Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = nanoenzyme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6299 KB  
Article
Preparation of g-C3N4/Co3O4/NS-CQDs Composite Materials and Their Application in the Detection of Hydrogen Peroxide and Glucose
by Chang Feng, Yufeng Chen, Weie Wang, Yanan Niu, Xi Cao and Yuguang Lv
Nanomaterials 2025, 15(10), 752; https://doi.org/10.3390/nano15100752 - 16 May 2025
Viewed by 515
Abstract
g-C3N4, a biocompatible material, has prominent applications in biology and is ideal for nano-enzyme studies. Though reported as a peroxidase mimic, its activity remains low. This group combined N,S-doped carbon quantum dots (NS-CQDs) with g-C3N4 (7NSC-g), [...] Read more.
g-C3N4, a biocompatible material, has prominent applications in biology and is ideal for nano-enzyme studies. Though reported as a peroxidase mimic, its activity remains low. This group combined N,S-doped carbon quantum dots (NS-CQDs) with g-C3N4 (7NSC-g), verifying its peroxidase-like activity. Based on this, a ternary composite of Co3O4 in different forms and 7NSC-g was developed to enhance peroxidase activity, to design a g-C3N4-based composite enzyme. Characterizations determined the composition and morphology. Colorimetry evaluated peroxidase activity, where the simulated enzyme catalyzes blue product formation from the TMB substrate in the presence of H2O2. UV-Vis spectrophotometry measured absorbance changes to determine target concentrations. The results show Co3O4 doping improves catalytic activity, with larger specific surface area providing more activation sites. The highest activity of g-C3N4/NS-CQDs/Co3O4 was at 5% floral Co3O4, being efficient due to Co3O4’s electron-transfer acceleration and hydroxyl-radical mechanism. Under optimal conditions, the composite detected H2O2 (10.0–230.0 μM, detection limit of 0.031 μM) and glucose (10.0–650.0 μM, detection limit of 1.024 μM). Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

25 pages, 6492 KB  
Review
Research Progress on the Application of Nanoenzyme Electrochemical Sensors for Detecting Zearalenone in Food
by Guoqiang Guan, Zhiyuan Lin, Jingya Qian, Feng Wang, Liang Qu and Bin Zou
Nanomaterials 2025, 15(10), 712; https://doi.org/10.3390/nano15100712 - 9 May 2025
Cited by 1 | Viewed by 893
Abstract
Zearalenone (ZEN) is a common mycotoxin widely found in food crops such as corn. The toxicity of ZEN is manifested as multiple hazards to reproduction, genes, cells, and immune systems. Long-term exposure may have a serious impact on health, so it has received [...] Read more.
Zearalenone (ZEN) is a common mycotoxin widely found in food crops such as corn. The toxicity of ZEN is manifested as multiple hazards to reproduction, genes, cells, and immune systems. Long-term exposure may have a serious impact on health, so it has received extensive attention due to its potential harm to human and animal health. In order to ensure food safety, countries have formulated corresponding ZEN content limit standards and promoted the development of efficient and rapid detection technologies. This paper reviews the research progress of ZEN detection in food based on nanoenzyme electrochemical sensors. Firstly, the basic situation of ZEN was introduced, including its physical and chemical properties, toxicity, and related regulations and standards. Secondly, the advantages and disadvantages of traditional detection methods and new detection technologies are analyzed, and the application progress of electrochemical sensors in ZEN detection is discussed, especially aptamer electrochemical sensors, immune-electrochemical sensors, and nanoenzyme electrochemical sensors. In this paper, the advantages of nanoenzyme electrochemical sensors in ZEN detection are discussed in detail, especially in terms of sensitivity, selectivity, and rapid detection. However, nanoenzyme electrochemical sensors still face some challenges in practical applications, such as high production costs, control of signal amplification effects, and safety issues of nanomaterials. Finally, this paper looks forward to the future development direction of nanoenzyme electrochemical sensors and proposes possible solutions to further improve their stability, reduce costs, and optimize sensing performance. Full article
(This article belongs to the Special Issue Novel Nanomaterials and Nanotechnology for Food Safety)
Show Figures

Graphical abstract

22 pages, 5142 KB  
Article
ZnFe2O4/GQDs Nanoparticles as Peroxidase Mimics for Sensitive and Selective Colorimetric Detection of Glucose in Real Samples
by Claudia Cirillo, Mariagrazia Iuliano and Maria Sarno
Micromachines 2025, 16(5), 520; https://doi.org/10.3390/mi16050520 - 28 Apr 2025
Cited by 2 | Viewed by 651
Abstract
Glucose detection is critical in addressing health and medical issues related to irregular blood levels. Colorimetry, a simple, cost-effective, and visually straightforward method, is often employed. Traditional enzymatic detection methods face drawbacks such as high costs, limited stability, and operational challenges. To overcome [...] Read more.
Glucose detection is critical in addressing health and medical issues related to irregular blood levels. Colorimetry, a simple, cost-effective, and visually straightforward method, is often employed. Traditional enzymatic detection methods face drawbacks such as high costs, limited stability, and operational challenges. To overcome these, enzyme mimics or artificial nano-enzymes based on inorganic nanomaterials have garnered attention, but their cost and susceptibility to inactivation limit applications. This study presents a ZnFe2O4/GQDs nanocomposite as an innovative enzyme mimic, addressing key requirements like low cost, high stability, biocompatibility, and wide operational range. Synthesized using a simple and inexpensive method, the composite benefits from the synergistic interaction between ZnFe2O4 nanoparticles and graphene quantum dots (GQDs), resulting in excellent magnetic properties, high surface area, and functional versatility. The material demonstrated remarkable sensitivity with a detection limit of 7.0 μM across a range of 5–500 μM and achieved efficient peroxidase-like activity with Km values of 0.072 and 0.068 mM and Vmax of 4.58 × 10⁻8 and 8.29 × 10⁻8 M/s for TMB and H2O2, respectively. The nanocomposite also exhibited robust recyclability, retaining performance over six reuse cycles. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Figure 1

15 pages, 4886 KB  
Article
Manganese Phthalocyanine-Based Magnetic Core–Shell Composites with Peroxidase Mimetic Activity for Colorimetric Detection of Ascorbic Acid and Glutathione
by Junchao Qi, Long Tian, Yudong Pang and Fengshou Wu
Molecules 2025, 30(7), 1484; https://doi.org/10.3390/molecules30071484 - 27 Mar 2025
Cited by 1 | Viewed by 635
Abstract
Ascorbic acid (AA) and glutathione (GSH) play a pivotal role in health assessment, drug development, and quality control of nutritional supplements. The development of a new and efficient method for their detection is highly desired. In this work, we fabricated magnetic core–shell nanocomposites [...] Read more.
Ascorbic acid (AA) and glutathione (GSH) play a pivotal role in health assessment, drug development, and quality control of nutritional supplements. The development of a new and efficient method for their detection is highly desired. In this work, we fabricated magnetic core–shell nanocomposites (Fe3O4@MnPc-NDs) by a one-pot hydrothermal method with citric acid and manganese tetraamino phthalocyanine (MnTAPc) as precursors. Fe3O4@MnPc-NDs exhibited enhanced peroxidase activity compared to bare Fe3O4 nanoparticles, enabling catalytic oxidation of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue ox-TMB in the presence of H2O2. Leveraging the antioxidant properties of AA/GSH to reduce ox-TMB, a colorimetric assay achieved a low detection limit of 0.161 μM for AA and 0.188 μM for GSH with broad linear ranges. Moreover, this method displayed high specificity against 12 interfering substances and excellent recyclability (>90% activity after five cycles). Finally, the Fe3O4@MnPc-NDs could act as an efficient colorimetric sensor for accurately detecting AA in genuine VC tablets and GSH in whitening serums with high accuracy. Therefore, Fe3O4@MnPc-NDs exhibited great potential in bioassay applications, benefiting from their outstanding sensitivity and high recycling rate. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Graphical abstract

15 pages, 9045 KB  
Article
A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics
by Hongyue Chen, Zining Wang, Qi Shi, Weiguo Shi, Yuguang Lv and Shuang Liu
Nanomaterials 2025, 15(3), 162; https://doi.org/10.3390/nano15030162 - 22 Jan 2025
Cited by 3 | Viewed by 1600
Abstract
A copper-based nanoenzyme (Cu-BL) co-modified by L-L-lysine and 2-2-amino terephthalic acid has laccase-like activity and fluorescence characteristics. Based on this, a colorimetric and fluorescent dual-mode sensor was developed to visually and quantitatively detect tetracycline antibiotics (TCs), including tetracycline (TC), chlortetracycline (CTC), and oxytetracycline [...] Read more.
A copper-based nanoenzyme (Cu-BL) co-modified by L-L-lysine and 2-2-amino terephthalic acid has laccase-like activity and fluorescence characteristics. Based on this, a colorimetric and fluorescent dual-mode sensor was developed to visually and quantitatively detect tetracycline antibiotics (TCs), including tetracycline (TC), chlortetracycline (CTC), and oxytetracycline (OTC). In the colorimetric detection system, TCs can inhibit the generation of singlet oxygen (1O2) and weaken the ability of 2,4-dichlorophenol (2,4-DP) to be oxidized into pink-colored quinone substances. The linear ranges are 0.5–80 μM, 1–80 μM, and 0.25–80 μM, and the detection limits are 0.27 μM, 0.22 μM, and 0.26μM, respectively. In addition, due to the inner filter effect, tetracycline antibiotics can interact with Cu-BL, and with the increase in tetracycline antibiotic concentration, the fluorescence intensity will decrease. In addition, the smartphone sensing platform is combined with the colorimetric signal for the rapid and visual quantitative detection of tetracycline antibiotics. Generally speaking, the colorimetric/fluorescence dual-mode sensor demonstrates good stability, high specificity, and strong anti-interference capabilities, highlighting its practical application potential. This work is expected to offer novel insights for the development of multifunctional nanoenzymes and the integration of a multi-mode sensing platform. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 2160 KB  
Article
Harshly Oxidized Activated Charcoal Enhances Protein Persulfidation with Implications for Neurodegeneration as Exemplified by Friedreich’s Ataxia
by Anh T. T. Vo, Uffaf Khan, Anton V. Liopo, Karthik Mouli, Kenneth R. Olson, Emily A. McHugh, James M. Tour, Madhavan Pooparayil Manoj, Paul J. Derry and Thomas A. Kent
Nanomaterials 2024, 14(24), 2007; https://doi.org/10.3390/nano14242007 - 13 Dec 2024
Cited by 1 | Viewed by 1276
Abstract
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as “pleozymes”. A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen [...] Read more.
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as “pleozymes”. A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (H2S) to polysulfides and thiosulfate, dismutation of the superoxide radical (O2*), and oxidation of NADH to NAD+. The oxidation of H2S is predicted to enhance protein persulfidation—the attachment of sulfur to cysteine residues. Persulfidated proteins act as redox intermediates, and persulfidation protects proteins from irreversible oxidation and ubiquitination, providing an important means of signaling. Protein persulfidation is believed to decline in several neurological disorders and aging. Importantly, and consistent with the role of persulfidation in signaling, the master antioxidant transcription factor Nrf2 is regulated by Keap1’s persulfidation. Here, we demonstrate that pleozymes increased overall protein persulfidation in cells from apparently healthy individuals and from individuals with the mitochondrial protein mutation responsible for Friedreich’s ataxia. We further find that pleozymes specifically enhanced Keap1 persulfidation, with subsequent increased accumulation of Nrf2 and Nrf2’s antioxidant targets. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for Biomedicine Applications)
Show Figures

Figure 1

10 pages, 3760 KB  
Article
An Enzyme Mimicking Dendritic Platinum–Iron Oxide Catalyzes the Production of Reactive Oxygen Species
by Feng Feng, Yajing Liu, Li Yao and Xiuyu Wang
Catalysts 2024, 14(12), 858; https://doi.org/10.3390/catal14120858 - 26 Nov 2024
Viewed by 1017
Abstract
Creatine catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) are natural enzyme molecules that play a crucial role in regulating reactive oxygen species (ROS) in biological systems. They maintain life activities and eliminate pathogens by catalyzing various biochemical reactions. However, natural enzymes [...] Read more.
Creatine catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) are natural enzyme molecules that play a crucial role in regulating reactive oxygen species (ROS) in biological systems. They maintain life activities and eliminate pathogens by catalyzing various biochemical reactions. However, natural enzymes have some drawbacks in ROS control; they may lose activity under certain environmental conditions, such as high temperatures, extreme pH values, or the presence of organic solvents, which affects their stability and reliability in different applications. The construction of artificial nanozymes is an emerging technology that could probably solve the problems existing in natural enzymes. This study introduces a type of dendritic platinum–iron oxide (DPIO) nanozyme. The unique dendritic structure of this DPIO nanozyme provides a high surface area-to-volume ratio, and the addition of a platinum layer on the surface offers stability, thereby effectively enhancing the catalytic efficiency of producing reactive oxygen species (ROS). The combination of iron-based Fenton reactions and platinum-based Fenton-like reactions in this DPIO nanozyme drastically improves ROS catalytic efficiency. This artificial nanozyme has a high level of biosafety and displays no cytotoxicity. The development of DPIO nanozymes marks a significant advancement in the technology of artificial nanozymes. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Enzyme Engineering)
Show Figures

Graphical abstract

20 pages, 3017 KB  
Article
A Novel PCR-Free Ultrasensitive GQD-Based Label-Free Electrochemical DNA Sensor for Sensitive and Rapid Detection of Francisella tularensis 
by Sumeyra Savas and Melike Sarıçam
Micromachines 2024, 15(11), 1308; https://doi.org/10.3390/mi15111308 - 28 Oct 2024
Cited by 2 | Viewed by 1556
Abstract
Biological warfare agents are infectious microorganisms or toxins capable of harming or killing humans. Francisella tularensis is a potential bioterrorism agent that is highly infectious, even at very low doses. Biosensors for biological warfare agents are simple yet reliable point-of-care analytical tools. Developing [...] Read more.
Biological warfare agents are infectious microorganisms or toxins capable of harming or killing humans. Francisella tularensis is a potential bioterrorism agent that is highly infectious, even at very low doses. Biosensors for biological warfare agents are simple yet reliable point-of-care analytical tools. Developing highly sensitive, reliable, and cost-effective label-free DNA biosensors poses significant challenges, particularly when utilizing traditional techniques such as fluorescence, electrochemical methods, and others. These challenges arise primarily due to the need for labeling, enzymes, or complex modifications, which can complicate the design and implementation of biosensors. In this study, we fabricated Graphene Quantum dot (GQD)-functionalized biosensors for highly sensitive label-free DNA detection. GQDs were immobilized on the surface of screen-printed gold electrodes via mercaptoacetic acid with a thiol group. The single-stranded DNA (ssDNA) probe was also immobilized on GQDs through strong π−π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, leading to a decrease in the effect of GQD but a positive shift associated with the increase in DNA concentration. The specificity of the developed system was observed with different microorganism target DNAs and up to three-base mismatches in the target DNA, effectively distinguishing the target DNA. The response time for the target DNA molecule is approximately 1010 s (17 min). Experimental steps were monitored using UV/Vis spectroscopy, Atomic Force Microscopy (AFM), and electrochemical techniques to confirm the successful fabrication of the biosensor. The detection limit can reach 0.1 nM, which is two–five orders of magnitude lower than previously reported methods. The biosensor also exhibits a good linear range from 105 to 0.01 nM and has good specificity. The biosensor’s detection limit (LOD) was evaluated as 0.1 nM from the standard calibration curve, with a correlation coefficient of R2 = 0.9712, showing a good linear range and specificity. Here, we demonstrate a cost-effective, GQD-based SPGE/F. tularensis DNA test suitable for portable electrochemical devices. This application provides good perspectives for point-of-care portable electrochemical devices that integrate sample processing and detection into a single cartridge without requiring a PCR before detection. Based on these results, it can be concluded that this is the first enzyme-free electrochemical DNA biosensor developed for the rapid and sensitive detection of F. tularensis, leveraging the nanoenzyme and catalytic properties of GQDs. Full article
(This article belongs to the Special Issue Biosensors for Pathogen Detection 2024)
Show Figures

Figure 1

14 pages, 3024 KB  
Article
Mn3O4 Nanoenzyme Seed Soaking Enhanced Salt Tolerance in Soybean Through Modulating Homeostasis of Reactive Oxygen Species and ATPase Activities
by Tingyong Mao, Linfeng Bao, Hengbin Zhang, Zhilin Shi, Jiahao Liu, Desheng Wang, Chan Liu, Yong Zhan and Yunlong Zhai
Plants 2024, 13(21), 3011; https://doi.org/10.3390/plants13213011 - 28 Oct 2024
Viewed by 1475
Abstract
Soybean, an important cash crop, is often affected by soil salinity, which is one of the important types of abiotic stress that affects its growth. Poly (acrylic) acid coated Mn3O4 (PMO) has been reported to play a vital role in [...] Read more.
Soybean, an important cash crop, is often affected by soil salinity, which is one of the important types of abiotic stress that affects its growth. Poly (acrylic) acid coated Mn3O4 (PMO) has been reported to play a vital role in defending against a variety of abiotic stresses in plants. To date, the effects of PMOs on soybean have not been reported; this study explored the mechanism of PMO-enhanced soybean germination under salt stress. In this experiment, 100 mg/L PMO was used as an immersion agent with a salt treatment of 150 mM NaCl. The results showed that when compared with the PMO treatment, salt stress significantly decreased the germination rate, fresh weight, carbohydrate content, and antioxidant enzyme activity of soybean and significantly increased the contents of reactive oxygen species, malondialdehyde, and osmoregulatory substances. However, PMO treatment enhanced the antioxidant defense system and significantly reduced the malondialdehyde content of soybean. Moreover, the activities of H+-ATPase and Ca2+-ATPase were significantly higher in treated soybean than in the control, and the content of ATP was also higher in treated soybean than in the control. Generally, PMO regulates the homeostasis of reactive oxygen species and reduces ATP consumption, thereby improving the ability of soybeans to germinate under salt stress. This study provides new insights into how nanomaterials improve plant salt tolerance. Full article
Show Figures

Figure 1

13 pages, 3434 KB  
Article
Imidazole Headgroup Phospholipid Shows Asymmetric Distribution in Vesicles and Zinc-Dependent Esterase Activity
by Gabriela Sachet-Fernandez, James W. Hindley, Oscar Ces and Rüdiger Woscholski
Biomolecules 2024, 14(11), 1363; https://doi.org/10.3390/biom14111363 - 26 Oct 2024
Viewed by 1496
Abstract
Artificial lipids have become increasingly important in generating novel nanoenzymes and nanoparticles. Imidazole has been well established as a versatile catalyst in synthetic chemistry and through its related amino acid histidine in enzymes. By exploiting the transphosphatidylation reaction of phospholipase D, the choline [...] Read more.
Artificial lipids have become increasingly important in generating novel nanoenzymes and nanoparticles. Imidazole has been well established as a versatile catalyst in synthetic chemistry and through its related amino acid histidine in enzymes. By exploiting the transphosphatidylation reaction of phospholipase D, the choline headgroup of phosphatidyl choline was exchanged for the imidazole moiety containing histidinol. Here, we introduce a novel phosphatidylhistidinol (PtdHisOH) lipid and characterise it with respect to its catalytic abilities and its ability to modulate vesicle size. Our data reveal a zinc-dependent esterase activity that was strongest in vesicles and micelles, with slower catalytic rates being observed in flat lipid presentation systems and two-phase systems, indicating the importance of surface presentation and curvature effects on the catalytic activity of PtdHisOH. Such lipids offer the opportunity to impart de novo catalytic functionality to self-assembled lipid systems such as synthetic cells, leading to the development of new technologies for biocatalysis applications. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

15 pages, 22332 KB  
Article
Using Hybrid MnO2-Au Nanoflowers to Accelerate ROS Scavenging and Wound Healing in Diabetes
by Ning Jiang, Xinwei Liu, Baiyan Sui, Jiale Wang, Xin Liu and Zun Zhang
Pharmaceutics 2024, 16(10), 1244; https://doi.org/10.3390/pharmaceutics16101244 - 25 Sep 2024
Cited by 3 | Viewed by 1693
Abstract
Objectives: Excessive reactive oxygen species (ROS) in diabetic wounds are major contributors to chronic wounds and impaired healing, posing significant challenges in regenerative medicine. Developing innovative drug delivery systems is crucial to address these issues by modifying the adverse microenvironment and promoting effective [...] Read more.
Objectives: Excessive reactive oxygen species (ROS) in diabetic wounds are major contributors to chronic wounds and impaired healing, posing significant challenges in regenerative medicine. Developing innovative drug delivery systems is crucial to address these issues by modifying the adverse microenvironment and promoting effective wound healing. Methods: Herein, we designed a novel drug delivery platform using manganese dioxide nanoflower hybridized gold nanoparticle composites (MnO2-Au) synthesized via a hydrothermal reaction, and investigated the potential of MnO2-Au nanoflowers to relieve the high oxidative stress microenvironment and regulate diabetic wound tissue healing. Results: This hybrid material demonstrated superior catalytic activity compared to MnO2 alone, enabling the rapid decomposition of hydrogen peroxide and a substantial reduction in ROS levels within dermal fibroblasts. The MnO2-Au nanoflowers also facilitated enhanced dermal fibroblast migration and Col-I expression, which are critical for tissue regeneration. Additionally, a hydrogel-based wound dressing incorporating MnO2-Au nanoflowers was developed, showing its potential as an intelligent drug delivery system. This dressing significantly reduced oxidative stress, accelerated wound closure, and improved the quality of neonatal epithelial tissue regeneration in a diabetic rat skin defect model. Conclusions: Our findings underscore the potential of MnO2-Au nanoflower-based drug delivery systems as a promising therapeutic approach for chronic wound healing, particularly in regenerative medicine. Full article
Show Figures

Graphical abstract

37 pages, 5256 KB  
Review
Emerging Trends in Dissolving-Microneedle Technology for Antimicrobial Skin-Infection Therapies
by Rui Luo, Huihui Xu, Qiaoni Lin, Jiaying Chi, Tingzhi Liu, Bingrui Jin, Jiayu Ou, Zejun Xu, Tingting Peng, Guilan Quan and Chao Lu
Pharmaceutics 2024, 16(9), 1188; https://doi.org/10.3390/pharmaceutics16091188 - 8 Sep 2024
Cited by 7 | Viewed by 3404
Abstract
Skin and soft-tissue infections require significant consideration because of their prolonged treatment duration and propensity to rapidly progress, resulting in severe complications. The primary challenge in their treatment stems from the involvement of drug-resistant microorganisms that can form impermeable biofilms, as well as [...] Read more.
Skin and soft-tissue infections require significant consideration because of their prolonged treatment duration and propensity to rapidly progress, resulting in severe complications. The primary challenge in their treatment stems from the involvement of drug-resistant microorganisms that can form impermeable biofilms, as well as the possibility of infection extending deep into tissues, thereby complicating drug delivery. Dissolving microneedle patches are an innovative transdermal drug-delivery system that effectively enhances drug penetration through the stratum corneum barrier, thereby increasing drug concentration at the site of infection. They offer highly efficient, safe, and patient-friendly alternatives to conventional topical formulations. This comprehensive review focuses on recent advances and emerging trends in dissolving-microneedle technology for antimicrobial skin-infection therapy. Conventional antibiotic microneedles are compared with those based on emerging antimicrobial agents, such as quorum-sensing inhibitors, antimicrobial peptides, and antimicrobial-matrix materials. The review also highlights the potential of innovative microneedles incorporating chemodynamic, nanoenzyme antimicrobial, photodynamic, and photothermal antibacterial therapies. This review explores the advantages of various antimicrobial therapies and emphasizes the potential of their combined application to improve the efficacy of microneedles. Finally, this review analyzes the druggability of different antimicrobial microneedles and discusses possible future developments. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

27 pages, 14223 KB  
Review
Antibacterial Hydrogels for Wound Dressing Applications: Current Status, Progress, Challenges, and Trends
by Jie Zhu, Hongju Cheng, Zixian Zhang, Kaikai Chen, Qinchen Zhang, Chen Zhang, Weihong Gao and Yuansheng Zheng
Gels 2024, 10(8), 495; https://doi.org/10.3390/gels10080495 - 26 Jul 2024
Cited by 14 | Viewed by 6267
Abstract
Bacterial infection treatment for chronic wounds has posed a major medical threat and challenge. Bacteria at the wounded sites can compete with the immune system and subsequently invade live tissues, leading to more severe tissue damage. Therefore, there is an urgent demand for [...] Read more.
Bacterial infection treatment for chronic wounds has posed a major medical threat and challenge. Bacteria at the wounded sites can compete with the immune system and subsequently invade live tissues, leading to more severe tissue damage. Therefore, there is an urgent demand for wound dressings with antibacterial and anti-inflammatory properties. Considering the concept of moist healing, hydrogels with a three-dimensional (3D) network structure are widely used as wound dressings due to their excellent hydrophilicity, water retention properties, and biocompatibility. Developing antibacterial hydrogels for the treatment of infected wounds has been receiving extensive attention recently. This article categorizes antibacterial hydrogels according to their materials and antibacterial modes, and introduces the recent findings and progress regarding their status. More importantly, with the development of emerging technologies, new therapies are utilized to prepare antibacterial hydrogels such as nanoenzymes, photothermal therapy (PTT), photodynamic therapy (PDT), metal–organic frameworks (MOFs), and other external stimuli-responsive methods. Therefore, this review also examines their progress, challenges, and future trends as wound dressings. In the following studies, there will still be a focus on antibacterial hydrogels that have a high performance, multi-functions, and intelligence, especially biocompatibility, a high and long-lasting antibacterial property, responsiveness, and on-demand therapeutic ability. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

19 pages, 4081 KB  
Article
Au24Cd Nanoenzyme Coating for Enhancing Electrochemical Sensing Performance of Metal Wire Microelectrodes
by Jia-Yi Chen, Shuang Huang, Shuang-Jie Liu, Zheng-Jie Liu, Xing-Yuan Xu, Meng-Yi He, Chuan-Jie Yao, Tao Zhang, Han-Qi Yang, Xin-Shuo Huang, Jing Liu, Xiao-Dong Zhang, Xi Xie and Hui-Jiuan Chen
Biosensors 2024, 14(7), 328; https://doi.org/10.3390/bios14070328 - 2 Jul 2024
Cited by 2 | Viewed by 1956
Abstract
Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this [...] Read more.
Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

12 pages, 2078 KB  
Article
Strategic Structural Control of Polyserotonin Nanoparticles and Their Application as pH-Responsive Nanomotors
by Junyi Hu, Jingjing Cao, Jinwei Lin and Leilei Xu
Nanomaterials 2024, 14(6), 519; https://doi.org/10.3390/nano14060519 - 14 Mar 2024
Cited by 1 | Viewed by 1972
Abstract
Serotonin-based nanomaterials have been positioned as promising contenders for constructing multifunctional biomedical nanoplatforms due to notable biocompatibility, advantageous charge properties, and chemical adaptability. The elaborately designed structure and morphology are significant for their applications as functional carriers. In this study, we fabricated anisotropic [...] Read more.
Serotonin-based nanomaterials have been positioned as promising contenders for constructing multifunctional biomedical nanoplatforms due to notable biocompatibility, advantageous charge properties, and chemical adaptability. The elaborately designed structure and morphology are significant for their applications as functional carriers. In this study, we fabricated anisotropic bowl-like mesoporous polyserotonin (PST) nanoparticles with a diameter of approximately 170 nm through nano-emulsion polymerization, employing P123/F127 as a dual-soft template and 1,3,5-trimethylbenzene (TMB) as both pore expander and emulsion template. Their formation can be attributed to the synchronized assembly of P123/F127/TMB, along with the concurrent manifestation of anisotropic nucleation and growth on the TMB emulsion droplet surface. Meanwhile, the morphology of PST nanoparticles can be regulated from sphere- to bowl-like, with a particle size distribution ranging from 432 nm to 100 nm, experiencing a transformation from a dendritic, cylindrical open mesoporous structure to an approximately non-porous structure by altering the reaction parameters. The well-defined mesopores, intrinsic asymmetry, and pH-dependent charge reversal characteristics enable the as-prepared mesoporous bowl-like PST nanoparticles’ potential for constructing responsive biomedical nanomotors through incorporating some catalytic functional materials, 3.5 nm CeO2 nanoenzymes, as a demonstration. The constructed nanomotors demonstrate remarkable autonomous movement capabilities under physiological H2O2 concentrations, even at an extremely low concentration of 0.05 mM, showcasing the 51.58 body length/s velocity. Furthermore, they can also respond to physiological pH values ranging from 4.4 to 7.4, exhibiting reduced mobility with increasing pH. This charge reversal-based responsive nanomotor design utilizing PST nanoparticles holds great promise for advancing the application of nanomotors within complex biological systems. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 2nd Edition)
Show Figures

Figure 1

Back to TopTop