracy to 96.3%. A better generalization of the model was demonstrated using 17 seedless and 20 seeded watermelons from other origins, with a classification accuracy of 91.9%. These findings substantiated that GAF-enhanced feature fusion CNN can significantly improve the classification accuracy of multi-cultivar watermelons, casting innovative light on fruit quality based on VIS-NIR transmittance spectroscopy. Full article
Show Figures

Figure 1

14 pages, 1971 KB  
Article
High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis
by Fangyuan Zhao, Zhigang Feng and Shuonan Shan
Sensors 2025, 25(15), 4833; https://doi.org/10.3390/s25154833 - 6 Aug 2025
Viewed by 2990
Abstract
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) [...] Read more.
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) is proposed, which addresses the major limitations of conventional spectrometers, including limited parallel detection capability, bulky structures, and insufficient spatial resolution. By integrating dispersion and focusing within a monolithic device, the system enables simultaneous acquisition across more than 2000 parallel channels within a 10 mm × 10 mm unit consisting of an f = 4 mm microlens and a 600 lines/mm blazed grating. Optimized microlens and aperture alignment allows for flexible control of the divergence angle of the incident light, and the system theoretically achieves nanometer-scale spectral resolution across a 380–780 nm wavelength range, with inter-channel measurement deviation below 1.25%. Experimental results demonstrate that this spectrometer system can theoretically support up to 2070 independently addressable subunits. At a wavelength of 638 nm, the coefficient of variation (CV) of spot spacing among array elements is as low as 1.11%, indicating high uniformity. The spectral repeatability precision is better than 1.0 nm, and after image enhancement, the standard deviation of the diffracted light shift is reduced to just 0.26 nm. The practical spectral resolution achieved is as fine as 3.0 nm. This platform supports wafer-level spectral screening of high-density Micro-LEDs, offering a practical hardware solution for high-precision industrial inline sorting, such as Micro-LED defect inspection. Full article
Show Figures

Figure 1

19 pages, 1970 KB  
Article
Multi-Objective Vibration Control of a Vehicle-Track-Bridge Coupled System Using Tuned Inerter Dampers Based on the FE-SEA Hybrid Method
by Xingxing Hu, Qingsong Feng, Min Yang and Jian Liu
Appl. Sci. 2025, 15(15), 8675; https://doi.org/10.3390/app15158675 - 5 Aug 2025
Viewed by 368
Abstract
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, [...] Read more.
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, and the accuracy and efficiency of this method are validated by comparison with the traditional finite element method (FEM). A vibration control model for track-bridge structures incorporating TIDs is designed, and the effects of the TID’s inertance, stiffness, and damping coefficients on the vertical acceleration responses of the rail and track slab are investigated in detail. The study reveals that although TIDs effectively reduce rail vibrations, they may induce adverse effects on track slab vibrations. Using the vibration acceleration amplitudes of both the rail and track slab as dual control objectives, a multi-objective optimization model is established, and the TID’s optimal parameters are determined using a multi-objective genetic algorithm. The results show that the optimized TID parameters reduce rail acceleration amplitudes by 16.43% and improve the control efficiency by 12.45%, while also addressing the negative effects on track slab vibration. The track slab’s vibration acceleration is reduced by 5.47%, and the vertical displacement and acceleration of the vehicle body are reduced by 14.22% and 47.5%, respectively, thereby enhancing passenger comfort. This study provides new insights and theoretical guidance for vibration control analysis in vehicle-track-bridge coupled systems. Full article
Show Figures

Figure 1

24 pages, 5018 KB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 - 31 Jul 2025
Viewed by 502
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

18 pages, 4914 KB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 680
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

10 pages, 1375 KB  
Review
Effects of Photobiomodulation Therapy (PBMT) in the Management of Postoperative Pain After Third Lower Molar Extraction: A Narrative Review
by Leopoldo Mauriello, Alessandro Cuozzo, Vitolante Pezzella, Vincenzo Iorio-Siciliano, Gaetano Isola, Gianrico Spagnuolo, Luca Ramaglia and Andrea Blasi
J. Clin. Med. 2025, 14(15), 5210; https://doi.org/10.3390/jcm14155210 - 23 Jul 2025
Viewed by 1746
Abstract
Background: Third lower molar (TLM) extraction is one of the most common oral surgical procedures, often accompanied by postoperative pain and inflammation. In order to treat postoperative pain, different methods are used, mainly based on painkillers. PBMT may represent an adjunct to pain [...] Read more.
Background: Third lower molar (TLM) extraction is one of the most common oral surgical procedures, often accompanied by postoperative pain and inflammation. In order to treat postoperative pain, different methods are used, mainly based on painkillers. PBMT may represent an adjunct to pain management. Objective: This narrative review aims to evaluate the efficacy of PBMT in reducing postoperative pain following TLM extraction. Methods: A comprehensive search was conducted to identify studies examining the use of PBMT for postoperative pain relief after TLM extraction. Four randomized controlled trials (RCTs) met the inclusion criteria and were analyzed qualitatively. Results: Two studies showed statistically significant reductions in pain with PBMT. Kahraman et al. reported lower pain scores in the intraoral PBMT (p = 0.001), with up to a 3.2-point reduction on the Visual Analog Scale (VAS). De Paula et al. found improved pain control using a dual-wavelength (808 + 660 nm) versus a single wavelength protocol (p = 0.031). The remaining studies showed non-significant results toward pain reduction. Conclusions: PBMT shows encouraging results in managing postoperative pain after TLM extraction, specifically with intraoral and multi-wavelength protocols. However, further studies are necessary to confirm its clinical utility. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

9 pages, 1553 KB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Cited by 1 | Viewed by 334
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop