Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,449)

Search Parameters:
Keywords = myeloid cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1402 KiB  
Article
Once-Daily Versus Four-Times-Daily Intravenous Busulfan with Therapeutic Drug Monitoring as Conditioning for Hematopoietic Cell Transplantation in Children
by Safaa Bazbaz, Irina Zaidman, Ehud Even-Or, Polina Stepensky, Razan Sakran, Daniel Kurnik and Gefen Aldouby-Bier
Pharmaceutics 2025, 17(8), 1081; https://doi.org/10.3390/pharmaceutics17081081 - 21 Aug 2025
Abstract
Background/Objectives: Busulfan is a key component of myeloablative conditioning regimens in hematopoietic stem cell transplantation (HSCT) for pediatric patients with acute myeloid leukemia, solid tumors, and certain non-malignant diseases. This study compares the clinical outcomes of once-daily (BU1) versus four-times-daily (BU4) busulfan dosing [...] Read more.
Background/Objectives: Busulfan is a key component of myeloablative conditioning regimens in hematopoietic stem cell transplantation (HSCT) for pediatric patients with acute myeloid leukemia, solid tumors, and certain non-malignant diseases. This study compares the clinical outcomes of once-daily (BU1) versus four-times-daily (BU4) busulfan dosing regimens in pediatric HSCT recipients. Methods: A retrospective analysis was conducted on 70 pediatric patients who underwent HSCT at Hadassah Medical Center between June 2018 and October 2023. Thirty-five patients received the BU4 regimen, and 35 received BU1. The primary endpoint was 100-day event-free survival (EFS). Results: There was no statistically significant difference in 100-day event-free survival between the BU1 group (88.6%) and the BU4 group (85.7%; p = 0.768). Similarly, no significant differences were found in time to neutrophil engraftment (p = 0.251) or platelet engraftment (p = 0.688). Sinusoidal obstruction syndrome (SOS) occurred in 17.1% of patients in each group. No significant differences were observed in the increase in liver enzyme levels (p = 1.0). The incidence of acute graft-versus-host disease was comparable between the groups (41.9% for BU1 vs. 40.0% for BU4; p = 0.878). Conclusions: Once-daily and four-times-daily busulfan regimens demonstrated comparable clinical outcomes in terms of efficacy and adverse events. Further prospective studies are needed to validate these findings. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

17 pages, 1193 KiB  
Review
Tissue-Resident Memory T Cells in Cancer Metastasis Control
by Tyler H. Montgomery, Anuj P. Master, Zeng Jin, Qiongyu Shi, Qin Lai, Rohan Desai, Weizhou Zhang, Chandra K. Maharjan and Ryan Kolb
Cells 2025, 14(16), 1297; https://doi.org/10.3390/cells14161297 - 21 Aug 2025
Abstract
Tissue-resident memory T (TRM) cells have emerged as critical sentinels in the control of cancer metastasis, yet their precise roles across different tumor types and tissues remain underappreciated. Here, we review current insights into the mechanisms governing TRM cell seeding and retention in [...] Read more.
Tissue-resident memory T (TRM) cells have emerged as critical sentinels in the control of cancer metastasis, yet their precise roles across different tumor types and tissues remain underappreciated. Here, we review current insights into the mechanisms governing TRM cell seeding and retention in pre-metastatic niches, their effector functions in eliminating disseminated tumor cells, and their dynamic crosstalk with local stromal and myeloid populations. Here, we highlight evidence for organ-specific variability in TRM cell-mediated immunity, discuss strategies for therapeutically harnessing these cells—ranging from vaccination and checkpoint modulation to chemokine axis manipulation—and explore their promise as prognostic biomarkers. Finally, we outline key knowledge gaps and future directions aimed at translating TRM cell biology into targeted interventions to prevent and treat metastatic disease. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Immune Regulation)
Show Figures

Figure 1

11 pages, 1014 KiB  
Article
Clonal Hematopoiesis and Outcomes After High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with AML, Myeloma, and Lymphoma
by Corinne Natalie Schmid, Katharina Sponagel, Ulrike Bacher, Katja Seipel, Naomi Porret, Gertrud Wiedemann, Michèle Hoffmann, Michael Daskalakis and Thomas Pabst
Int. J. Mol. Sci. 2025, 26(16), 8021; https://doi.org/10.3390/ijms26168021 - 19 Aug 2025
Abstract
Autologous stem cell transplantation (ASCT) after high-dose chemo-therapy (HDCT) is an option of consolidation therapy in patients with AML, lymphoma, or myeloma. Clonal hematopoiesis (CH) is a premalignant state, associated with an increased risk of hematological cancer. The incidence of CH in patients [...] Read more.
Autologous stem cell transplantation (ASCT) after high-dose chemo-therapy (HDCT) is an option of consolidation therapy in patients with AML, lymphoma, or myeloma. Clonal hematopoiesis (CH) is a premalignant state, associated with an increased risk of hematological cancer. The incidence of CH in patients with AML, myeloma, and lymphoma and its effect on the outcome after HDCT/ASCT remain poorly studied. Here we screened 142 patients treated with HDCT/ASCT between 2002 and 2021 at Bern University Hospital for somatic gene mutations in ASXL1, DNMT3A, JAK2, TET2, and TP53. CH-associated somatic gene mutations were detected in 14/31 AML patients (45%), 13/64 myeloma patients (20%), and 9/47 lymphoma patients (19%). Clinical characteristics, treatment modalities, and responses to treatment were similar in patients with and without CH. Patients with CH-associated gene mutations had higher relapse rates and reduced progression free survival, most evident in lymphoma patients (p = 0.007). Overall survival tended to be shorter in lymphoma patients with CH-associated mutations (p = 0.078), whereas this was not observed in AML and myeloma patients. Survival in lymphoma patients with CH was inferior, which may have an impact on post-transplant surveillance strategies in the future. In contrast, survival outcomes were not associated significantly with CH in AML and myeloma patients in our study. Longer follow-ups and larger cohorts will be needed to validate our observations. Full article
Show Figures

Figure 1

16 pages, 3156 KiB  
Article
Tumor-Specific EphA2 Receptor Tyrosine Kinase Inhibits Anti-Tumor Immunity by Recruiting Suppressive Myeloid Populations in Murine Models of Non-Small Cell Lung Cancer
by Eileen Shiuan, Shan Wang and Dana M. Brantley-Sieders
Cancers 2025, 17(16), 2693; https://doi.org/10.3390/cancers17162693 - 19 Aug 2025
Abstract
Background: EphA2 is a receptor tyrosine kinase that contributes to tumor growth and metastasis and has been identified as a viable target for many solid cancers. Investigating EphA2’s impact on the host immune system may advance our understanding of tumor immune evasion and [...] Read more.
Background: EphA2 is a receptor tyrosine kinase that contributes to tumor growth and metastasis and has been identified as a viable target for many solid cancers. Investigating EphA2’s impact on the host immune system may advance our understanding of tumor immune evasion and the consequences of targeting EphA2 on the tumor microenvironment. Methods: Here, we examine how tumor-specific EphA2 affects the activation and infiltration of immune cell populations and the cytokine and chemokine milieu in murine models of non-small cell lung cancer (NSCLC). Results: Although EphA2 overexpression in NSCLC cells did not display proliferative advantage in vitro, it conferred a growth advantage in vivo. Analysis of lung tumor infiltrates via flow cytometry revealed decreased natural killer and T cells in the EphA2-overexpressing tumors, as well as increased myeloid populations, including tumor-associated macrophages (TAMs). T-cell activation, particularly in CD8+ T cells, was decreased, while PD-1 expression was increased. These changes were accompanied by increased monocyte-attracting chemokines, specifically CCL2, CCL7, CCL8, and CCL12, and immunosuppressive proteins TGF-β and arginase 1 in RNA expression analyses. Conclusions: Our studies suggest EphA2 on tumor cells recruits monocytes and promotes their differentiation into TAMs that likely inhibit the activation and infiltration of cytotoxic lymphocytes, promoting tumor immune escape. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

23 pages, 32109 KiB  
Article
K-562 Extracellular Vesicles Partially Protect Intact Cells from Oxidative Stress and Provide Limited Resistance to Imatinib
by Jiana Sbiet, Einat Beery, Zinab Sarsor, Pia Raanani and Orit Uziel
Curr. Issues Mol. Biol. 2025, 47(8), 666; https://doi.org/10.3390/cimb47080666 - 18 Aug 2025
Viewed by 107
Abstract
Chronic myeloid leukemia (CML) results from the formation of the BCR-ABL1 chimeric protein which serves as a target for clinically used tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM). Although very efficient, the development of resistance to TKIs remains a critical issue [...] Read more.
Chronic myeloid leukemia (CML) results from the formation of the BCR-ABL1 chimeric protein which serves as a target for clinically used tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM). Although very efficient, the development of resistance to TKIs remains a critical issue for a subset of patients. In our study we aimed to identify one aspect of IM resistance in K-562 cells, a cell line used as a model for CML. Secreted from all cell types, extracellular vesicles (EVs) are nanoparticles that function as mediators of cell–cell communication. Upon engulfment by other cells they may modulate their phenotype. IM is linked to changes in oxidative metabolism in K-562 cells. Our study explored the putative involvement of EVs secreted from K-562 cells in providing protection from oxidative stress and resistance to IM in these cells. The results of our study showed that the protection from oxidative stress provided by previously exposed K-562 cell, derived EVs is only partial. Similarly, these EVs provided intact K-562 cells with some resistance to IM treatment. These results may suggest that resistance to IM may develop and expand to other cells by EVs that are secreted from already resistant cells, similar to a horizontal transfer of resistance provided by plasmids in bacteria. Full article
Show Figures

Figure 1

13 pages, 1294 KiB  
Review
VEXAS Syndrome: Genetics, Gender Differences, Clinical Insights, Diagnostic Pitfalls, and Emerging Therapies
by Salvatore Corrao, Marta Moschetti, Salvatore Scibetta, Luigi Calvo, Annarita Giardina, Ignazio Cangemi, Carmela Zizzo, Paolo Colomba and Giovanni Duro
Int. J. Mol. Sci. 2025, 26(16), 7931; https://doi.org/10.3390/ijms26167931 - 17 Aug 2025
Viewed by 210
Abstract
VEXAS syndrome (Vacuoles, E1-enzyme, X-linked, Autoinflammation, and Somatic) is a recently identified late-onset autoinflammatory disorder characterized by a unique interplay between hematological and inflammatory manifestations. It results from somatic mutations in the UBA1 gene, located on the short arm of the X chromosome. [...] Read more.
VEXAS syndrome (Vacuoles, E1-enzyme, X-linked, Autoinflammation, and Somatic) is a recently identified late-onset autoinflammatory disorder characterized by a unique interplay between hematological and inflammatory manifestations. It results from somatic mutations in the UBA1 gene, located on the short arm of the X chromosome. Initially, females were considered mere carriers, with the syndrome primarily affecting males over 50. However, recent evidence indicates that heterozygous females can exhibit symptoms as severe as those seen in hemizygous males. The disease manifests as systemic inflammation, macrocytic anemia, thrombocytopenia, chondritis, neutrophilic dermatoses, and steroid-dependent inflammatory symptoms. Due to its overlap with autoimmune and hematologic disorders such as relapsing polychondritis, Still’s disease, and myelodysplastic syndromes, misdiagnosis is common. At the molecular level, VEXAS syndrome is driven by impaired ubiquitination pathways, resulting in dysregulated immune responses and clonal hematopoiesis. A key diagnostic marker is the presence of cytoplasmic vacuoles in myeloid and erythroid precursors, though definitive diagnosis requires genetic testing for UBA1 mutations. Traditional immunosuppressants and TNF inhibitors are generally ineffective, while JAK inhibitors and IL-6 blockade provide partial symptom control. Azacitidine and decitabine have shown promise in reducing disease burden, but hematopoietic stem cell transplantation (HSCT) remains the only curative treatment, albeit with significant risks. This review provides a comprehensive analysis of VEXAS syndrome, examining its clinical features, differential diagnoses, diagnostic challenges, and treatment approaches, including both pharmacological and non-pharmacological strategies. By enhancing clinical awareness and optimizing therapeutic interventions, this article aims to bridge emerging genetic insights with practical patient management, ultimately improving outcomes for those affected by this complex and often life-threatening disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 1415 KiB  
Article
Long-Term Immune Response to SARS-CoV-2 Vaccination in Hematologic Malignancies: An Update of the ImV-HOng Trial of the East German Study Group for Hematology and Oncology
by Susann Schulze, Sabrina Jotschke, Robby Engelmann, Beatrice Ludwig-Kraus, Frank Bernhard Kraus, Nadja Jaekel, Christina Zahn, Christian Junghanss, Sebastian Böttcher and Haifa Kathrin Al-Ali
Cancers 2025, 17(16), 2674; https://doi.org/10.3390/cancers17162674 - 16 Aug 2025
Viewed by 196
Abstract
Purpose: Evaluate long-term immunogenicity and its association with the number of vaccines and breakthrough infections in patients with hematologic malignancies compared to a healthy cohort. Methods: This study is an amendment of a multicenter study (DRKS00027372) which described the upsurge of [...] Read more.
Purpose: Evaluate long-term immunogenicity and its association with the number of vaccines and breakthrough infections in patients with hematologic malignancies compared to a healthy cohort. Methods: This study is an amendment of a multicenter study (DRKS00027372) which described the upsurge of anti-spike-IgGs on day 120 from a blunted day-35 response in patients with hematologic neoplasms. In this amendment, 191 individuals from the original study (patients with myeloid and lymphoid neoplasms and controls) were followed beyond month 12 after first SARS-CoV-2-vaccination. The long-term humoral and cellular responses and their correlation with the number of vaccines were studied. Results: After a median follow-up of 18 months, a median of three vaccinations (range 1–5) were given. Antibody levels did not correlate with the number of vaccinations (≤2 versus ≥3) (p = 0.3). With a median of 5274 U/mL anti-spike-IgGs, the inferior day-120 antibody response in patients with lymphoid neoplasms was no longer detected. Breakthrough SARS-CoV-2-infections, mostly mild, occurred in 67% of controls and 46% of patients. Patients with lymphoid neoplasms with two vaccinations did not have more infections compared to patients with more doses (p = 0.4). There was a significant decline in the spike-specific T-cell response for CovCD4+ and CovCD8+ (p < 0.001). On last assessment, 33% of individuals lost their day-120 CovCD4+-positive response (p < 0.001). There was no correlation between the number of vaccinations and cellular immune response in patients and controls (p = 0.3). Conclusions: In this study, breakthrough infections were high despite repeated boosting, which by itself does not lead to an upsurge in the cellular immune response in the majority of patients. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

16 pages, 1412 KiB  
Review
Polyphenols and Chronic Myeloid Leukemia: Emerging Therapeutic Opportunities
by Claudia Moriello, Chiara De Rosa, Stefania D’Angelo and Perrone Pasquale
Hemato 2025, 6(3), 28; https://doi.org/10.3390/hemato6030028 - 15 Aug 2025
Viewed by 189
Abstract
Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such [...] Read more.
Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such as polyphenols have shown potential in modulating key oncogenic pathways in CML. Results: Polyphenols such as resveratrol, quercetin, curcumin, and epigallocatechin gallate (EGCG) demonstrated significant antiproliferative and pro-apoptotic effects in CML cell lines, including imatinib-resistant models. These effects were mediated through the modulation of signaling pathways, including PI3K/Akt, STAT5, and MAPK; inhibition of BCR–ABL expression; induction of oxidative stress; and the enhancement of apoptosis via mitochondrial and caspase-dependent mechanisms. Some polyphenols also showed synergistic activity with TKIs, potentiating their efficacy and overcoming resistance. Conclusions: Preclinical evidence supports the role of polyphenols as potential adjuvants in CML therapy, particularly in drug-resistant contexts. Their pleiotropic molecular actions and low toxicity profile make them promising candidates for integrative oncology. Nonetheless, clinical translation requires further investigation through well-designed trials assessing efficacy, safety, and pharmacokinetics. Full article
Show Figures

Figure 1

25 pages, 4622 KiB  
Review
Immunological Landscape and Molecular Therapeutic Targets of the Tumor Microenvironment in Hepatocellular Carcinoma
by Yusra Zarlashat, Abdul Ghaffar, Flora Guerra and Anna Picca
Int. J. Mol. Sci. 2025, 26(16), 7836; https://doi.org/10.3390/ijms26167836 - 13 Aug 2025
Viewed by 410
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, with poor survival rates in advanced stages due to late diagnosis, tumor heterogeneity, and therapy resistance. The tumor microenvironment (TME) in HCC has a crucial role in tumor progression, characterized by a complex interaction [...] Read more.
Hepatocellular carcinoma (HCC) is the most common liver cancer, with poor survival rates in advanced stages due to late diagnosis, tumor heterogeneity, and therapy resistance. The tumor microenvironment (TME) in HCC has a crucial role in tumor progression, characterized by a complex interaction of immune cells, stromal components, and immunosuppressive signaling pathways. Chronic inflammation driven by viral infections, metabolic dysfunction, and alcohol consumption triggers an immunosuppressive TME, promoting immune evasion and tumor growth. Immune cell populations, such as myeloid-derived suppressor cells, regulatory T cells, and tumor-associated macrophages, contribute to immunosuppression, while cytotoxic T lymphocytes and natural killer cells exert anti-tumor effects. Recent advances in immunotherapy, mainly immune checkpoint inhibitors (ICIs) targeting programmed death-ligand 1 and programmed cell death protein 1 and cytotoxic T-lymphocyte-associated protein 4, have revolutionized HCC treatment, though response rates remain limited. Combined therapies using tyrosine kinase inhibitors, anti-angiogenic agents, and ICIs improve patient outcomes. This review discusses the immunological mechanisms contributing to HCC progression, the role of immune cell subsets in tumor evasion, and therapeutic interventions, from conventional treatments to advanced immunotherapies. Ongoing clinical trials, barriers to effective treatment, and future directions to enhance HCC management and patient survival will also be overviewed. Full article
Show Figures

Figure 1

20 pages, 1605 KiB  
Article
Latent Human Cytomegalovirus Infection Activates the STING Pathway but p-IRF3 Translocation Is Limited
by Wang Ka Lee, Zuodong Ye and Allen Ka Loon Cheung
Viruses 2025, 17(8), 1109; https://doi.org/10.3390/v17081109 - 12 Aug 2025
Viewed by 278
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that establishes lifelong latent infection in CD34+ haematopoietic stem and progenitor cells. A unique subset of viral genes is expressed during latency, which functions to modulate cellular mechanisms without supporting viral replication. One potential function [...] Read more.
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that establishes lifelong latent infection in CD34+ haematopoietic stem and progenitor cells. A unique subset of viral genes is expressed during latency, which functions to modulate cellular mechanisms without supporting viral replication. One potential function of these genes is to regulate the differentiation state of latently infected CD34+ cells, thereby preventing their progression into antigen-presenting cells, e.g., dendritic cells. In this study, we first compared CD34+ cells that supported productive and latent infections using the RV-TB40-BACKL7-SE-EGFP virus. Over a seven-day time course, the proportion of latently infected CD34+ cell subsets within the myeloid progenitor population remained similar to that in the mock-infected control. However, starting from day 3 post-infection, there was an increase in the proportion of the early progenitor subsets, including haematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). In contrast, productively infected cells, which constituted less than 1% of the population, only accounted for a small portion of the myeloid progenitors. Importantly, our data revealed that the innate immune STING/p-TBK1/p-IRF3 pathway was activated in latently infected CD34+ cells, yet type I interferon (IFN) expression was decreased. This decrease was attributed to impaired p-IRF3 nuclear translocation, limiting the induction of an autocrine type I IFN response. However, treatment with IFN-β could induce myelopoiesis in latently infected cells. In summary, HCMV modulates a key component of the STING pathway to inhibit antiviral immune responses by decreasing the type I IFN-mediated cell differentiation of CD34+ progenitor cells. This study uncovered a new mechanism of latent HCMV-mediated regulation of the host cell differentiation response. Full article
(This article belongs to the Special Issue Viral Infections and Immune Dysregulation 2024–2025)
Show Figures

Graphical abstract

2 pages, 136 KiB  
Retraction
RETRACTED: El-Garawani et al. In Vitro Induction of Apoptosis in Isolated Acute Myeloid Leukemia Cells: The Role of Anastatica hierochuntica Methanolic Extract. Metabolites 2022, 12, 878
by Islam M. El-Garawani, Amira S. Abd El-Gaber, Noura A. Algamdi, Aamer Saeed, Chao Zhao, Omar M. Khattab, Mohamed F. AlAjmi, Zhiming Guo, Shaden A. M. Khalifa and Hesham R. El-Seedi
Metabolites 2025, 15(8), 544; https://doi.org/10.3390/metabo15080544 - 12 Aug 2025
Viewed by 200
Abstract
The journal Metabolites retracts the article “In Vitro Induction of Apoptosis in Isolated Acute Myeloid Leukemia Cells: The Role of Anastatica hierochuntica Methanolic Extract” [...] Full article
16 pages, 1716 KiB  
Article
Flavonoids and Sesquiterpene Lactones from Lychnophora ericoides (Arnica-Do-Cerrado) and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia
by Calisto Moreno Cardenas, Ren Ove Kratzert, Sofie Hanifle, Elida Cleyse Gomes da Mata Kanzaki, Isamu Kanzaki, Brigitte Kircher and Serhat Sezai Çiçek
Metabolites 2025, 15(8), 542; https://doi.org/10.3390/metabo15080542 - 9 Aug 2025
Viewed by 302
Abstract
Objectives: Multiple myeloma and acute myeloid leukemia are severe forms of blood cancer, which lack effective therapies for treatment. In our search for new chemical lead structures from nature, we were investigating the Brazilian medicinal plant arnica-do-cerrado (Lychnophora ericoides). Methods: Repeated [...] Read more.
Objectives: Multiple myeloma and acute myeloid leukemia are severe forms of blood cancer, which lack effective therapies for treatment. In our search for new chemical lead structures from nature, we were investigating the Brazilian medicinal plant arnica-do-cerrado (Lychnophora ericoides). Methods: Repeated chromatography led to the isolation of four flavonoids and three sesquiterpenoids, which were evaluated for their cytostatic and cytotoxic properties against HL-60, MOLM-13, AMO-1, and KMS-12 PE cancer cells as well as the non-malignant HS-5 cell line. Results: Whereas the isolated flavonoids displayed only moderate activity, the three sesquiterpene lactones goyazensolide, centratherin, and lychnopholide exhibited pronounced effects against all four tested cell lines. Goyazensolide was the most effective compound, inhibiting proliferation and metabolic activity with IC50 values between 1.0 and 1.6 µM, as well as 1.0 to 2.0 µM, respectively. Centratherin and lychnopholide were somewhat less active but showed higher selectivity towards malignant cell lines, which was most pronounced for MOLM-13 cells. Conclusion: The results of this study revealed interesting natural products that will be further evaluated for their potential as new lead compounds for the treatment of acute myeloid leukemia and multiple myeloma. Full article
(This article belongs to the Special Issue Effects of Secondary Plant Metabolites on Human Health)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
PARP Inhibition Shifts Murine Myeloid Cells Toward a More Tolerogenic Profile In Vivo
by Jose R. Pittaluga-Villarreal, Casey M. Daniels, Tara Capece, Pauline R. Kaplan, Martin Meier-Schellersheim and Aleksandra Nita-Lazar
Biomolecules 2025, 15(8), 1149; https://doi.org/10.3390/biom15081149 - 9 Aug 2025
Viewed by 427
Abstract
The human Poly ADP-ribose Polymerase (PARP) family comprises 17 enzymes responsible for the transfer of ADP-ribose to proteins, forming poly- or mono-ADP-ribosylation. This post-translational modification regulates DNA repair and programmed cell death, processes affecting cancer biology. PARP inhibitors, including the FDA-approved olaparib, are [...] Read more.
The human Poly ADP-ribose Polymerase (PARP) family comprises 17 enzymes responsible for the transfer of ADP-ribose to proteins, forming poly- or mono-ADP-ribosylation. This post-translational modification regulates DNA repair and programmed cell death, processes affecting cancer biology. PARP inhibitors, including the FDA-approved olaparib, are used to treat BRCA-dependent breast and ovarian cancers. Although therapies with use of PARP inhibitors are showing clinical success, their effects on the immune system remain understudied. Prior work has shown that PARP inhibition can modulate inflammatory responses and alter innate immunity. In this study, we evaluated the immunomodulatory effects of olaparib on myeloid cells in vivo, focusing on bone marrow and spleen. Olaparib treatment altered the composition and activation state of dendritic cells, neutrophils, and macrophages. In the bone marrow, olaparib increased the proportion of cDC2 population, mature neutrophils and inflammatory macrophages expressing CD80. In contrast, splenic myeloid cells exhibited enhanced expression of markers associated with tolerogenic phenotypes, including CD206 and CD124 in neutrophils and macrophages. The spleen also showed an increase in immature monocyte-derived dendritic cells (CD206+) and a bias toward the cDC2 subset. These findings indicate that PARP inhibition can induce short-term phenotypic remodeling of myeloid cell populations, promoting a more immunoregulatory profile, especially in the spleen. These changes may contribute to an altered immune landscape with implications for anti-tumor immunity. Full article
(This article belongs to the Special Issue PARPs in Cell Death and PARP Inhibitors in Cancers: 2nd Edition)
Show Figures

Figure 1

20 pages, 1155 KiB  
Perspective
Historically Based Perspective on the Immunotherapy of Type 1 Diabetes: Where We Have Been, Where We Are, and Where We May Go
by Eugenio Cavalli, Giuseppe Rosario Pietro Nicoletti and Ferdinando Nicoletti
J. Clin. Med. 2025, 14(16), 5621; https://doi.org/10.3390/jcm14165621 - 8 Aug 2025
Viewed by 502
Abstract
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking [...] Read more.
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking perspective on the evolution of immunotherapy in T1DM, from early immunosuppressive interventions to advanced precision-based cellular approaches. Specifically, we focus on systemic immunosuppressants (e.g., corticosteroids, cyclosporine), monoclonal antibodies (e.g., anti-CD3, anti-IL-1, anti-TNF), regulatory cell-based approaches (e.g., Tregs, CAR-Tregs, MDSCs), and β-cell replacement strategies using stem cell-derived islets. Methods: We analyzed major clinical and translational milestones in immunotherapy for T1DM, with particular attention to the transition from broad immunosuppression to targeted modulation of immune pathways. Emerging data on cell-based therapies, artificial intelligence (AI)-driven stratification, and personalized intervention timing have been incorporated to provide a comprehensive overview of current and future directions. Results: Initial therapies such as corticosteroids and cyclosporine offered proof-of-concept for immune modulation, yet suffered from relapse and toxicity. The introduction of monoclonal antibodies (e.g., teplizumab) marked a shift toward immune-specific intervention, particularly in stage 2 preclinical T1DM. More recent approaches include low-dose IL-2, checkpoint modulation, and antigen-specific tolerance strategies. Cellular therapies such as Treg adoptive transfer, chimeric antigen receptor Tregs (CAR-Tregs), and stem cell-derived islet replacements (e.g., VX-880) have shown promise in preserving β-cell function and modulating autoimmunity. Myeloid-derived suppressor cells (MDSCs), although still preclinical, represent a complementary avenue for immune tolerance induction. Concurrently, AI-based models are emerging as tools to stratify risk and personalize immunotherapeutic timing, enhancing trial design and outcome prediction. Conclusions: In conclusion, the historical progression from broad immunosuppression to precision-driven strategies underscores the importance of stage-specific, mechanism-based interventions in T1DM. The convergence of targeted biologics, regenerative cell therapies, and β-cell replacement approaches, supported by AI-enabled patient stratification, offers a realistic path toward durable immune tolerance and functional β-cell preservation. Continued integration of these modalities, coupled with rigorous long-term evaluation, will be essential to transform these scientific advances into sustained clinical benefit. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

19 pages, 684 KiB  
Article
Does the Timing of Response Impact the Outcome of Relapsed/Refractory Acute Myeloid Leukemia Treated with Venetoclax in Combination with Hypomethylating Agents? A Proof of Concept from a Monocentric Observational Study
by Ermelinda Longo, Fanny Erika Palumbo, Andrea Duminuco, Laura Longo, Daniela Cristina Vitale, Serena Brancati, Cinzia Maugeri, Marina Silvia Parisi, Giuseppe Alberto Palumbo, Giovanni Luca Romano, Filippo Drago, Francesco Di Raimondo, Lucia Gozzo and Calogero Vetro
J. Clin. Med. 2025, 14(15), 5586; https://doi.org/10.3390/jcm14155586 - 7 Aug 2025
Viewed by 366
Abstract
Background: Relapsed/refractory acute myeloid leukemia (R/R AML) remains a therapeutic challenge due to disease heterogeneity, resistance mechanisms, and poor tolerability to intensive regimens. Venetoclax (VEN), a BCL-2 inhibitor, has shown promise in combination with hypomethylating agents (HMAs), but data on response timing [...] Read more.
Background: Relapsed/refractory acute myeloid leukemia (R/R AML) remains a therapeutic challenge due to disease heterogeneity, resistance mechanisms, and poor tolerability to intensive regimens. Venetoclax (VEN), a BCL-2 inhibitor, has shown promise in combination with hypomethylating agents (HMAs), but data on response timing in the R/R setting are limited. The aim of this study was to assess the efficacy, safety, and kinetics of response to HMA-VEN therapy in a real-world cohort of R/R AML patients, with particular focus on early versus late responders. Methods: This prospective single-center study included 33 adult patients with R/R AML treated with VEN plus either azacitidine (AZA) or decitabine (DEC) from 2018 to 2021. The primary endpoint was the composite complete remission (cCR) rate and the rate of early and late response, respectively, occurring within two cycles of therapy or later; secondary endpoints included overall survival (OS), relapse-free survival (RFS), time to relapse (TTR), and safety. Results: The cCR was 58%, with complete remission (CR) or CR with incomplete recovery (CRi) achieved in 52% of patients. Median OS was 9 months. No significant differences in OS or TTR were observed between early (≤2 cycles) and late (>2 cycles) responders. Eight responders (42%) underwent allogeneic hematopoietic stem cell transplantation (HSCT), with comparable transplant rates in both groups of responders. Toxicity was manageable. Grade 3–4 neutropenia occurred in all patients, and febrile neutropenia occurred in 44% of patients. An Eastern Cooperative Oncology Group (ECOG) score >2 was associated with inferior response and shorter treatment duration. Conclusions: HMA-VEN therapy is effective and safe in R/R AML, including for patients with delayed responses. The absence of a prognostic disadvantage for late responders supports flexible treatment schedules and suggests that the continuation of therapy may be beneficial even without early blast clearance. Tailored approaches based on performance status and comorbidities are warranted, and future studies should incorporate minimal residual disease (MRD)-based monitoring to refine response assessment. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

Back to TopTop