Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,170)

Search Parameters:
Keywords = nano-composite materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4501 KB  
Article
An Electrochemical Aptamer Sensor with ZIF-8 Loaded CuNPs Composites for Aflatoxin B1 Determination
by Juncheng Chen, Caizhang Wu, Zhike Zhao and Ruihao Xue
Chemosensors 2025, 13(9), 342; https://doi.org/10.3390/chemosensors13090342 (registering DOI) - 6 Sep 2025
Abstract
An electrochemical aptamer sensor for the sensitive detection of aflatoxin B1 (AFB1) in corn samples was developed using nanocomposites loaded with copper nanoparticles (CuNPs) on zeolitic imidazolate framework-8 (ZIF-8), which were modified on a glassy carbon electrode (GCE). The CuNPs@ZIF-8 [...] Read more.
An electrochemical aptamer sensor for the sensitive detection of aflatoxin B1 (AFB1) in corn samples was developed using nanocomposites loaded with copper nanoparticles (CuNPs) on zeolitic imidazolate framework-8 (ZIF-8), which were modified on a glassy carbon electrode (GCE). The CuNPs@ZIF-8 nanocomposites served as modifying materials for electrodes, exhibiting a high specific surface area and excellent compatibility with aptamers, thereby enhancing the electron transfer rate and increasing the aptamer loading and immobilization efficiency. The electrochemical properties before and after modification were investigated and validated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, while the sensor’s performance was analyzed through quantitative detection via differential pulse voltammetry (DPV). Furthermore, various conditions, including the volume of ZIF-8 dispersion, electrodeposition time of copper nanoparticles, aptamer concentration, and AFB1 incubation time, were optimized. The results indicated that the sensor exhibited a wide linear range (10.0 to 1.0 × 106 pg/mL), with a lower limit of detection (LOD) of 1.13 pg/mL under optimized conditions, outperforming other reported aptamer sensors. The spiked recoveries in corn samples ranged from 96.663% to 105.72%. In conclusion, this sensor presents a novel solution for low-cost and high-sensitivity detection of AFB1. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

24 pages, 2826 KB  
Review
Self-Assembly Strategies in Upconversion Nanoparticle-Based Nanocomposites: Structure Designs and Applications
by Zhen Zhang, Xiaoyu Ji, Weijia Huang, Qizhen Mai and Du Cheng
Int. J. Mol. Sci. 2025, 26(17), 8671; https://doi.org/10.3390/ijms26178671 - 5 Sep 2025
Abstract
Self-assembly has emerged as a powerful bottom-up strategy for the construction of multifunctional nanocomposites based on upconversion nanoparticles (UCNPs). In contrast to epitaxial shell growth, self-assembly enables the modular integration of UCNPs with a broad spectrum of other functional nanomaterials. This characteristic makes [...] Read more.
Self-assembly has emerged as a powerful bottom-up strategy for the construction of multifunctional nanocomposites based on upconversion nanoparticles (UCNPs). In contrast to epitaxial shell growth, self-assembly enables the modular integration of UCNPs with a broad spectrum of other functional nanomaterials. This characteristic makes it particularly attractive for various practical applications. This review provides a comprehensive overview of self-assembly methodologies for UCNP-based nanocomposites, including electrostatic interactions, hydrophobic interactions, covalent coupling, and specific biorecognition. The resultant nanohybrids exhibit a wide range of morphologies and functionalities, making them suitable for various applications, including multimodal imaging, bioimaging, advanced biosensing, smart nanocarriers for controlled molecular delivery, and orthogonal photoactivation for programmable therapy. Key recent studies are highlighted to elucidate the structure–function relationships and technological potential of these materials. Additionally, the current challenges, such as stability, reproducibility, and functional integration, and proposed future directions for the development of UCNP-based nanocomposites are further discussed. Full article
(This article belongs to the Special Issue Nanocomposites and Their Biomedical Applications)
21 pages, 1943 KB  
Article
Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials
by Hongyan Wang, Ziyu Shao, Mao Cai, Guoji Shi and Bai Sun
Chemosensors 2025, 13(9), 339; https://doi.org/10.3390/chemosensors13090339 - 5 Sep 2025
Abstract
Since methanol has a significant health hazard due to its inherent toxicity, it is urgent to develop a method capable of rapid, sensitive, and continuous monitoring of methanol. The present study successfully synthesized a NiCo2O4/MIL-Ti125 composite material and [...] Read more.
Since methanol has a significant health hazard due to its inherent toxicity, it is urgent to develop a method capable of rapid, sensitive, and continuous monitoring of methanol. The present study successfully synthesized a NiCo2O4/MIL-Ti125 composite material and conducted a comprehensive analysis of its effectiveness for the detection of methanol employing cataluminescence (CTL) technology. The findings demonstrated that the composite material displays marked CTL in response to methanol, showcasing notable sensitivity, selectivity, and stability. The composite’s heterogeneous structure significantly improves the adsorption and reaction efficiency of methanol and further reduces the sensor’s working temperature. Under the optimal conditions of 215 °C and a flow rate of 300 mL/min, the CTL signal intensity is governed by the equation Y = 10.388X − 4.473 (R2 = 0.982), with a detection limit as low as 0.431 ppm. The NiCo2O4/MIL-Ti125 sensor exhibits high selectivity towards methanol. In addition, a relative standard deviation (RSD) of 4.95% demonstrates its excellent stability. Utilizing X-ray photoelectron spectroscopy (XPS), the study investigated the impact of elemental valence changes on the CTL process. We believe that the NiCo2O4/MIL-Ti125 composite material, as a high-performance low-temperature CTL methanol sensor, is promising for applications. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
28 pages, 3985 KB  
Review
Advances in the Electrochemical Detection of Antibiotics: Modified Materials, Wearable Sensors, and Future Prospects
by Xun Gong, Yingying Li, Xin Li, Jie Hu, Xin Zhou and Xiupei Yang
Sensors 2025, 25(17), 5541; https://doi.org/10.3390/s25175541 - 5 Sep 2025
Abstract
Antibiotics, valued for their remarkable efficacy, are widely employed across diverse domains. However, their rampant overuse has precipitated severe environmental and health crises, necessitating the development of efficient techniques for rapid and selective antibiotic detection. Electrochemical detection has emerged as a highly promising [...] Read more.
Antibiotics, valued for their remarkable efficacy, are widely employed across diverse domains. However, their rampant overuse has precipitated severe environmental and health crises, necessitating the development of efficient techniques for rapid and selective antibiotic detection. Electrochemical detection has emerged as a highly promising approach, offering unmatched advantages such as cost-effectiveness, speed, and reliability. The field has witnessed significant advancements through the innovation of advanced electrode modification materials. This review provides a comprehensive analysis of recent progress in the development and application of modified materials for antibiotic detection. Furthermore, the increasing need for real-time monitoring has spurred the development of wearable electrochemical sensors, which are revolutionizing applications in human health and food safety. Looking ahead, future research is poised to focus on synthesizing nanocomposites with superior electrochemical properties and advancing the miniaturization of sensors, promising transformative practical applications in antibiotic detection. Full article
23 pages, 3367 KB  
Review
Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants
by Huilin Li, Rui Gao, Xiaochun Hu, Mengmeng Gao and Mingfei Pan
Foods 2025, 14(17), 3108; https://doi.org/10.3390/foods14173108 - 5 Sep 2025
Abstract
Public health concerns related to food contaminants, including biotoxins, pesticide and veterinary drug residues, illegal additives, foodborne pathogens, and heavy metals, have garnered significant public attention in recent years. Consequently, there is an urgent need to develop rapid and accurate technologies to detect [...] Read more.
Public health concerns related to food contaminants, including biotoxins, pesticide and veterinary drug residues, illegal additives, foodborne pathogens, and heavy metals, have garnered significant public attention in recent years. Consequently, there is an urgent need to develop rapid and accurate technologies to detect these harmful substances. Surface-enhanced Raman spectroscopy (SERS), due to its characteristics of high sensitivity and specificity enabling the detection of food contaminants within complex matrices, has attracted widespread interest. This review focuses on the application of noble metal-based nanocomposites as SERS-active substrates for food contaminant detection. It particularly highlights the structure–performance relationships of metallic nanomaterials, including gold and silver nanoparticles (e.g., nanospheres, nanostars, nanorods), bimetallic structures (e.g., Au@Ag core–shell), as well as metal–nonmetal composite nanomaterials such as semiconductor-based, carbon-based, and porous framework-based materials. All of which play a crucial role in achieving effective Raman signal enhancement. Furthermore, the significant applications in detecting various contaminants and distinct advantages in terms of the sensitivity and selectivity of noble metal-based nanomaterials are also discussed. Finally, this review addresses current challenges associated with SERS technology based on noble metal-based nanomaterials and proposes corresponding strategies alongside future perspectives. Full article
Show Figures

Figure 1

27 pages, 10877 KB  
Article
Engineering and Technological Approaches to Well Killing in Hydrophilic Formations with Simultaneous Oil Production Enhancement and Water Shutoff Using Selective Polymer-Inorganic Composites
by Valery Meshalkin, Rustem Asadullin, Sergey Vezhnin, Alexander Voloshin, Rida Gallyamova, Annaguly Deryaev, Vladimir Dokichev, Anvar Eshmuratov, Lyubov Lenchenkova, Artem Pavlik, Anatoly Politov, Victor Ragulin, Danabek Saduakassov, Farit Safarov, Maksat Tabylganov, Aleksey Telin and Ravil Yakubov
Energies 2025, 18(17), 4721; https://doi.org/10.3390/en18174721 - 4 Sep 2025
Abstract
Well-killing operations in water-sensitive hydrophilic formations are often complicated by extended well clean-up periods and, in some cases, failure to restore the well’s production potential post-kill. Typical development targets exhibiting these properties include the Neocomian and Jurassic deposits of fields in Western Siberia [...] Read more.
Well-killing operations in water-sensitive hydrophilic formations are often complicated by extended well clean-up periods and, in some cases, failure to restore the well’s production potential post-kill. Typical development targets exhibiting these properties include the Neocomian and Jurassic deposits of fields in Western Siberia and Western Kazakhstan. This paper proposes a well-killing method incorporating simultaneous near-wellbore treatment. In cases where heavy oil components (asphaltenes, resins, or paraffins) are deposited in the near-wellbore zone, their removal with a solvent results in post-operation flow rates that exceed pre-restoration levels. For wells not affected by asphaltene, resin, and paraffin deposits, killing is performed using a blocking pill of invert emulsion stabilized with an emulsifier and hydrophobic nanosilica. During filtration into the formation, this emulsion does not break but rather reforms according to the pore throat sizes. Flow rates in such wells typically match pre-restoration levels. The described engineering solution proves less effective when the well fluid water cut exceeds 60%. For wells exhibiting premature water breakthrough that have not yet produced their estimated oil volume, the water source is identified, and water shutoff operations are conducted. This involves polymer-gel systems crosslinked with resorcinol and paraform, reinforced with inorganic components such as chrysotile microdispersions, micro- and nanodispersions of shungite mineral, and gas black. Oscillation testing identified the optimal additive concentration range of 0.6–0.7 wt%, resulting in a complex modulus increase of up to 25.7%. The most effective polymer-inorganic composite developed by us, incorporating gas black, demonstrates high water shutoff capability (residual resistance factor ranges from 12.5 to 65.0 units within the permeability interval of 151.7 to 10.5 mD). Furthermore, the developed composites exhibit the ability to selectively reduce water permeability disproportionately more than oil permeability. Filtration tests confirmed that the residual permeability to oil after placing the blocking composition with graphene is 6.75 times higher than that to water. Consequently, such treatments reduce the well water cut. Field trials confirmed the effectiveness of the developed polymer-inorganic composite systems. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

42 pages, 3851 KB  
Review
Conjugate Nanoparticles in Cancer Theranostics
by Hossein Omidian, Erma J. Gill and Luigi X. Cubeddu
J. Nanotheranostics 2025, 6(3), 24; https://doi.org/10.3390/jnt6030024 - 4 Sep 2025
Abstract
Nanotheranostics combines therapeutic and diagnostic functions within multifunctional nanoparticle platforms to enable precision medicine. This review outlines a comprehensive framework for engineering nanotheranostic systems, focusing on core material composition, surface functionalization, and stimuli-responsive drug delivery. Targeting strategies—from ligand-based recognition to biomimetic interfaces—are examined [...] Read more.
Nanotheranostics combines therapeutic and diagnostic functions within multifunctional nanoparticle platforms to enable precision medicine. This review outlines a comprehensive framework for engineering nanotheranostic systems, focusing on core material composition, surface functionalization, and stimuli-responsive drug delivery. Targeting strategies—from ligand-based recognition to biomimetic interfaces—are examined alongside therapeutic modalities such as chemotherapy, photothermal and photodynamic therapies, gene silencing via RNA interference, and radio sensitization. We discuss advanced imaging techniques (fluorescence imaging FI), magnetic resonance imaging (MRI), positron emission tomography (PET), and photoacoustic imaging for real-time tracking and treatment guidance. Key considerations include physicochemical characterization (e.g., article size, surface charge, and morphology), biocompatibility, in-vitro efficacy, and in-vivo biodistribution. We also address challenges such as rapid biological clearance, tumor heterogeneity, and clinical translation, and propose future directions for developing safe, adaptable, and effective nanotheranostic platforms. This review serves as a roadmap for advancing next-generation nano systems in biomedical applications. Full article
(This article belongs to the Special Issue Advances in Nanoscale Drug Delivery Technologies and Theranostics)
Show Figures

Figure 1

30 pages, 26752 KB  
Review
Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers
by Chaoqun Xiang, Hongsen Sun, Teng Wu, Ye Chen, Yanjie Wang and Tao Zou
Polymers 2025, 17(17), 2408; https://doi.org/10.3390/polym17172408 - 4 Sep 2025
Abstract
This paper systematically reviews the research progress of underwater soft grasping devices in the field of bionic structure, function integration, and tactile sensing technology by drawing on the structural characteristics of marine organisms such as octopuses, jellyfish, and sea anemones (such as suction [...] Read more.
This paper systematically reviews the research progress of underwater soft grasping devices in the field of bionic structure, function integration, and tactile sensing technology by drawing on the structural characteristics of marine organisms such as octopuses, jellyfish, and sea anemones (such as suction cups, umbrella-like muscles, and stinging cells). This paper analyzes the inspiration for the design, the application of innovative materials, and the integration of sensing and driving from marine organisms, including a review of soft robotics technologies, such as shape memory alloys (SMA), ionic polymer metal composite materials (IPMCs), magnetic nanocomposite cilia, etc. The research results emphasize that bionic soft robots have the potential for transformation in completely changing underwater operations by providing enhanced flexibility, efficiency, and environmental adaptability. This work provides a bionic design paradigm and perception-driven integration method for underwater soft operation systems, thereby promoting equipment innovation in the fields of deep-sea exploration and ecological protection. Full article
(This article belongs to the Special Issue Advancing Soft Robotics with Polymers)
Show Figures

Figure 1

26 pages, 4875 KB  
Article
Photocatalytic Degradation of Methylene Blue Dye with g-C3N4/ZnO Nanocomposite Materials Using Visible Light
by Juan C. Pantoja-Espinoza, Gema A. DelaCruz-Alderete and Francisco Paraguay-Delgado
Catalysts 2025, 15(9), 851; https://doi.org/10.3390/catal15090851 - 4 Sep 2025
Viewed by 203
Abstract
The g-C3N4/ZnO nanocomposite materials were applied to degrade methylene blue (MB). The samples were characterized and evaluated to study the adsorption and photocatalytic degradation under visible light. The g-C3N4 was incorporated at percentages of 5%, 10%, [...] Read more.
The g-C3N4/ZnO nanocomposite materials were applied to degrade methylene blue (MB). The samples were characterized and evaluated to study the adsorption and photocatalytic degradation under visible light. The g-C3N4 was incorporated at percentages of 5%, 10%, 20%, and 40% relative to the ZnO weight. These composite materials were prepared using a solvothermal microwave technique. The structural, textural, morphological, and optical properties were investigated using XRD, FTIR, SEM, EDS, STEM, BET, UV-Vis, and XPS techniques. The XRD patterns of the samples showed the coexistence of crystalline phases of g-C3N4 and ZnO, while images and elemental composition analysis confirmed the formation of nanocomposite samples. The UV-Vis spectrum revealed a redshift in the absorption edge of the nanocomposites, indicating improved light-harvesting capability. The synthesized material g-C3N4/ZnO (20/80), with a surface area of 25 m2/g, exhibited higher photocatalytic performance, achieving 85% degradation of MB after 100 min under visible light, which corresponds to nearly three times the degradation efficiency of commercial P25-TiO2 (31%) under the same conditions. The reusability and stability tests were conducted up to the fifth cycle, and this material showed 77% degradation, indicating good stability. This nanocomposite material has good potential as a photocatalyst for solar-driven MB. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

18 pages, 1750 KB  
Article
CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels
by Marina González-Barriuso, Ángel Yedra and Carmen Blanco
Gels 2025, 11(9), 702; https://doi.org/10.3390/gels11090702 - 2 Sep 2025
Viewed by 108
Abstract
This work evaluates the CO2-adsorption relevance and cycling stability of graphene oxide–silica (GO-SiO2) and reduced graphene oxide–silica (rGO-SiO2) gels after amine functionalization, demonstrating high-capacity retention under repeated adsorption–desorption cycles: rGO-SiO2-APTMS retains ≈96.3% of its initial [...] Read more.
This work evaluates the CO2-adsorption relevance and cycling stability of graphene oxide–silica (GO-SiO2) and reduced graphene oxide–silica (rGO-SiO2) gels after amine functionalization, demonstrating high-capacity retention under repeated adsorption–desorption cycles: rGO-SiO2-APTMS retains ≈96.3% of its initial uptake after 50 cycles, while GO-SiO2-APTMS retains ≈90.0%. The use of surfactants to control the organization of inorganic and organic molecules has enabled the development of ordered mesostructures, such as mesoporous silica and organic/inorganic nanocomposites. Owing to the outstanding properties of graphene and its derivatives, synthesizing mesostructures intercalated between graphene sheets offers nanocomposites with novel morphologies and enhanced functionalities. In this study, GO-SiO2 and rGO-SiO2 gels were synthesized and characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), mass spectrometry (MS), N2 adsorption–desorption isotherms, and transmission electron microscopy (TEM). The resulting materials exhibit a laminar architecture, with mesoporous silica domains grown between graphene-based layers; the silica contents are 83.6% and 87.6%, and the specific surface areas reach 446 and 710 m2·g−1, respectively. The laminar architecture is retained regardless of the surfactant-removal route; however, in GO-SiO2 obtained by solvent extraction, a fraction of the surfactant remains partially trapped. Together with their high surface area, hierarchical porosity, and amenability to surface functionalization, these features establish amine-grafted graphene–silica gels, particularly rGO-SiO2-APTMS, as promising CO2-capture adsorbents. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

16 pages, 22049 KB  
Article
Effect of Heat Treatment on Microstructures and Mechanical Properties of TC4 Alloys Prepared by Selective Laser Melting
by Jian Zhang, Yuhuan Shi, Su Shen, Shengdong Zhang, Honghui Ding and Xiaoming Pan
Materials 2025, 18(17), 4126; https://doi.org/10.3390/ma18174126 - 2 Sep 2025
Viewed by 232
Abstract
The reduced ductility caused by the brittle needle-like α′ martensite limits the application of TC4 alloys produced by selective laser melting (SLM). Appropriate heat treatment can improve the microstructures and properties of SLM-fabricated TC4 alloys. In this work, SLM-fabricated TC4 alloys underwent stress [...] Read more.
The reduced ductility caused by the brittle needle-like α′ martensite limits the application of TC4 alloys produced by selective laser melting (SLM). Appropriate heat treatment can improve the microstructures and properties of SLM-fabricated TC4 alloys. In this work, SLM-fabricated TC4 alloys underwent stress relief annealing at 600 °C and high-temperature annealing at 800 °C. The effects of heat treatment temperature on phase composition, microstructural morphology, grain orientation, and mechanical properties were investigated. Meanwhile, the microstructural evolution and fracture mechanisms during the heat treatment process were analyzed. The results indicate that after annealing at 600 °C, the needle-like α′ phase transforms into elongated α, and nano-β phase increases. When annealed at 800 °C, the α′ phase completely transforms into a more stable lath-shaped α phase and a short rod-shaped β phase, with the nano-β phase disappearing. The texture orientation gradually shifts from <0001> towards <01-10>, where slip systems are more active. Additionally, heat treatment promotes the transition of grain boundaries to high-angle grain boundaries, thereby alleviating stress concentration and enhancing solid-solution strengthening. After heat treatment, the ultimate tensile strength of the material slightly decreases, but the elongation significantly increases. As the annealing temperature increased, the elongation (EL) improved from 5.22% to 11.43%. Following high-temperature annealing at 800 °C, necking and larger dimples appear on the fracture surface, and the fracture mechanism shifts from a mixed brittle–ductile fracture to a ductile fracture. This work provides a theoretical basis for improving the microstructures and properties of SLM-fabricated TC4 alloys through heat treatment. Full article
Show Figures

Graphical abstract

45 pages, 5319 KB  
Review
Polymeric Systems as Hydrogels and Membranes Containing Silver Nanoparticles for Biomedical and Food Applications: Recent Approaches and Perspectives
by Alexandra Nicolae-Maranciuc and Dan Chicea
Gels 2025, 11(9), 699; https://doi.org/10.3390/gels11090699 - 2 Sep 2025
Viewed by 328
Abstract
Silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties and broad-spectrum efficacy against pathogens. Recent advances in polymer science have enabled the development of AgNPs-integrated hydrogels and membranes, offering multifunctional platforms for biomedical and food-related applications. This review provides [...] Read more.
Silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties and broad-spectrum efficacy against pathogens. Recent advances in polymer science have enabled the development of AgNPs-integrated hydrogels and membranes, offering multifunctional platforms for biomedical and food-related applications. This review provides a comprehensive overview of recent strategies for synthesizing and incorporating AgNPs into polymeric matrices, highlighting both natural and synthetic polymers as carriers. The structural and functional properties of these nanocomposite systems, such as biocompatibility, mechanical stability, controlled silver ion release, and antimicrobial activity, are critically examined. The focus is placed on their application in wound healing, drug delivery, food packaging, and preservation technologies. Challenges such as cytotoxicity, long-term stability, and regulatory concerns are discussed alongside emerging trends and safety paradigms. This work underscores the potential of AgNPs–polymer hybrids as next-generation materials and outlines future directions for their sustainable and targeted application in biomedical and food systems. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Figure 1

20 pages, 7163 KB  
Article
Glass-Forming Ionic Liquid Crystal Gold–Carbon Nanocomposites with Ultrafast Optical Nonlinearity Sign Reversal
by Valentyn Rudenko, Anatolii Tolochko, Svitlana Bugaychuk, Dmytro Zhulai, Gertruda Klimusheva, Galina Yaremchuk, Tatyana Mirnaya and Yuriy Garbovskiy
J. Compos. Sci. 2025, 9(9), 472; https://doi.org/10.3390/jcs9090472 - 2 Sep 2025
Viewed by 250
Abstract
The development of new types of nanocomposites capable of manipulating light is critical for various modern photonics applications. Recently, we proposed the use of overlooked glass-forming ionic liquid crystals made of cadmium octanoate containing gold, carbon, or both carbon and gold nanoparticles as [...] Read more.
The development of new types of nanocomposites capable of manipulating light is critical for various modern photonics applications. Recently, we proposed the use of overlooked glass-forming ionic liquid crystals made of cadmium octanoate containing gold, carbon, or both carbon and gold nanoparticles as promising optical and nonlinear optical materials. These were characterized using nanosecond laser pulses at a wavelength of 532 nm. In this paper, femtosecond radiation at different wavelengths (600 nm and 800 nm) is employed to study ultrafast electronic nonlinear optical processes in mesomorphic glass nanocomposites. The observed nonlinear optical response probed at the femtosecond time scale dramatically differs from that at the nanosecond time scale reported previously. The intensity-dependent effective nonlinear absorption coefficient of all studied samples remains positive due to the dominant reverse saturable absorption effect, while the nonlinear refractive index exhibits a sign reversal depending on the intensity and wavelength of laser pulses. The strategy for producing glass-forming ionic liquid crystal gold–carbon nanocomposites with an ultrafast nonlinear optical response is of high interest for modern applications in advanced photonics, and it can also be applied to other types of glass-forming metal alkanoates and nanomaterials. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Graphical abstract

14 pages, 2674 KB  
Article
Thermal and Electrical Properties of Cement-Based Materials Reinforced with Nano-Inclusions
by Spyridoula G. Farmaki, Panagiota T. Dalla, Dimitrios A. Exarchos, Konstantinos G. Dassios and Theodore E. Matikas
Nanomanufacturing 2025, 5(3), 13; https://doi.org/10.3390/nanomanufacturing5030013 - 1 Sep 2025
Viewed by 136
Abstract
This study explores the influence of various nano-inclusions on the electrical and thermal properties of cement-based materials. Specifically, it investigates the incorporation of Multi-Walled Carbon Nanotubes (MWCNTs) and Graphene Nanoplatelets (GNPs) as reinforcement materials in cement composites. These advanced nanomaterials enhance the mechanical [...] Read more.
This study explores the influence of various nano-inclusions on the electrical and thermal properties of cement-based materials. Specifically, it investigates the incorporation of Multi-Walled Carbon Nanotubes (MWCNTs) and Graphene Nanoplatelets (GNPs) as reinforcement materials in cement composites. These advanced nanomaterials enhance the mechanical strength, durability, and functional properties of cementitious matrices. A series of experimental tests was conducted to evaluate the thermal and electrical behavior of nano-reinforced concrete, employing nondestructive evaluation techniques, such as Infrared Thermography (IRT) and Electrical Resistivity measurements. The results indicate that increasing the concentration of nanomaterials significantly improves both the thermal and electrical conductivity of the composites. Optimum performance was observed at a CNT dosage of 0.6% and a GNP dosage of 1.2% by weight of cement in cement paste, while in concrete, both nanomaterials showed a significant decrease in resistivity beginning at 1.0%, with optimal performance at 1.2%. The study also emphasizes the critical role of proper dispersion techniques, such as ultrasonication, in achieving a homogeneous distribution of nanomaterials within the cement matrix. These findings highlight the potential of carbon nanotubes (CNTs) and GNPs to enhance the multifunctional properties of cement-based materials, paving the way for their application in smart and energy-efficient construction applications. Full article
Show Figures

Figure 1

22 pages, 3151 KB  
Article
Comparative Removal of Hexavalent Chromium from Aqueous Solution Using Plant-Derived and Industrial Zirconia Nanoparticles
by Guojie Weng, Weidong Li, Fengyue Qin, Menglu Dong, Shuangqi Yue, Jiechang Weng and Sajid Mehmood
Processes 2025, 13(9), 2794; https://doi.org/10.3390/pr13092794 - 1 Sep 2025
Viewed by 269
Abstract
This study presents a plant-fabricated nanoparticle system of zirconia (ZrO2) using Sonchus asper plant extract, compared with conventionally synthesized ZrO2, for their efficacy in Cr(VI) removal from aqueous solutions. The nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy [...] Read more.
This study presents a plant-fabricated nanoparticle system of zirconia (ZrO2) using Sonchus asper plant extract, compared with conventionally synthesized ZrO2, for their efficacy in Cr(VI) removal from aqueous solutions. The nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) for elemental composition, Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis. The plant-fabricated ZrO2 exhibited mesoporosity and enhanced surface functionality, attributed to bioactive compounds from Sonchus asper, which improved adsorption performance via increased surface area and residual organic functional groups. Batch adsorption experiments showed that Cr(VI) removal was optimized at 100 mg/L Cr(VI), 300 mg/L adsorbent dosage, pH 5, and 30 min reaction time at 25 °C. Adsorption followed the Langmuir isotherm and pseudo-second-order kinetics models. According to Langmuir model fitting, the maximum adsorption capacity (qmax) reached 142.24 mg/g for PF-ZrO2 NPs and 133.11 mg/g for conventional ZrO2 NPs, indicating the superior adsorption performance of the green-synthesized material. This work highlights the sustainable potential of plant-fabricated ZrO2 nanoparticles as cost-effective and environmentally friendly nano-adsorbents for heavy metal remediation, contributing to the achievement of UN SDG No. 6 by providing clean water solutions. Full article
Show Figures

Figure 1

Back to TopTop