Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = mutant presenilin 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 13231 KiB  
Article
Combination of Epigallocatechin-3-Gallate and Tramiprosate Prevent Accumulation of Intracellular Aβ and Dysfunctional Autophagy–Lysosomal Pathway at Earliest Stage of Transdifferentiation of Mesenchymal Stromal Cells into PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Marlene Jimenez-Del-Rio and Carlos Velez-Pardo
Int. J. Mol. Sci. 2025, 26(8), 3756; https://doi.org/10.3390/ijms26083756 - 16 Apr 2025
Viewed by 254
Abstract
Familial Alzheimer’s disease (FAD) caused by presenilin 1 (PSEN1) E280A induces the aberrant accumulation of intracellular Aβ (iAβ) in cholinergic-like neurons (ChLNs). How early iAβ accumulates in the development of ChLNs is still unknown. Consequently, the timing of appropriate therapeutic approaches against FAD [...] Read more.
Familial Alzheimer’s disease (FAD) caused by presenilin 1 (PSEN1) E280A induces the aberrant accumulation of intracellular Aβ (iAβ) in cholinergic-like neurons (ChLNs). How early iAβ accumulates in the development of ChLNs is still unknown. Consequently, the timing of appropriate therapeutic approaches against FAD is unclear. To determine the earliest iAβ in PSEN1 E280A ChLNs, flow cytometry and immunofluorescence microscopy were used to follow the development of menstrual mesenchymal stromal cells (MenSCs) into ChLNs (proliferation marker Ki67, cluster of differentiation 73 (CD73), neuronal nuclei (NeuN) marker, choline acetyl transferase (ChAT)), the kinetics of iAβ accumulation, and the simultaneous evaluation of other associated markers (e.g., DJ-1C106-SO3; lysosomes; phosphatidylethanolamine-conjugated microtubule-associated protein 1A/1B light chain 3, LC3-II; cleaved caspase 3 (CC3)) at 0, 1, 3, 5, and 7 days. To reverse the PSEN1 E280A phenotype, we used rapamycin (RAP), verubecestat (VER), compound E (CE), epigallocatechin-3-gallate (EGCG), and tramiprosate (TM) in WT and mutant ChLNs. We found that PSEN1 E280A did not induce significant differences in the NeuN marker and ChAT in MenSCs transitioning to ChLNs. The iAβ accumulates at the earliest cholinergic developmental stage from day 0 (18%, at MenSCs stage) to day 7 (46%, at ChLNs stage), i.e., iAβ increased +156% in mutant compared to WT cells (1–6%). A significant increase in DJ-1C106-SO3 occurs only at day 7 (+250%). While neither CC3 (0–1%) nor lysosomes were different between WT and mutant cells at any time point, a stepwise increase in autophagosome accumulation was observed from day 3 (15%) to day 7 (79%), i.e., +427%, in mutant cells. While neither RAP, VER, nor CE was able to completely reduce all PSEN1 E280A-induced markers in ChLNs, the combination of EGCG and TM was more effective in removing these markers than EGCG and TM alone in PSEN1 E280A ChLNs. Given that this investigation is based on a single menstrual blood sample from WT and PSEN1 E280A, our results should be considered exploratory. Larger sample sizes are needed. Full article
Show Figures

Figure 1

33 pages, 9785 KiB  
Article
Combination of Tramiprosate, Curcumin, and SP600125 Reduces the Neuropathological Phenotype in Familial Alzheimer Disease PSEN1 I416T Cholinergic-like Neurons
by Nicolas Gomez-Sequeda, Marlene Jimenez-Del-Rio and Carlos Velez-Pardo
Int. J. Mol. Sci. 2024, 25(9), 4925; https://doi.org/10.3390/ijms25094925 - 30 Apr 2024
Cited by 3 | Viewed by 1686
Abstract
Familial Alzheimer’s disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential [...] Read more.
Familial Alzheimer’s disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAβ; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 μM), CU (10 μM), or SP (1 μM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 μM) concentration was efficient in diminishing the iAβ, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by −50%, −75%, −86%, and −100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by −69% and −38%, −100% and −62%, −100% and −62%, respectively, these combinations did not alter the iAβ compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAβ-induced ChLN damage in FAD. Full article
(This article belongs to the Special Issue Natural-Derived Bioactive Compounds in Disease Treatment)
Show Figures

Figure 1

18 pages, 18348 KiB  
Article
Cultured Rat Hippocampal Neurons Exposed to the Mitochondrial Uncoupler Carbonyl Cyanide Chlorophenylhydrazone Undergo a Rapid, Presenilin-Dependent Change in Neuronal Properties
by Liliia Kushnireva, Menahem Segal and Eduard Korkotian
Int. J. Mol. Sci. 2024, 25(1), 578; https://doi.org/10.3390/ijms25010578 - 1 Jan 2024
Cited by 1 | Viewed by 1764
Abstract
Presenilin 1 (PS1) is a transmembrane proteolytic subunit of γ-secretase that cleaves amyloid precursor proteins. Mutations in PS1 (mPS1) are associated with early-onset familial Alzheimer’s disease (AD). The link between mutated PS1, mitochondrial calcium regulation, and AD has been studied extensively in [...] Read more.
Presenilin 1 (PS1) is a transmembrane proteolytic subunit of γ-secretase that cleaves amyloid precursor proteins. Mutations in PS1 (mPS1) are associated with early-onset familial Alzheimer’s disease (AD). The link between mutated PS1, mitochondrial calcium regulation, and AD has been studied extensively in different test systems. Despite the wide-ranging role of mPS1 in AD, there is a paucity of information on the link between PS1 and neuronal cell death, a hallmark of AD. In the present study, we employed the selective mitochondrial uncoupler carbonyl cyanide chlorophenylhydrazone (CCCP) and compared the reactivity of mPS1-transfected cultured rat hippocampal neurons with PS1 and control neurons in a situation of impaired mitochondrial functions. CCCP causes a slow rise in cytosolic and mitochondrial calcium in all three groups of neurons, with the mPS1 neurons demonstrating a faster rise. Consequently, mPS1 neurons were depolarized by CCCP and measured with TMRM, a mitochondrial voltage indicator, more than the other two groups. Morphologically, CCCP produced more filopodia in mPS1 neurons than in the other two groups, which were similarly affected by the drug. Finally, mPS1 transfected neurons tended to die from prolonged exposure to CCCP sooner than the other groups, indicating an increase in vulnerability associated with a lower ability to regulate excess cytosolic calcium. Full article
(This article belongs to the Special Issue Mitochondria as a Cellular Hub in Neurological Disorders 2.0)
Show Figures

Figure 1

25 pages, 13497 KiB  
Article
PSEN1 E280A Cholinergic-like Neurons and Cerebral Spheroids Derived from Mesenchymal Stromal Cells and from Induced Pluripotent Stem Cells Are Neuropathologically Equivalent
by Miguel Mendivil-Perez, Carlos Velez-Pardo, Francisco Lopera, Kenneth S. Kosik and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2023, 24(10), 8957; https://doi.org/10.3390/ijms24108957 - 18 May 2023
Cited by 5 | Viewed by 1975
Abstract
Alzheimer’s disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic [...] Read more.
Alzheimer’s disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability. Moreover, to expedite the discovery of disease-modifying therapies that delay the onset and slow the progression of AD, we depend on trustworthy disease models. Although highly informative, induced pluripotent stem cell (iPSCs)-derived cholinergic neurons (ChNs) are time-consuming, not cost-effective, and labor-intensive. Other sources for AD modeling are urgently needed. Wild-type and presenilin (PSEN)1 p.E280A fibroblast-derived iPSCs, menstrual blood-derived menstrual stromal cells (MenSCs), and umbilical cord-derived Wharton Jelly’s mesenchymal stromal cells (WJ-MSCs) were cultured in Cholinergic-N-Run and Fast-N-Spheres V2 medium to obtain WT and PSEN 1 E280A cholinergic-like neurons (ChLNs, 2D) and cerebroid spheroids (CSs, 3D), respectively, and to evaluate whether ChLNs/CSs can reproduce FAD pathology. We found that irrespective of tissue source, ChLNs/CSs successfully recapitulated the AD phenotype. PSEN 1 E280A ChLNs/CSs show accumulation of iAPPβ fragments, produce eAβ42, present TAU phosphorylation, display OS markers (e.g., oxDJ-1, p-JUN), show loss of ΔΨm, exhibit cell death markers (e.g., TP53, PUMA, CASP3), and demonstrate dysfunctional Ca2+ influx response to ACh stimuli. However, PSEN 1 E280A 2D and 3D cells derived from MenSCs and WJ-MSCs can reproduce FAD neuropathology more efficiently and faster (11 days) than ChLNs derived from mutant iPSCs (35 days). Mechanistically, MenSCs and WJ-MSCs are equivalent cell types to iPSCs for reproducing FAD in vitro. Full article
(This article belongs to the Special Issue Alzheimer’s Disease: From Pathogenesis to Treatment)
Show Figures

Figure 1

16 pages, 3585 KiB  
Article
PS1 Affects the Pathology of Alzheimer’s Disease by Regulating BACE1 Distribution in the ER and BACE1 Maturation in the Golgi Apparatus
by Nuomin Li, Yunjie Qiu, Hao Wang, Juan Zhao and Hong Qing
Int. J. Mol. Sci. 2022, 23(24), 16151; https://doi.org/10.3390/ijms232416151 - 18 Dec 2022
Cited by 4 | Viewed by 2643
Abstract
Neuritic plaques are one of the major pathological hallmarks of Alzheimer’s disease. They are formed by the aggregation of extracellular amyloid-β protein (Aβ), which is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β- and γ-secretase. BACE1 is the main [...] Read more.
Neuritic plaques are one of the major pathological hallmarks of Alzheimer’s disease. They are formed by the aggregation of extracellular amyloid-β protein (Aβ), which is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β- and γ-secretase. BACE1 is the main β-secretase in the pathogenic process of Alzheimer’s disease, which is believed to be a rate-limiting step of Aβ production. Presenilin 1 (PS1) is the active center of the γ-secretase that participates in the APP hydrolysis process. Mutations in the PS1 gene (PSEN1) are the most common cause of early onset familial Alzheimer’s disease (FAD). The PSEN1 mutations can alter the activity of γ-secretase on the cleavage of APP. Previous studies have shown that PSEN1 mutations increase the expression and activity of BACE1 and that BACE1 expression and activity are elevated in the brains of PSEN1 mutant knock-in mice, compared with wild-type mice, as well as in the cerebral cortex of FAD patients carrying PSEN1 mutations, compared with sporadic AD patients and controls. Here, we used a Psen1 knockout cell line and a PS1 inhibitor to show that PS1 affects the expression of BACE1 in vitro. Furthermore, we used sucrose gradient fractionation combined with western blotting to analyze the distribution of BACE1, combined with a time-lapse technique to show that PS1 upregulates the distribution and trafficking of BACE1 in the endoplasmic reticulum, Golgi, and endosomes. More importantly, we found that the PSEN1 mutant S170F increases the distribution of BACE1 in the endoplasmic reticulum and changes the ratio of mature BACE1 in the trans-Golgi network. The effect of PSEN1 mutations on BACE1 may contribute to determining the phenotype of early onset FAD. Full article
(This article belongs to the Special Issue Advance on the Research of Alzheimer's Disease)
Show Figures

Figure 1

14 pages, 3533 KiB  
Article
Specific Mutations in Aph1 Cause γ-Secretase Activation
by Hikari Watanabe, Chika Yoshida, Masafumi Hidaka, Tomohisa Ogawa, Taisuke Tomita and Eugene Futai
Int. J. Mol. Sci. 2022, 23(1), 507; https://doi.org/10.3390/ijms23010507 - 3 Jan 2022
Cited by 7 | Viewed by 3119
Abstract
Amyloid beta peptides (Aβs) are generated from amyloid precursor protein (APP) through multiple cleavage steps mediated by γ-secretase, including endoproteolysis and carboxypeptidase-like trimming. The generation of neurotoxic Aβ42/43 species is enhanced by familial Alzheimer’s disease (FAD) mutations within the catalytic subunit of γ-secretase, [...] Read more.
Amyloid beta peptides (Aβs) are generated from amyloid precursor protein (APP) through multiple cleavage steps mediated by γ-secretase, including endoproteolysis and carboxypeptidase-like trimming. The generation of neurotoxic Aβ42/43 species is enhanced by familial Alzheimer’s disease (FAD) mutations within the catalytic subunit of γ-secretase, presenilin 1 (PS1). FAD mutations of PS1 cause partial loss-of-function and decrease the cleavage activity. Activating mutations, which have the opposite effect of FAD mutations, are important for studying Aβ production. Aph1 is a regulatory subunit of γ-secretase; it is presumed to function as a scaffold of the complex. In this study, we identified Aph1 mutations that are active in the absence of nicastrin (NCT) using a yeast γ-secretase assay. We analyzed these Aph1 mutations in the presence of NCT; we found that the L30F/T164A mutation is activating. When introduced in mouse embryonic fibroblasts, the mutation enhanced cleavage. The Aph1 mutants produced more short and long Aβs than did the wild-type Aph1, without an apparent modulatory function. The mutants did not change the amount of γ-secretase complex, suggesting that L30F/T164A enhances catalytic activity. Our results provide insights into the regulatory function of Aph1 in γ-secretase activity. Full article
Show Figures

Figure 1

15 pages, 2582 KiB  
Article
Live-Cell Imaging of Single Neurotrophin Receptor Molecules on Human Neurons in Alzheimer’s Disease
by Klaudia Barabás, Julianna Kobolák, Soma Godó, Tamás Kovács, Dávid Ernszt, Miklós Kecskés, Csaba Varga, Tibor Z. Jánosi, Takahiro Fujiwara, Akihiro Kusumi, Annamária Téglási, András Dinnyés and István M. Ábrahám
Int. J. Mol. Sci. 2021, 22(24), 13260; https://doi.org/10.3390/ijms222413260 - 9 Dec 2021
Cited by 3 | Viewed by 2759
Abstract
Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer’s disease (AD). Changes in the dynamics of receptors on [...] Read more.
Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer’s disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 7482 KiB  
Article
(−)-Epigallocatechin-3-Gallate Diminishes Intra-and Extracellular Amyloid-Induced Cytotoxic Effects on Cholinergic-like Neurons from Familial Alzheimer’s Disease PSEN1 E280A
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Biomolecules 2021, 11(12), 1845; https://doi.org/10.3390/biom11121845 - 8 Dec 2021
Cited by 14 | Viewed by 3295
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5–50 μM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 μM) significantly inhibited the aggregation of (i)sAPPβf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aβ42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD. Full article
(This article belongs to the Special Issue Bioactive Natural Products and Antioxidant Activity)
Show Figures

Figure 1

24 pages, 3468 KiB  
Article
Indomethacin Disrupts the Formation of β-Amyloid Plaques via an α2-Macroglobulin-Activating lrp1-Dependent Mechanism
by Pei-Pei Guan, Liu-Qing Yang, Guo-Biao Xu and Pu Wang
Int. J. Mol. Sci. 2021, 22(15), 8185; https://doi.org/10.3390/ijms22158185 - 30 Jul 2021
Cited by 14 | Viewed by 3225
Abstract
Epidemiological studies have implied that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the development and progression of Alzheimer’s disease (AD). However, the underlying mechanisms are notably understudied. Using a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) (APP/PS1) [...] Read more.
Epidemiological studies have implied that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the development and progression of Alzheimer’s disease (AD). However, the underlying mechanisms are notably understudied. Using a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) (APP/PS1) expressing transgenic (Tg) mice and neuroblastoma (N) 2a cells as in vivo and in vitro models, we revealed the mechanisms of indomethacin in ameliorating the cognitive decline of AD. By screening AD-associated genes, we observed that a marked increase in the expression of α2-macroglobulin (A2M) was markedly induced after treatment with indomethacin. Mechanistically, upregulation of A2M was caused by the inhibition of cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), which are responsible for the synthesis of prostaglandin (PG)H2 and PGD2, respectively. The reduction in PGD2 levels induced by indomethacin alleviated the suppression of A2M expression through a PGD2 receptor 2 (CRTH2)-dependent mechanism. Highly activated A2M not only disrupted the production and aggregation of β-amyloid protein (Aβ) but also induced Aβ efflux from the brain. More interestingly, indomethacin decreased the degradation of the A2M receptor, low-density lipoprotein receptor-related protein 1 (LRP1), which facilitated the brain efflux of Aβ. Through the aforementioned mechanisms, indomethacin ameliorated cognitive decline in APP/PS1 Tg mice by decreasing Aβ production and clearing Aβ from the brains of AD mice. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 3823 KiB  
Article
Calcium Signaling and Mitochondrial Function in Presenilin 2 Knock-Out Mice: Looking for Any Loss-of-Function Phenotype Related to Alzheimer’s Disease
by Alice Rossi, Luisa Galla, Chiara Gomiero, Lorena Zentilin, Mauro Giacca, Valentina Giorgio, Tito Calì, Tullio Pozzan, Elisa Greotti and Paola Pizzo
Cells 2021, 10(2), 204; https://doi.org/10.3390/cells10020204 - 21 Jan 2021
Cited by 12 | Viewed by 4205
Abstract
Alzheimer′s disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 [...] Read more.
Alzheimer′s disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. Presenilin 1 (PS1) and its homologue, presenilin 2 (PS2), represent, alternatively, the catalytic core of the γ-secretase complex that, by cleaving APP, produces neurotoxic amyloid beta (Aβ) peptides responsible for one of the histopathological hallmarks in AD brains, the amyloid plaques. Recently, PSEN1 FAD mutations have been associated with a loss-of-function phenotype. To investigate whether this finding can also be extended to PSEN2 FAD mutations, we studied two processes known to be modulated by PS2 and altered by FAD mutations: Ca2+ signaling and mitochondrial function. By exploiting neurons derived from a PSEN2 knock-out (PS2–/–) mouse model, we found that, upon IP3-generating stimulation, cytosolic Ca2+ handling is not altered, compared to wild-type cells, while mitochondrial Ca2+ uptake is strongly compromised. Accordingly, PS2–/– neurons show a marked reduction in endoplasmic reticulum–mitochondria apposition and a slight alteration in mitochondrial respiration, whereas mitochondrial membrane potential, and organelle morphology and number appear unchanged. Thus, although some alterations in mitochondrial function appear to be shared between PS2–/– and FAD-PS2-expressing neurons, the mechanisms leading to these defects are quite distinct between the two models. Taken together, our data appear to be difficult to reconcile with the proposal that FAD-PS2 mutants are loss-of-function, whereas the concept that PS2 plays a key role in sustaining mitochondrial function is here confirmed. Full article
(This article belongs to the Special Issue Key Signalling Molecules in Aging and Neurodegeneration)
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
Human-Induced Neurons from Presenilin 1 Mutant Patients Model Aspects of Alzheimer’s Disease Pathology
by Sean Schrank, John McDaid, Clark A. Briggs, Sarah Mustaly-Kalimi, Deanna Brinks, Aiden Houcek, Oded Singer, Virginie Bottero, Robert A. Marr and Grace E. Stutzmann
Int. J. Mol. Sci. 2020, 21(3), 1030; https://doi.org/10.3390/ijms21031030 - 4 Feb 2020
Cited by 12 | Viewed by 5105
Abstract
Traditional approaches to studying Alzheimer’s disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate [...] Read more.
Traditional approaches to studying Alzheimer’s disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties. We selected an AD patient population expressing mutations in presenilin 1 (mPS1), which is linked to increased amyloid production, tau pathology, and calcium signaling abnormalities, among other features. While these AD components are detailed in model systems, they have yet to be collectively identified in human neurons. Thus, we conducted molecular, immune-based, electrophysiological, and calcium imaging studies to establish patterns of cellular pathology in this patient population. We found that mPS1 HiNs generate increased Aβ42 and hyperphosphorylated tau species relative to non-AD controls, and exaggerated ER calcium responses that are normalized with ryanodine receptor (RyR) negative allosteric modulators. The inflammasome product, interleukin-18 (IL-18), also increased PS1 expression. This work highlights the potential for HiNs to model AD pathology and validates their role in defining cellular pathogenesis and their utility for therapeutic screening. Full article
Show Figures

Figure 1

23 pages, 3141 KiB  
Article
The Role of Lysosomes in a Broad Disease-Modifying Approach Evaluated across Transgenic Mouse Models of Alzheimer’s Disease and Parkinson’s Disease and Models of Mild Cognitive Impairment
by Jeannie Hwang, Candice M. Estick, Uzoma S. Ikonne, David Butler, Morgan C. Pait, Lyndsie H. Elliott, Sarah Ruiz, Kaitlan Smith, Katherine M. Rentschler, Cary Mundell, Michael F. Almeida, Nicole Stumbling Bear, James P. Locklear, Yara Abumohsen, Cecily M. Ivey, Karen L.G. Farizatto and Ben A. Bahr
Int. J. Mol. Sci. 2019, 20(18), 4432; https://doi.org/10.3390/ijms20184432 - 9 Sep 2019
Cited by 32 | Viewed by 5225
Abstract
Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer’s disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining [...] Read more.
Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer’s disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson’s disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid β 42 (Aβ42) degradation product Aβ38, and this indicator of Aβ42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aβ42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aβ deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum. Full article
Show Figures

Graphical abstract

Back to TopTop