Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = nepovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2897 KiB  
Article
Viral Diversity in Mixed Tree Fruit Production Systems Determined through Bee-Mediated Pollen Collection
by Raj Vansia, Malek Smadi, James Phelan, Aiming Wang, Guillaume J. Bilodeau, Stephen F. Pernal, M. Marta Guarna, Michael Rott and Jonathan S. Griffiths
Viruses 2024, 16(10), 1614; https://doi.org/10.3390/v16101614 - 15 Oct 2024
Viewed by 1865
Abstract
Commercially cultivated Prunus species are commonly grown in adjacent or mixed orchards and can be infected with unique or commonly shared viruses. Apple (Malus domestica), another member of the Rosacea and distantly related to Prunus, can share the same growing [...] Read more.
Commercially cultivated Prunus species are commonly grown in adjacent or mixed orchards and can be infected with unique or commonly shared viruses. Apple (Malus domestica), another member of the Rosacea and distantly related to Prunus, can share the same growing regions and common pathogens. Pollen can be a major route for virus transmission, and analysis of the pollen virome in tree fruit orchards can provide insights into these virus pathogen complexes from mixed production sites. Commercial honey bee (Apis mellifera) pollination is essential for improved fruit sets and yields in tree fruit production systems. To better understand the pollen-associated virome in tree fruits, metagenomics-based detection of plant viruses was employed on bee and pollen samples collected at four time points during the peak bloom period of apricot, cherry, peach, and apple trees at one orchard site. Twenty-one unique viruses were detected in samples collected during tree fruit blooms, including prune dwarf virus (PDV) and prunus necrotic ringspot virus (PNRSV) (Genus Ilarvirus, family Bromoviridae), Secoviridae family members tomato ringspot virus (genus Nepovirus), tobacco ringspot virus (genus Nepovirus), prunus virus F (genus Fabavirus), and Betaflexiviridae family member cherry virus A (CVA; genus Capillovirus). Viruses were also identified in composite leaf and flower samples to compare the pollen virome with the virome associated with vegetative tissues. At all four time points, a greater diversity of viruses was detected in the bee and pollen samples. Finally, the nucleotide sequence diversity of the coat protein regions of CVA, PDV, and PNRSV was profiled from this site, demonstrating a wide range of sequence diversity in pollen samples from this site. These results demonstrate the benefits of area-wide monitoring through bee pollination activities and provide new insights into the diversity of viruses in tree fruit pollination ecosystems. Full article
(This article belongs to the Special Issue Plant Virus Spillovers)
Show Figures

Figure 1

15 pages, 2563 KiB  
Article
Detection of Viruses in Special Stands of Common Ash Reveals Insights into the Virome of Fraxinus excelsior
by Marius Rehanek, Rim Al Kubrusli, Kira Köpke, Susanne von Bargen and Carmen Büttner
Forests 2024, 15(8), 1379; https://doi.org/10.3390/f15081379 - 7 Aug 2024
Cited by 1 | Viewed by 968
Abstract
Plant diseases are mostly multicausal with several factors influencing the health status of affected hosts. Common ash (Fraxinus excelsior), a significant tree species of European forests, is currently mostly endangered by ash dieback, caused by the invasive fungus Hymenoscyphus fraxineus. [...] Read more.
Plant diseases are mostly multicausal with several factors influencing the health status of affected hosts. Common ash (Fraxinus excelsior), a significant tree species of European forests, is currently mostly endangered by ash dieback, caused by the invasive fungus Hymenoscyphus fraxineus. However, contributing factors, including pathogenic viruses, are poorly understood. Here, we report the results of a virus screening conducted on selected special stands of F. excelsior. Over three consecutive years, ash trees from different origins were tested, including leaf material from mature seed trees, young trees and ash seedlings from the natural regeneration. Using RT-PCR, we screened for five viruses, including the generalist species ArMV (Nepovirus arabis) and CLRV (Nepovirus avii), as well as newly discovered viruses in ash, including the emaravirus ASaV (Emaravirus fraxini), the idaeovirus PrLBaV (Idaeovirus ligustri), and cytorhabdoviruses. The results revealed a high virus diversity in common ash. An association of ASaV detection with specific leaf symptoms, including shoestring, chlorotic ringspots, and vein yellowing, was documented. An analyses of relevant gene products of cytorhabdoviruses obtained from ashes of different sites revealed sequence diversities and two distinct phylogenetic groups present in ash populations. Signatures of novel viruses from different families have been identified by high-throughput sequencing. Together, our results provide insights into the virus diversity and distribution of viruses in ash and expand our knowledge about the virome of this endangered tree species. Full article
(This article belongs to the Special Issue Forest Diseases and Pests: Recent Scientific Findings)
Show Figures

Figure 1

34 pages, 4383 KiB  
Article
Meta-Transcriptomic Analysis Uncovers the Presence of Four Novel Viruses and Multiple Known Virus Genera in a Single Hibiscus rosa-sinensis Plant in Colombia
by Avijit Roy, Sam Grinstead, Guillermo Leon Martínez, Juan Carlos Campos Pinzón, Schyler O. Nunziata, Chellappan Padmanabhan and John Hammond
Viruses 2024, 16(2), 267; https://doi.org/10.3390/v16020267 - 7 Feb 2024
Cited by 1 | Viewed by 2232
Abstract
Hibiscus is not native to Colombia but well suited to its arid soil and dry climates. A single hibiscus plant from Risaralda, showing black spots on upper and lower sides of its leaves, was collected for virome analysis using meta-transcriptomic high-throughput sequencing technology. [...] Read more.
Hibiscus is not native to Colombia but well suited to its arid soil and dry climates. A single hibiscus plant from Risaralda, showing black spots on upper and lower sides of its leaves, was collected for virome analysis using meta-transcriptomic high-throughput sequencing technology. Bioinformatic analysis identified 12.5% of the total reads in the Ribo-Zero cDNA library which mapped to viral genomes. BLAST searches revealed the presence of carlavirus, potexvirus, and of known members of the genera Betacarmovirus, Cilevirus, Nepovirus, and Tobamovirus in the sample; confirmed by RT-PCR with virus-specific primers followed by amplicon sequencing. Furthermore, in silico analysis suggested the possibility of a novel soymovirus, and a new hibiscus strain of citrus leprosis virus C2 in the mixed infection. Both RNA dependent RNA polymerase and coat protein gene sequences of the potex and carla viruses shared less than 72% nucleotide and 80% amino acid identities with any alphaflexi- and betaflexi-virus sequences available in GenBank, identifying three novel carlavirus and one potexvirus species in the Hibiscus rosa-sinensis plant. The detection of physalis vein necrosis nepovirus and passion fruit green spot cilevirus in hibiscus are also new reports from Colombia. Overall, the meta-transcriptome analysis identified the complex virome associated with the black spot symptoms on hibiscus leaves and demonstrated the diversity of virus genera tolerated in the mixed infection of a single H. rosa-sinensis plant. Full article
(This article belongs to the Special Issue Plant Virus Metagenomics)
Show Figures

Figure 1

13 pages, 2116 KiB  
Article
Development of Stable Infectious cDNA Clones of Tomato Black Ring Virus Tagged with Green Fluorescent Protein
by Aleksandra Zarzyńska-Nowak, Julia Minicka, Przemysław Wieczorek and Beata Hasiów-Jaroszewska
Viruses 2024, 16(1), 125; https://doi.org/10.3390/v16010125 - 15 Jan 2024
Cited by 1 | Viewed by 1941
Abstract
Tomato black ring virus (TBRV) is a member of the Nepovirus genus in the Secoviridae family, which infects a wide range of important crop species worldwide. In this work, we constructed four cDNA infectious clones of the TBRV tagged with the green fluorescent [...] Read more.
Tomato black ring virus (TBRV) is a member of the Nepovirus genus in the Secoviridae family, which infects a wide range of important crop species worldwide. In this work, we constructed four cDNA infectious clones of the TBRV tagged with the green fluorescent protein (TBRV-GFP), which varied in (i) the length of the sequences flanking the GFP insert, (ii) the position of the GFP insert within the RNA2 polyprotein, and (iii) the addition of a self-cutting 2A protein. The presence of the GFP coding sequence in infected plants was verified by RT-PCR, while the infectivity and stability of the constructs were verified by mechanical inoculation of the host plants. The systemic spread of TBRV-GFP within plants was observed under UV light at a macroscopic level, monitoring GFP-derived fluorescence in leaves, and at a microscopic level using confocal microscopy. The obtained clones are a valuable tool for future studies of TBRV-host interactions, virus biology, and the long-term monitoring of its distribution in infected plants. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2023)
Show Figures

Figure 1

35 pages, 12505 KiB  
Article
Predictive Modeling of Proteins Encoded by a Plant Virus Sheds a New Light on Their Structure and Inherent Multifunctionality
by Brandon G. Roy, Jiyeong Choi and Marc F. Fuchs
Biomolecules 2024, 14(1), 62; https://doi.org/10.3390/biom14010062 - 2 Jan 2024
Cited by 2 | Viewed by 2908
Abstract
Plant virus genomes encode proteins that are involved in replication, encapsidation, cell-to-cell, and long-distance movement, avoidance of host detection, counter-defense, and transmission from host to host, among other functions. Even though the multifunctionality of plant viral proteins is well documented, contemporary functional repertoires [...] Read more.
Plant virus genomes encode proteins that are involved in replication, encapsidation, cell-to-cell, and long-distance movement, avoidance of host detection, counter-defense, and transmission from host to host, among other functions. Even though the multifunctionality of plant viral proteins is well documented, contemporary functional repertoires of individual proteins are incomplete. However, these can be enhanced by modeling tools. Here, predictive modeling of proteins encoded by the two genomic RNAs, i.e., RNA1 and RNA2, of grapevine fanleaf virus (GFLV) and their satellite RNAs by a suite of protein prediction software confirmed not only previously validated functions (suppressor of RNA silencing [VSR], viral genome-linked protein [VPg], protease [Pro], symptom determinant [Sd], homing protein [HP], movement protein [MP], coat protein [CP], and transmission determinant [Td]) and previously identified putative functions (helicase [Hel] and RNA-dependent RNA polymerase [Pol]), but also predicted novel functions with varying levels of confidence. These include a T3/T7-like RNA polymerase domain for protein 1AVSR, a short-chain reductase for protein 1BHel/VSR, a parathyroid hormone family domain for protein 1EPol/Sd, overlapping domains of unknown function and an ABC transporter domain for protein 2BMP, and DNA topoisomerase domains, transcription factor FBXO25 domain, or DNA Pol subunit cdc27 domain for the satellite RNA protein. Structural predictions for proteins 2AHP/Sd, 2BMP, and 3A? had low confidence, while predictions for proteins 1AVSR, 1BHel*/VSR, 1CVPg, 1DPro, 1EPol*/Sd, and 2CCP/Td retained higher confidence in at least one prediction. This research provided new insights into the structure and functions of GFLV proteins and their satellite protein. Future work is needed to validate these findings. Full article
(This article belongs to the Special Issue Protein Structure Prediction with AlphaFold)
Show Figures

Figure 1

9 pages, 1951 KiB  
Article
Identification, Sequencing, and Molecular Analysis of RNA2 of Artichoke Italian Latent Virus Isolates from Known Hosts and a New Host Plant Species
by Toufic Elbeaino, Amani Ben Slimen, Imen Belgacem, Monia Mnari-Hattab, Roberta Spanò, Michele Digiaro and Ahmed Abdelkhalek
Viruses 2023, 15(11), 2170; https://doi.org/10.3390/v15112170 - 28 Oct 2023
Viewed by 1783
Abstract
Despite its first description in 1977 and numerous reports of its presence in various plant species in many countries, the molecular information available in GenBank for artichoke Italian latent virus (AILV) is still limited to a single complete genome sequence (RNA1 and 2) [...] Read more.
Despite its first description in 1977 and numerous reports of its presence in various plant species in many countries, the molecular information available in GenBank for artichoke Italian latent virus (AILV) is still limited to a single complete genome sequence (RNA1 and 2) of a grapevine isolate (AILV-V) and a partial portion of the RNA2 sequence from an isolate of unknown origin and host. Here, we report the results of molecular analyses conducted on the RNA2 of some AILV isolates, sequenced for the first time in this study, together with the first-time identification of AILV in a new host plant species, namely chard (Beta vulgaris subsp. vulgaris), associated with vein clearing and mottling symptoms on leaves. The different AILV isolates sequenced were from artichoke (AILV-C), gladiolus (AILV-G), Sonchus (AILV-S), and chard (AILV-B). At the molecular level, the sequencing results of the RNA2 segments showed that AILV-C, AILV-G, AILV-S, and AILV-B had a length of 4629 nt (excluding the 3′ terminal polyA tail), which is one nt shorter than that of the AILV-V reported in GenBank. A comparison of the RNA2 coding region sequences of all the isolates showed that AILV-V was the most divergent isolate, with the lowest sequence identities of 83.2% at the nucleotide level and 84.7% at the amino acid level. Putative intra-species sequence recombination sites were predicted among the AILV isolates, mainly involving the genomes of AILV-V, AILV-C, and AILV-B. This study adds insights into the variability of AILV and the occurrence of recombination that may condition plant infection. Full article
(This article belongs to the Special Issue A Tribute to Giovanni P. Martelli)
Show Figures

Figure 1

13 pages, 3272 KiB  
Article
High-Throughput Sequencing Reveals Tobacco and Tomato Ringspot Viruses in Pawpaw
by Jiyeong Choi, Anya Clara Osatuke, Griffin Erich, Kristian Stevens, Min Sook Hwang, Maher Al Rwahnih and Marc Fuchs
Plants 2022, 11(24), 3565; https://doi.org/10.3390/plants11243565 - 17 Dec 2022
Cited by 4 | Viewed by 2747
Abstract
Pawpaw (Asimina triloba) trees exhibiting stunting and foliar mosaic, chlorosis, or distortions were observed in New York. In 2021, leaf samples from two symptomatic trees and a sapling, as well as two asymptomatic trees, were tested for the presence of viruses [...] Read more.
Pawpaw (Asimina triloba) trees exhibiting stunting and foliar mosaic, chlorosis, or distortions were observed in New York. In 2021, leaf samples from two symptomatic trees and a sapling, as well as two asymptomatic trees, were tested for the presence of viruses and viroids by high-throughput sequencing (HTS) using total RNA after ribosomal RNA depletion. HTS sequence information revealed tobacco ringspot virus (TRSV) and tomato ringspot virus (ToRSV) in symptomatic but not in asymptomatic leaves. HTS reads and de novo-assembled contigs covering the genomes of both viruses were obtained, with a higher average read depth for RNA2 than RNA1. The occurrence of TRSV and ToRSV was confirmed in the original leaf samples used for HTS and 12 additional trees and saplings from New York and Maryland in 2022 by RT-PCR combined with Sanger sequencing, and DAS-ELISA. Single infections by TRSV in 11 of 14 trees and dual infections by TRSV and ToRSV in 3 of 14 trees were identified. The nucleotide sequence identity of partial gene fragments of TRSV and ToRSV was high among pawpaw isolates (94.9–100% and 91.8–100%, respectively) and between pawpaw isolates and isolates from other horticultural crops (93.6–100% and 71.3–99.3%, respectively). This study is the first to determine the virome of pawpaw. Full article
(This article belongs to the Special Issue Plant Responses to Environmental Stresses)
Show Figures

Figure 1

21 pages, 2258 KiB  
Review
Viral Infection Control in the Essential Oil-Bearing Rose Nursery: Collection Maintenance and Monitoring
by Sevilia Seitadzhieva, Alexander A. Gulevich, Natalya Yegorova, Natalya Nevkrytaya, Suleiman Abdurashytov, Lyudmila Radchenko, Vladimir Pashtetskiy and Ekaterina N. Baranova
Horticulturae 2022, 8(7), 629; https://doi.org/10.3390/horticulturae8070629 - 12 Jul 2022
Cited by 4 | Viewed by 2784
Abstract
Viral diseases affecting the essential oil rose, which is a valuable object of agricultural production, may have a significant negative impact on the economic value of this crop. Hence, the study and control of potentially dangerous viruses is essential to improving the quality [...] Read more.
Viral diseases affecting the essential oil rose, which is a valuable object of agricultural production, may have a significant negative impact on the economic value of this crop. Hence, the study and control of potentially dangerous viruses is essential to improving the quality of cultivars of this raw plant material, to enable production of valuable derivatives. The diversity of viruses affecting Rosa L. plants manifests itself in their conditional division into those that are specific to this crop, and those that are hosted by other plants. Representatives of both groups are found in different countries, however, a low number of viruses identified have been thoroughly studied through the use of experimental methods. In particular, with regard to many viruses, the issue of their spread remains open. The viruses infecting Rosa L. plants along with other crops are described in the literature in detail, as the range of hosts they affect is rather wide and well-studied. It is also possible to single out the three most significant viruses affecting this host—Prunus necrotic ringspot virus, Apple mosaic virus and Arabis mosaic virus which individually, or collectively, cause viral diseases that manifest themselves in mosaic symptoms. The most likely mechanisms for the spread of the Rosa L. species viruses are vegetative propagation procedures and transmission by various pests. These presumptions underlie viral infection control methods, including a well-thought-out planting scheme and provision of accurate plant care, which considers plant disinfection, disease monitoring associated with diagnostics and obtaining virus-free material through biotechnology techniques. Full article
(This article belongs to the Special Issue Horticultural Crop Physiology under Biotic and Abiotic Stresses)
Show Figures

Figure 1

12 pages, 2435 KiB  
Article
An Effective Method of Ribes spp. Inoculation with Blackcurrant Reversion Virus under In Vitro Conditions
by Ana Dovilė Juškytė, Ingrida Mažeikienė and Vidmantas Stanys
Plants 2022, 11(13), 1635; https://doi.org/10.3390/plants11131635 - 21 Jun 2022
Cited by 3 | Viewed by 2426
Abstract
Blackcurrant reversion virus (BRV) is the most destructive currant-infecting and mite-transmitted pathogen from the genus Nepovirus. In this work, BRV transmission in the system Ribes ex vitro–Ribes in vitro was applied for the first time. Triple infection of BRV identified in [...] Read more.
Blackcurrant reversion virus (BRV) is the most destructive currant-infecting and mite-transmitted pathogen from the genus Nepovirus. In this work, BRV transmission in the system Ribes ex vitro–Ribes in vitro was applied for the first time. Triple infection of BRV identified in blackcurrant cv. Gojai was used for phylogenetic analysis and inoculation assay. Transmission of BRV was successful due to its stability in the inoculum for up to 8 days at 4 °C; all BRV isolates were infectious. Our suggested inoculation method through roots was applied in six Ribes spp. genotypes with 100.0% reliability, and the expression levels of defence-related gene PR1 to biotic stress was observed. The prevalence of the virus in microshoots after 2–14 days post-inoculation (dpi) was established by PCR. In resistant genotypes, the BRV was identified up to 8 dpi; meanwhile, infection remained constant in susceptible genotypes. We established that BRV transmission under controlled conditions depends on the inoculum quality, post-inoculation cultivation temperature, and host-plant susceptibility to pathogen. This in vitro inoculation method opens possibilities to reveal the resistance mechanisms or response pathways to BRV and can be used for the selection of resistant Ribes spp. in breeding programs. Full article
(This article belongs to the Special Issue Selected Papers from Conference of CYSENI 2022)
Show Figures

Figure 1

7 pages, 2027 KiB  
Technical Note
Detection and Simultaneous Differentiation of Three Co-infected Viruses in Zanthoxylum armatum
by Zhenfei Dong, Xiaoli Zhao, Junjie Liu, Binhui Zhan and Shifang Li
Plants 2022, 11(9), 1242; https://doi.org/10.3390/plants11091242 - 5 May 2022
Viewed by 1818
Abstract
Green Sichuan pepper (Zanthoxylum armatum) is an important economic fruit crop, which is widely planted in the southwest region of China. Recently, a serious disease, namely flower yellowing disease (FYD), broke out, and the virus of green Sichuan pepper nepovirus (GSPNeV) [...] Read more.
Green Sichuan pepper (Zanthoxylum armatum) is an important economic fruit crop, which is widely planted in the southwest region of China. Recently, a serious disease, namely flower yellowing disease (FYD), broke out, and the virus of green Sichuan pepper nepovirus (GSPNeV) was identified to be highly correlated with the viral symptoms. Meanwhile, green Sichuan pepper idaeovirus (GSPIV) and green Sichuan pepper enamovirus (GSPEV) were also common viruses infecting green pepper. In our research, specific primers were designed according to the reported sequences of the three viruses, and a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method for the simultaneous detection of GSPNeV, GSPIV, and GSPEV was established. The annealing temperature, extension time, and cycle number affecting the multiplex RT-PCR reaction were adjusted and optimized. Sensitivity analysis showed that the system could detect the three viruses simultaneously from the complementary deoxyribonucleic acid (cDNA) samples diluted by 10−3. The results of the ten samples detected by the multiplex RT-PCR system were consistent with the results of a single PCR, indicating that the method can be successfully used for rapid detection of field samples. Full article
(This article belongs to the Special Issue Emerging Molecular Diagnostics for Plant Virology)
Show Figures

Figure 1

12 pages, 2291 KiB  
Article
Detection of Ampelovirus and Nepovirus by Lab-on-a-Chip: A Promising Alternative to ELISA Test for Large Scale Health Screening of Grapevine
by Ilaria Buja, Erika Sabella, Anna Grazia Monteduro, Silvia Rizzato, Luigi De Bellis, Vito Elicio, Lilia Formica, Andrea Luvisi and Giuseppe Maruccio
Biosensors 2022, 12(3), 147; https://doi.org/10.3390/bios12030147 - 27 Feb 2022
Cited by 11 | Viewed by 3545
Abstract
The Ampelovirus Grapevine leafroll-associated virus 3 (GLRaV-3) and the Nepovirus Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to [...] Read more.
The Ampelovirus Grapevine leafroll-associated virus 3 (GLRaV-3) and the Nepovirus Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to rapid diagnosis of infected plants is a key factor for control of both diseases. Although serological (e.g., enzyme-linked immunosorbent assay-ELISA test) and molecular methods are available to reveal the presence of the viruses, they turn out to be quite expensive, time-consuming and laborious, especially for large-scale health screening. Here we report the optimization of a lab-on-a-chip (LOC) for GLRaV-3 and GFLV detection, based on an electrochemical transduction and a microfluidic multichamber design for measurements in quadruplicate and simultaneous detection of both targets. The LOC detect GLRaV-3 and GFLV at dilution factors more than 15 times higher than ELISA, providing a higher sensitivity in the detection of both viruses. Furthermore, the platform offers several advantages as easy-to-use, rapid-test, portability and low costs, favoring its potential application for large-scale monitoring programs. Compared to other grapevine virus biosensors, our sensing platform is the first one to provide a dose-dependent calibration curve combined with a microfluidic module for sample analysis and a portable electronics providing an operator-independent read-out scheme. Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Bioelectronic Devices Section)
Show Figures

Figure 1

16 pages, 3415 KiB  
Communication
One-Enzyme RTX-PCR for the Detection of RNA Viruses from Multiple Virus Genera and Crop Plants
by Hana Hoffmeisterová, Kateřina Kratochvílová, Noemi Čeřovská, Lucie Slavíková, Jakub Dušek, Karel Muller, Jan Fousek, Helena Plchová, Oldřich Navrátil, Jiban Kumar Kundu and Tomáš Moravec
Viruses 2022, 14(2), 298; https://doi.org/10.3390/v14020298 - 31 Jan 2022
Cited by 7 | Viewed by 5297
Abstract
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in [...] Read more.
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses. Full article
Show Figures

Figure 1

23 pages, 4441 KiB  
Article
Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop
by Isabelle R. Martin, Emmanuelle Vigne, Amandine Velt, Jean-Michel Hily, Shahinez Garcia, Raymonde Baltenweck, Véronique Komar, Camille Rustenholz, Philippe Hugueney, Olivier Lemaire and Corinne Schmitt-Keichinger
Viruses 2021, 13(11), 2138; https://doi.org/10.3390/v13112138 - 22 Oct 2021
Cited by 12 | Viewed by 3312
Abstract
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus–host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood [...] Read more.
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus–host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection. Full article
(This article belongs to the Special Issue Molecular Plant-Virus Interactions)
Show Figures

Figure 1

21 pages, 7486 KiB  
Article
From a Movement-Deficient Grapevine Fanleaf Virus to the Identification of a New Viral Determinant of Nematode Transmission
by Lorène Belval, Aurélie Marmonier, Corinne Schmitt-Keichinger, Sophie Gersch, Peggy Andret-Link, Véronique Komar, Emmanuelle Vigne, Olivier Lemaire, Christophe Ritzenthaler and Gérard Demangeat
Viruses 2019, 11(12), 1146; https://doi.org/10.3390/v11121146 - 11 Dec 2019
Cited by 6 | Viewed by 4920
Abstract
Grapevine fanleaf virus (GFLV) and arabis mosaic virus (ArMV) are nepoviruses responsible for grapevine degeneration. They are specifically transmitted from grapevine to grapevine by two distinct ectoparasitic dagger nematodes of the genus Xiphinema. GFLV and ArMV move from cell to cell as [...] Read more.
Grapevine fanleaf virus (GFLV) and arabis mosaic virus (ArMV) are nepoviruses responsible for grapevine degeneration. They are specifically transmitted from grapevine to grapevine by two distinct ectoparasitic dagger nematodes of the genus Xiphinema. GFLV and ArMV move from cell to cell as virions through tubules formed into plasmodesmata by the self-assembly of the viral movement protein. Five surface-exposed regions in the coat protein called R1 to R5, which differ between the two viruses, were previously defined and exchanged to test their involvement in virus transmission, leading to the identification of region R2 as a transmission determinant. Region R4 (amino acids 258 to 264) could not be tested in transmission due to its requirement for plant systemic infection. Here, we present a fine-tuning mutagenesis of the GFLV coat protein in and around region R4 that restored the virus movement and allowed its evaluation in transmission. We show that residues T258, M260, D261, and R301 play a crucial role in virus transmission, thus representing a new viral determinant of nematode transmission. Full article
(This article belongs to the Special Issue Plant Virus Transmission by Vectors)
Show Figures

Figure 1

18 pages, 4002 KiB  
Article
Discovery of Four Novel Viruses Associated with Flower Yellowing Disease of Green Sichuan Pepper (Zanthoxylum armatum) by Virome Analysis
by Mengji Cao, Song Zhang, Min Li, Yingjie Liu, Peng Dong, Shanrong Li, Mi Kuang, Ruhui Li and Yan Zhou
Viruses 2019, 11(8), 696; https://doi.org/10.3390/v11080696 - 31 Jul 2019
Cited by 46 | Viewed by 6555
Abstract
An emerging virus-like flower yellowing disease (FYD) of green Sichuan pepper (Zanthoxylum armatum v. novemfolius) has been recently reported. Four new RNA viruses were discovered in the FYD-affected plant by the virome analysis using high-throughput sequencing of transcriptome and small RNAs. [...] Read more.
An emerging virus-like flower yellowing disease (FYD) of green Sichuan pepper (Zanthoxylum armatum v. novemfolius) has been recently reported. Four new RNA viruses were discovered in the FYD-affected plant by the virome analysis using high-throughput sequencing of transcriptome and small RNAs. The complete genomes were determined, and based on the sequence and phylogenetic analysis, they are considered to be new members of the genera Nepovirus (Secoviridae), Idaeovirus (unassigned), Enamovirus (Luteoviridae), and Nucleorhabdovirus (Rhabdoviridae), respectively. Therefore, the tentative names corresponding to these viruses are green Sichuan pepper-nepovirus (GSPNeV), -idaeovirus (GSPIV), -enamovirus (GSPEV), and -nucleorhabdovirus (GSPNuV). The viral population analysis showed that GSPNeV and GSPIV were dominant in the virome. The small RNA profiles of these viruses are in accordance with the typical virus-plant interaction model for Arabidopsis thaliana. Rapid and sensitive RT-PCR assays were developed for viral detection, and used to access the geographical distributions. The results revealed a correlation between GSPNeV and the FYD. The viruses pose potential threats to the normal production of green Sichuan pepper in the affected areas due to their natural transmission and wide spread in fields. Collectively, our results provide useful information regarding taxonomy, transmission and pathogenicity of the viruses as well as management of the FYD. Full article
(This article belongs to the Special Issue Viromics: Approaches, Advances, and Applications)
Show Figures

Figure 1

Back to TopTop