Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (499)

Search Parameters:
Keywords = multibody simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 9119 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 (registering DOI) - 25 Aug 2025
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
24 pages, 4903 KB  
Article
Numerical Simulation and Parameter Optimization of Double-Pressing Sowing and Soil Covering Operation for Wheat
by Xiaoxiang Weng, Yu Wang, Lianjie Han, Yunhan Zou, Jieyuan Ding, Yangjie Shi, Ruihong Zhang and Xiaobo Xi
Agronomy 2025, 15(9), 2039; https://doi.org/10.3390/agronomy15092039 (registering DOI) - 25 Aug 2025
Abstract
Improving sowing quality is crucial for ensuring wheat emergence and healthy growth. To address issues of poor wheat sowing quality, such as uneven sowing depth and inadequate soil coverage, in the Yangtze River Delta region of China, this study systematically analyzed the effects [...] Read more.
Improving sowing quality is crucial for ensuring wheat emergence and healthy growth. To address issues of poor wheat sowing quality, such as uneven sowing depth and inadequate soil coverage, in the Yangtze River Delta region of China, this study systematically analyzed the effects of the implement’s structural and operational parameters on sowing quality. Based on this analysis, a double-shaft rotary tillage and double-press seeder was designed. Protrusions on the grooving press roller are used to form seed furrows, rotary tiller blades cover the seeds with soil, and the rear press roller compacts the soil. DEM-MBD (discrete element method–multibody dynamics) coupled simulations, combined with single-factor and central composite design (CCD) experiments, were conducted with seeding depth as the evaluation index and four experimental factors: the protrusion height on the press grooving roller, forward speed, seed mass in the seed box, and straw mulching amount. The optimal protrusion height was 29 mm. The effects of rotary tiller blade working depth, rotational speed, and forward speed on soil-covering mass and its coefficient of variation were evaluated through discrete element method (DEM) simulations. The optimal working depth and rotational speed were found to be 55 mm and 350 r·min−1, respectively, based on single-factor and Box–Behnken Design experiments. Field experiments based on optimized parameters showed results consistent with the simulations. The qualified rate of seeding depth decreased as forward speed increased. The optimal forward speed was 4.5 km·h−1, at which the average seeding depth was 25.7 mm, the qualified seeding depth rate was 90%, the soil-covering mass within a 50 cm2 area was 143.2 g, and the coefficient of variation was 13.21%, meeting the requirements for wheat sowing operations. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

23 pages, 3091 KB  
Article
A Multibody Modeling Approach Applied to the Redesign for Additive Manufacturing of a Load Bearing Structure
by Davide Sorli, Paolo Minetola and Stefano Mauro
Appl. Sci. 2025, 15(17), 9312; https://doi.org/10.3390/app15179312 - 25 Aug 2025
Abstract
This study addresses the critical need to enhance productivity in industrial automatic systems by optimizing the mass of moving components. The primary challenge is determining the complex, dynamic loads on structural elements, a prerequisite for effective redesign, without access to physical prototypes for [...] Read more.
This study addresses the critical need to enhance productivity in industrial automatic systems by optimizing the mass of moving components. The primary challenge is determining the complex, dynamic loads on structural elements, a prerequisite for effective redesign, without access to physical prototypes for experimental measurement. This paper presents a solution through a case study of a load-bearing pylon in a fine blanking plant, which is subject to inertial loads and shocks from pneumatic actuators and shock absorbers. To overcome this challenge, a high-fidelity multibody simulation model is developed to accurately estimate the dynamic loads on the pylon. This data is given as input to the topology optimization (TO) process, following the Design for Additive Manufacturing (DfAM) framework, to redesign the pylon for mass reduction using a Powder Bed Fusion-Laser Beam (PBF-LB). Two materials, EOS Aluminum Al2139 AM and EOS Maraging Steel MS1, are evaluated. The findings demonstrate that the integrated simulation and redesign approach is highly effective. The redesigned pylon’s performance is verified within the same simulation environment, confirming the productivity gains before manufacturing. A cost analysis revealed that the additively manufactured solution is more expensive than traditional methods, and the final choice depends on the overall productivity increase. This research validates a powerful methodology that integrates dynamic multibody analysis with topology optimization for AM. This approach is recommended in the design phase of complex industrial machinery to evaluate and quantify performance improvements and make informed decisions on the cost-effectiveness of introducing AM components without the need for physical prototyping. Full article
Show Figures

Figure 1

21 pages, 5059 KB  
Article
Experimental and Numerical Validation of an Extended FFR Model for Out-of-Plane Vibrations in Discontinuous Flexible Structures
by Sherif M. Koda, Masami Matsubara, Ahmed M. R. Fath El-Bab and Ayman A. Nada
Appl. Syst. Innov. 2025, 8(5), 118; https://doi.org/10.3390/asi8050118 - 22 Aug 2025
Viewed by 175
Abstract
Toward the innovative design of tunable structures for energy generation, this paper presents an extended Floating Frame of Reference (FFR) formulation capable of modeling slope discontinuities in flexible multibody systems—overcoming a key limitation of conventional FFR methods that assume slope continuity. The model [...] Read more.
Toward the innovative design of tunable structures for energy generation, this paper presents an extended Floating Frame of Reference (FFR) formulation capable of modeling slope discontinuities in flexible multibody systems—overcoming a key limitation of conventional FFR methods that assume slope continuity. The model is validated using a spatial double-pendulum structure composed of circular beam elements, representative of out-of-plane energy harvesting systems. To investigate the influence of boundary constraints on dynamic behavior, three electromagnetic clamping configurations—Fixed–Free–Free (XFF), Fixed–Free–Fixed (XFX), and Free–Fixed–Free (FXF)—are implemented. Tri-axial accelerometer measurements are analyzed via Fast Fourier Transform (FFT), revealing natural frequencies spanning from 38.87 Hz (lower frequency range) to 149.01 Hz (higher frequency range). For the lower frequency range, the FFR results (38.76 Hz) show a close match with the experimental prediction (38.87 Hz) and ANSYS simulation (36.49 Hz), yielding 0.28% error between FFR and experiments and 5.85% between FFR and ANSYS. For the higher frequency range, the FFR model (148.17 Hz) achieves 0.56% error with experiments (149.01 Hz) and 0.85% with ANSYS (146.91 Hz). These high correlation percentages validate the robustness and accuracy of the proposed FFR formulation. The study further shows that altering boundary conditions enables effective frequency tuning in discontinuous structures—an essential feature for the optimization of application-specific systems such as wave energy converters. This validated framework offers a versatile and reliable tool for the design of vibration-sensitive devices with geometric discontinuities. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

14 pages, 3670 KB  
Review
Historical Evolution of Heavy Machinery and a General Role of Multibody Dynamics
by Suraj Jaiswal and Mohammad Poursina
Machines 2025, 13(8), 741; https://doi.org/10.3390/machines13080741 - 20 Aug 2025
Viewed by 345
Abstract
Heavy machinery has evolved significantly in productivity, efficiency, and safety over the past century and a half, where most technological advances occurred after the 1990s. The field of multibody dynamics has significantly contributed to this development. The objective of this study is to [...] Read more.
Heavy machinery has evolved significantly in productivity, efficiency, and safety over the past century and a half, where most technological advances occurred after the 1990s. The field of multibody dynamics has significantly contributed to this development. The objective of this study is to introduce the historical evolution of heavy machinery and to analyze the general role of multibody dynamics in this evolution. The latter part of the objective is the novel contribution of this study. The historical evolution of heavy machinery is presented from the ancient times of 30–20 BC to the modern innovations of 2024. The general role of multibody dynamics in heavy machinery is identified and analyzed in five phases, from using simple kinematic models in the 1970s to real-time simulations and autonomous systems in the 2020s. This study can serve as a benchmark for future work. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 7925 KB  
Article
Development and Verification of a Centrifugal Pump Rotor Model Based on Integrated Multibody Dynamics in the ADAMS Environment
by Madina Isametova, Rollan Nussipali, Gulbarshyn Smailova, Layla Sabirova, Arailym Tursynbayeva, Laila Sagatova, Denis Tkachenko and Nazym Saidinbayeva
Appl. Sci. 2025, 15(16), 9132; https://doi.org/10.3390/app15169132 - 19 Aug 2025
Viewed by 304
Abstract
This study proposes a novel computational method, employing the integral dynamics of multibody systems to simulate the transverse vibrations of the rotor in a cantilever-type centrifugal pump. This method was applied to the kinematic assembly of the rotor and its supports, with the [...] Read more.
This study proposes a novel computational method, employing the integral dynamics of multibody systems to simulate the transverse vibrations of the rotor in a cantilever-type centrifugal pump. This method was applied to the kinematic assembly of the rotor and its supports, with the latter modeled as springs possessing stiffness and damping properties equivalent to those of real bearings supporting the shaft in an actual design. To investigate transverse vibrations within the system, three key observation points were defined—at the locations of the left and right bearings, as well as at the rotor’s center of mass—to allow for a thorough dynamic analysis. Additionally, the influence of motor rotational speed and the impeller’s eccentricity on the transverse vibrations of the supports and the shaft was examined. The results have revealed that transverse vibrations significantly affect the system’s dynamics at lower rotational speeds, leading to the classification of the shaft as flexible. As the rotational speed increases, the system exhibits enhanced dynamic stability. Furthermore, it was found that for impellers with a diameter less than 300 mm, the unbalanced forces are negligible and can be disregarded in pump design. To reduce vibration levels, an elastic damping ring was selected and incorporated into the system. This novel method provides an effective tool for analyzing the transverse vibrations of centrifugal pump rotors and for optimizing vibration mitigation strategies. Full article
Show Figures

Figure 1

19 pages, 1197 KB  
Article
Adaptive Learning Gain-Based Robust Attitude Control for Satellites with Time-Varying External Disturbances
by Sesun You
Electronics 2025, 14(16), 3298; https://doi.org/10.3390/electronics14163298 - 19 Aug 2025
Viewed by 160
Abstract
Accurate and robust satellite attitude control is essential for a wide range of scientific and commercial space missions, including Earth observation, communication, and navigation. However, maintaining consistent tracking performance remains challenging when external disturbances are unknown, time-varying, or difficult to model accurately. This [...] Read more.
Accurate and robust satellite attitude control is essential for a wide range of scientific and commercial space missions, including Earth observation, communication, and navigation. However, maintaining consistent tracking performance remains challenging when external disturbances are unknown, time-varying, or difficult to model accurately. This paper proposes an adaptive learning gain (ALG)-based nonlinear control framework for satellite attitude control under such uncertain conditions. The proposed method integrates a backstepping design with an ALG mechanism that dynamically adjusts control gains in real time according to the actual tracking error, without requiring prior knowledge of disturbance characteristics or extensive gain tuning. Unlike conventional adaptive or disturbance observer-based approaches, the controller guarantees that tracking errors remain within user-defined performance bounds while reducing excessive control effort. The effectiveness of the proposed scheme is validated through detailed simulations of a Multibody satellite model implemented in MATLAB/Simulink(R2024a),demonstrating improved tracking accuracy, adaptability, and control efficiency under significant disturbance variations. The results suggest that the proposed framework offers a systematic and practical solution for attitude control in aerospace applications where disturbance environments are highly uncertain. Full article
Show Figures

Figure 1

28 pages, 5564 KB  
Article
Virtual Model Development and Control for an EV3 BallBot Robotic System
by Gerardo Escandon-Esparza and Francisco Jurado
Processes 2025, 13(8), 2616; https://doi.org/10.3390/pr13082616 - 18 Aug 2025
Viewed by 495
Abstract
In this paper, the virtual model development and control for a BallBot Robotic System (BRS) are addressed. A virtual three-dimensional (3-D) EV3 BRS (EV3BRS) model is here developed through the Simscape Multibody environment from a BRS designed using the kit LEGO [...] Read more.
In this paper, the virtual model development and control for a BallBot Robotic System (BRS) are addressed. A virtual three-dimensional (3-D) EV3 BRS (EV3BRS) model is here developed through the Simscape Multibody environment from a BRS designed using the kit LEGO® MINDSTORMS® EV3. The mathematical model from the BRS is obtained through the Euler–Lagrange approach and used as the foundation to develop the EV3BRS Simscape model. The electrical model for the motors is derived through Kirchhoff’s laws. To verify the dynamics of the EV3BRS Simscape model, a Takagi–Sugeno Fuzzy Controller (TSFC) is designed using the Parallel Distributed Compensation (PDC) technique. Control gains are computed via Linear Matrix Inequalities (LMIs). To test the EV3BRS Simscape model under disturbances, an input voltage anomaly is considered. So, adding an H attenuation to the TSFC ensures that the EV3BRS Simscape model faces these kind of anomalies. Simulation results confirm that the TSFC with H attenuation improves the performance under anomalies at the input in contrast with the nominal TSFC, although this latter can maintain the body of the system near the upright position also. The dynamics from the EV3BRS Simscape model here developed allow us to realize how the real system will behave. Full article
(This article belongs to the Special Issue Modeling and Simulation of Robot Intelligent Control System)
Show Figures

Figure 1

30 pages, 6817 KB  
Article
Numerical Study on Non-Icebreaking Ship Maneuvering in Floating Ice Based on Coupled NDEM–MMG Modeling
by Deling Wang, Luyuan Zou, Zhiheng Zhang and Xinqiang Chen
J. Mar. Sci. Eng. 2025, 13(8), 1578; https://doi.org/10.3390/jmse13081578 - 17 Aug 2025
Viewed by 251
Abstract
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the [...] Read more.
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the three-degree-of-freedom MMG model for ship dynamics. The framework was applied to an S175 container ship, and numerical simulations were conducted for turning circle and Zig-Zag maneuvers under varying ice concentrations (0–60%), floe sizes, and rudder angles. NDEM efficiently handles complex, high-frequency multi-body collisions with larger time steps compared to conventional DEM or CFD–DEM approaches, enabling large-scale simulations of realistic ice conditions. Results indicate that increasing ice concentration from 0% to 60% reduces the turning diameter from 4.11L to 3.21L and decreases steady turning speed by approximately 53%. Larger floes form stable force chains that restrict lateral motion, while higher rudder angles improve responsiveness but may induce dynamic instability. These findings improve understanding of non-icebreaking ship maneuverability in ice and provide practical guidance for safe and efficient Arctic navigation. Full article
Show Figures

Figure 1

17 pages, 4809 KB  
Article
Analysis of the Vibration Characteristics of a Moving Tracked Vehicle Considering the Powertrain Magnetorheological Damping System
by Yu Tao, Xue Rui, Feifei Liu, Jinyu Shan and Jianshu Zhang
Appl. Sci. 2025, 15(16), 8997; https://doi.org/10.3390/app15168997 - 14 Aug 2025
Viewed by 193
Abstract
With the increasing requirements for speed and travel distance in tracked vehicles on various terrains and the increasing mass ratio of powertrains, the vibration problem of high-power powertrains becomes a critical challenge. In this paper, in order to reflect on the vibration transmission [...] Read more.
With the increasing requirements for speed and travel distance in tracked vehicles on various terrains and the increasing mass ratio of powertrains, the vibration problem of high-power powertrains becomes a critical challenge. In this paper, in order to reflect on the vibration transmission relationship between the powertrain and the complex carrier, the magnetorheological damping system of a powertrain is studied in a whole vehicle model. The transfer matrix and equations of each component, including the magnetorheological mount, are derived by the Rui Method. Then, the electromechanical coupling multibody dynamic model of the vehicle–powertrain magnetorheological damping system is established. Consequently, the fast solution of vehicle–powertrain vibration characteristics under various road excitations is realized. The dynamic and static coupling characteristics of the powertrain system and the factors affecting its performance are analyzed in a moving vehicle. The simulation results indicate that the vibration reduction performance is the worst in the X-direction, whereas the vibration reduction performance is the best in the Y-direction. Under the E-class road condition at 10 m/s, the RMS acceleration reduction in the powertrain is 41.63% in the Y-direction relative to the chassis. Both the resonant frequency of the powertrain and chassis are 86.93 Hz in the Y-direction. Finally, the accuracy of the results is verified by simulation and driving experiments. The research results can provide theoretical guidance for the design and optimization of the powertrain mount of a tracked vehicle. Moreover, it provides a new technical means of studying the vibration characteristics of a complex multibody system. The simulation results demonstrate notable directional variations in the vibration attenuation performance of the powertrain damping system. Specifically, the X-direction shows the poorest vibration attenuation, whereas the Y-direction exhibits the best damping characteristics. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

18 pages, 2645 KB  
Article
Demonstration of a Condition Monitoring Scheme for a Locomotive Suspension System
by Xiaoyuan Liu and Adam Bevan
Machines 2025, 13(8), 719; https://doi.org/10.3390/machines13080719 - 12 Aug 2025
Viewed by 184
Abstract
A condition-based monitoring (CBM) system provides the possibility for the railway industry to guarantee reliability by executing prompt and low-cost maintenance. In this study, a simple model-based condition monitoring strategy for the railway vehicle suspension system is demonstrated. The method is based on [...] Read more.
A condition-based monitoring (CBM) system provides the possibility for the railway industry to guarantee reliability by executing prompt and low-cost maintenance. In this study, a simple model-based condition monitoring strategy for the railway vehicle suspension system is demonstrated. The method is based on a recursive least-square (RLS) algorithm regarding a deterministic parametric model. The fault detection approach for the locomotive suspension system is illustrated with three diagnostic modules. Multi-body simulation data are employed to validate the feasibility of this CBM strategy. The designed diagnostic model reveals that the suspension parameter estimates are consistent with the reference values. The corresponding demonstrator provides evidence that the monitoring system has potential applications and is suitable for further development. Full article
Show Figures

Figure 1

23 pages, 12563 KB  
Article
Optimization of Grouser–Track Structural Parameters for Enhanced Tractive Performance in Unmanned Amphibious Tracked Vehicles
by Yaoyao Chen, Xiaojun Xu, Wenhao Wang, Xue Gao and Congnan Yang
Actuators 2025, 14(8), 390; https://doi.org/10.3390/act14080390 - 6 Aug 2025
Viewed by 201
Abstract
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) [...] Read more.
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) govern pressure–sinkage relationships at the track base, while grouser structural parameters (height, spacing, V-shaped angle) dominate shear stress–displacement dynamics on grouser shear planes. A novel DEM-MBD coupling simulation framework was established through soil parameter calibration and multi-body dynamics modeling, demonstrating that soil thrust increases with grouser height and V-shaped angle, but decreases with spacing, with grouser height exhibiting the highest sensitivity. A soil bin test validated the numerical model’s accuracy and the coupling method’s efficacy. Parametric optimization via the Whale Optimization Algorithm (WOA) achieved a 55.86% increase in drawbar pull, 40.38% reduction in ground contact pressure and 57.33% improvement in maximum gradability. These advancements substantially improve the tractive performance of UATVs in soft beach terrains. The proposed methodology provides a systematic framework for amphibious vehicle design, integrating numerical modeling, high-fidelity simulation, and experimental validation. Full article
Show Figures

Figure 1

21 pages, 1569 KB  
Article
A Multibody-Based Benchmarking Framework for the Control of the Furuta Pendulum
by Gerardo Peláez, Pablo Izquierdo, Gustavo Peláez and Higinio Rubio
Actuators 2025, 14(8), 377; https://doi.org/10.3390/act14080377 - 31 Jul 2025
Viewed by 266
Abstract
The Furuta pendulum is a well-known benchmark in the field of underactuated mechanical systems due to its reduced number of control inputs compared to its degrees of freedom, and richly nonlinear behavior. This work addresses the challenge of accurately modeling and controlling such [...] Read more.
The Furuta pendulum is a well-known benchmark in the field of underactuated mechanical systems due to its reduced number of control inputs compared to its degrees of freedom, and richly nonlinear behavior. This work addresses the challenge of accurately modeling and controlling such a system without relying on traditional linearization techniques. In contrast to the common approach based on Lagrangian analytical modeling and state–space linearization, we propose a methodology that integrates a high-fidelity multibody model developed in Simscape Multibody (MATLAB), capturing the complete nonlinear dynamics of the system. The multibody model includes all geometric, inertial, and joint parameters of the physical hardware and interfaces directly with Simulink, enabling realistic simulation and control integration. To validate the physical fidelity of the multibody model, we perform a frequency-domain analysis of the pendulum’s natural free response. The dominant vibration frequency extracted from the simulation is compared with the theoretical prediction, demonstrating accurate capture of the system’s inertial and dynamic properties. This validation strategy strengthens the reliability of the model as a digital twin. The classical analytical formulation is provided to validate the simulation model and serve as a comparative framework. This dual modeling strategy allows for benchmarking control strategies against a trustworthy nonlinear digital twin of the Furuta pendulum. Preliminary experimental results using a physical prototype validate the feasibility of the proposed approach and set the foundation for future work in advanced nonlinear control design using the multibody representation as a digital validation tool. Full article
(This article belongs to the Special Issue Dynamics and Control of Underactuated Systems)
Show Figures

Figure 1

16 pages, 3620 KB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 223
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 4199 KB  
Article
Research on Wheel Flat Recognition Based on Wayside Wheel–Rail Force
by Xinyu Peng, Jing Zeng, Longfei Yue, Qunsheng Wang, Yixuan Shi, Chaokun Ma and Long Zhang
Appl. Sci. 2025, 15(14), 7962; https://doi.org/10.3390/app15147962 - 17 Jul 2025
Viewed by 273
Abstract
A wheel flat is the most common fault of a railway freight car, a type of complex transport equipment. A wheel flat will cause continuous regular impact on the rail, damage the rail and the railway structure, affecting the safety and stability of [...] Read more.
A wheel flat is the most common fault of a railway freight car, a type of complex transport equipment. A wheel flat will cause continuous regular impact on the rail, damage the rail and the railway structure, affecting the safety and stability of rail transport. This article studied the relationship between wheel flats and wheel–rail impacts using multi-body dynamics simulation through SIMPACK and, through a field test, validates the detection of a flat wheel. The results show that using the simulation method can obtain similar data to the measured wheel–rail force in the wayside detection device. The simulation data show that the data collected by 14 shear vertical force acquisition channels can completely cover the wheel surface of the heavy-duty railway 840 mm diameter wheel. According to the flat length-speed-impact diagram, the mapping relationship can be fitted using polynomial regression. Based on the measured wheel–rail impact forces, the size of wheel flats can then be deduced from this established mapping relationship. Through a field test, the detection method has been validated. Full article
Show Figures

Figure 1

Back to TopTop