Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,240)

Search Parameters:
Keywords = neural stem cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1484 KB  
Review
Expression of CD44 and Its Spliced Variants: Innate and Inducible Roles in Nervous Tissue Cells and Their Environment
by Maria Concetta Geloso, Francesco Ria, Valentina Corvino and Gabriele Di Sante
Int. J. Mol. Sci. 2025, 26(17), 8223; https://doi.org/10.3390/ijms26178223 - 24 Aug 2025
Abstract
CD44, a structurally diverse cell-surface glycoprotein, plays a multifaceted and indispensable role in neural tissue across both physiological and pathological conditions. It orchestrates complex cell–extracellular matrix interactions and intracellular signaling through its variant isoforms and post-translational modifications and is broadly expressed in neural [...] Read more.
CD44, a structurally diverse cell-surface glycoprotein, plays a multifaceted and indispensable role in neural tissue across both physiological and pathological conditions. It orchestrates complex cell–extracellular matrix interactions and intracellular signaling through its variant isoforms and post-translational modifications and is broadly expressed in neural stem/progenitor cells, microglia, astrocytes, and selected neuronal populations. The interactions of CD44 with ligands such as hyaluronan and osteopontin regulate critical cellular functions, including migration, differentiation, inflammation, and synaptic plasticity. In microglia and macrophages, CD44 mediates immune signaling and phagocytic activity, and it is dynamically upregulated in neuroinflammatory diseases, particularly through pathways involving Toll-like receptor 4. CD44 expression in astrocytes is abundant during central nervous system development and in diseases, contributing to glial differentiation, reactive astrogliosis, and scar formation. Though its expression is less prominent in mature neurons, CD44 supports neural plasticity, circuit organization, and injury-induced repair mechanisms. Additionally, its expression at nervous system barriers, such as the blood–brain barrier, underscores its role in regulating vascular permeability during inflammation and ischemia. Collectively, CD44 emerges as a critical integrator of neural cell function and intercellular communication. Although the roles of CD44 in glial cells appear to be similar to those explored in other tissues, the expression of this molecule and its variants on neurons reveals peculiar functions. Elucidating the cell-type-specific roles and regulation of CD44 variants may offer novel therapeutic strategies for diverse neurological disorders. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
15 pages, 2968 KB  
Article
Engineered Neural Tissue (EngNT) Containing Human iPSC-Derived Schwann Cell Precursors Promotes Axon Growth in a Rat Model of Peripheral Nerve Injury
by Rebecca A. Powell, Emily A. Atkinson, Poppy O. Smith, Rickie Patani, Parmjit S. Jat, Owein Guillemot-Legris and James B. Phillips
Bioengineering 2025, 12(9), 904; https://doi.org/10.3390/bioengineering12090904 - 23 Aug 2025
Viewed by 91
Abstract
Tissue engineering has the potential to overcome the limitations of using autografts in nerve gap repair, using cellular biomaterials to bridge the gap and support neuronal regeneration. Various types of therapeutic cells could be considered for use in aligned collagen-based engineered neural tissue [...] Read more.
Tissue engineering has the potential to overcome the limitations of using autografts in nerve gap repair, using cellular biomaterials to bridge the gap and support neuronal regeneration. Various types of therapeutic cells could be considered for use in aligned collagen-based engineered neural tissue (EngNT), including Schwann cells and their precursors, which can be derived from human induced pluripotent stem cells (hiPSCs). Using Schwann cell precursors may have practical advantages over mature Schwann cells as they expand readily in vitro and involve a shorter differentiation period. However, the performance of each cell type needs to be tested in EngNT. By adapting established protocols, hiPSCs were differentiated into Schwann cell precursors and Schwann cells, with distinctive molecular profiles confirmed using immunocytochemistry and RT-qPCR. For the first time, both cell types were incorporated into EngNT using gel aspiration–ejection, a technique used to align and simultaneously stabilise the cellular hydrogels. Both types of cellular constructs supported and guided aligned neurite outgrowth from adult rat dorsal root ganglion neurons in vitro. Initial experiments in a rat model of nerve gap injury demonstrated the extent to which the engrafted cells survived after 2 weeks and indicated that both types of hiPSC-derived cells supported the infiltration of host neurons, Schwann cells and endothelial cells. In summary, we show that human Schwann cell precursors promote infiltrating endogenous axons in a model of peripheral nerve injury to a greater degree than their terminally differentiated Schwann cell counterparts. Full article
(This article belongs to the Special Issue Nerve Regeneration)
Show Figures

Figure 1

23 pages, 1615 KB  
Review
Current Mechanobiological Pathways and Therapies Driving Spinal Health
by Rahul Kumar, Kyle Sporn, Harlene Kaur, Akshay Khanna, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Bioengineering 2025, 12(8), 886; https://doi.org/10.3390/bioengineering12080886 - 20 Aug 2025
Viewed by 308
Abstract
Spinal health depends on the dynamic interplay between mechanical forces, biochemical signaling, and cellular behavior. This review explores how key molecular pathways, including integrin, yeas-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), Piezo, and Wingless/Integrated (Wnt) with β-catenin, actively shape the [...] Read more.
Spinal health depends on the dynamic interplay between mechanical forces, biochemical signaling, and cellular behavior. This review explores how key molecular pathways, including integrin, yeas-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), Piezo, and Wingless/Integrated (Wnt) with β-catenin, actively shape the structural and functional integrity of spinal tissues. These signaling mechanisms respond to physical cues and interact with inflammatory mediators such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), driving changes that lead to disc degeneration, vertebral fractures, spinal cord injury, and ligament failure. New research is emerging that shows scaffold designs that can directly harness these pathways. Further, new stem cell-based therapies have been shown to promote disc regeneration through targeted differentiation and paracrine signaling. Interestingly, many novel bone and ligament scaffolds are modulating anti-inflammatory signals to enhance tissue repair and integration, as well as prevent scaffold degradation. Neural scaffolds are also arising. These mimic spinal biomechanics and activate Piezo signaling to guide axonal growth and restore motor function. Scientists have begun combining these biological platforms with brain–computer interface technology to restore movement and sensory feedback in patients with severe spinal damage. Although this technology is not fully clinically ready, this field is advancing rapidly. As implantable technology can now mimic physiological processes, molecular signaling, biomechanical design, and neurotechnology opens new possibilities for restoring spinal function and improving the quality of life for individuals with spinal disorders. Full article
(This article belongs to the Special Issue Biomechanics and Mechanobiology in Cell and Tissue Engineering)
Show Figures

Figure 1

16 pages, 6065 KB  
Article
Bi-Allelic Loss-of-Function Variant in MAN1B1 Cause Rafiq Syndrome and Developmental Delay
by Liyu Zang, Yaoling Han, Qiumeng Zhang, Si Luo, Zhengmao Hu, Kun Xia, Ashfaque Ahmed and Qi Tian
Int. J. Mol. Sci. 2025, 26(16), 7820; https://doi.org/10.3390/ijms26167820 - 14 Aug 2025
Viewed by 303
Abstract
Rafiq syndrome (RAFQS) is a rare autosomal recessive disorder that is classified as a type II congenital disorder of glycosylation (CDG-II), and caused by MAN1B1 gene mutation. To date, 24 pathogenic MAN1B1 mutations have been reported in association with MAN1B1-CDG. However, the underlying [...] Read more.
Rafiq syndrome (RAFQS) is a rare autosomal recessive disorder that is classified as a type II congenital disorder of glycosylation (CDG-II), and caused by MAN1B1 gene mutation. To date, 24 pathogenic MAN1B1 mutations have been reported in association with MAN1B1-CDG. However, the underlying pathogenic mechanisms remain poorly understood. In this study, we recruited a consanguineous family from Pakistan with multiple affected individuals exhibiting mild facial dysmorphism, developmental delay, and intellectual disability. Utilizing exome sequencing and homozygosity mapping, we identified a novel MAN1B1 mutation (c.772_775del) that co-segregated with RAFQS in this family. Analysis of public single-cell transcriptomic data revealed that MAN1B1 is predominantly expressed in dorsal progenitors and intermediate excitatory neurons during human brain development. Knockdown of Man1b1 in primarily cultured mouse excitatory neurons disrupted axon growth, dendrite formation, and spine maturation, and could not be rescued by truncated variants identified in the family. Furthermore, in utero, electroporation experiments revealed that Man1b1 knockdown in the murine cortex impaired neural stem cells’ proliferation and differentiation, as well as cortical neuron migration. Collectively, these findings elucidate a critical role for MAN1B1 in the etiology of RAFQS and demonstrate that loss-of-function mutation in MAN1B1 disrupt neuro-developmental processes, providing mechanistic insights into the pathogenesis of this disorder. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 6702 KB  
Article
CREB5 Promotes the Proliferation of Neural Stem/Progenitor Cells in the Rat Subventricular Zone via the Regulation of NFIX Expression
by Tao Yu, Hanyue Zhang, Chuang Zhang, Guorui Ma, Tu Shen, Yan Luan and Zhichao Zhang
Cells 2025, 14(16), 1240; https://doi.org/10.3390/cells14161240 - 12 Aug 2025
Viewed by 402
Abstract
Neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) of the central nervous system (CNS) are critical for tissue repair following injury or disease. These cells retain the capacity to proliferate, migrate, and differentiate into neurons, astrocytes, and oligodendrocytes, making them a promising [...] Read more.
Neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) of the central nervous system (CNS) are critical for tissue repair following injury or disease. These cells retain the capacity to proliferate, migrate, and differentiate into neurons, astrocytes, and oligodendrocytes, making them a promising therapeutic target for neurodegenerative disorders and traumatic injuries. However, the molecular mechanisms regulating their proliferation remain incompletely understood. This study investigates the role of cAMP responsive element-binding protein 5 (CREB5) in the proliferation of rat SVZ-derived NSPCs and elucidates its regulatory mechanism. Using RNA interference, we demonstrated that CREB5 knockdown significantly reduced cell viability, neurosphere formation capacity, and the number of proliferating cells (BrdU- and Ki-67-positive cells) both in vitro and in vivo. In contrast, CREB5 overexpression played opposing roles in cell proliferation. Additionally, alteration of CREB5 expression did not affect apoptosis, as assessed by TUNEL staining, indicating a specific role in proliferation rather than in cell death. Mechanistically, we identified Nuclear Factor One X (NFIX) as a transcriptional target of CREB5. CREB5 binds to the AP-1 site in the NFIX promoter, enhancing its expression. CREB5 knockdown inhibited NFIX expression, while CREB5 overexpression exerted the opposite function. ChIP and luciferase reporter assays further confirmed that CREB5 directly regulates NFIX promoter activity. More importantly, alteration of NFIX expression could reverse the effect of CREB5 on NSPC proliferation. These findings highlight CREB5 as a key regulator of NSPC proliferation through its interaction with NFIX, providing a potential therapeutic target for stem cell-based treatments of CNS disorders. Full article
(This article belongs to the Special Issue Advances in the Regulation of Proteins and Genes for Stem Cells)
Show Figures

Graphical abstract

16 pages, 2545 KB  
Article
Transcriptomics Analysis of the Adipogenic Differentiation Mechanism of Bovine Adipose-Derived Neural Crest Stem Cells
by Kai Zhang, Xiaopeng Tang, Rui Zhao, Yibo Yan and Xianyi Song
Animals 2025, 15(16), 2353; https://doi.org/10.3390/ani15162353 - 11 Aug 2025
Viewed by 289
Abstract
The aim of the present study was to investigate the expression of related genes during the differentiation process of baNCSCs into adipocytes using transcriptomics technique, thereby clarifying the potential mechanism underlying baNCSCs differentiation into adipocytes and providing insights into lipid metabolism and regulation [...] Read more.
The aim of the present study was to investigate the expression of related genes during the differentiation process of baNCSCs into adipocytes using transcriptomics technique, thereby clarifying the potential mechanism underlying baNCSCs differentiation into adipocytes and providing insights into lipid metabolism and regulation of lipid deposition in ruminants. Transcriptomic analysis was conducted on the adipocytes of baNCSCs on days 0 (CON0), 3 (DIF3), and 9 (DIF9) of differentiation. The results showed that in the early stage of adipocyte differentiation of baNCSCs, differentially expressed genes (DEGs) are mainly involved in metabolic pathways such as chromosome modification, cell cycle progression, and regulation of stem cell pluripotency. In the middle and late stages of differentiation, DEGs are mainly involved in metabolic pathways such as changes in cell morphology and synthesis of fatty acids and triglycerides. Predicting the top 10 core hub genes (CHGs) in the protein–protein interaction (PPI) network that regulate various differentiation stages of adipocytes reveals that ERBB2, EGFR, and MYC are upregulated during the early differentiation stage. In contrast, ITGB1, KRAS, CCND1, ACTB, VEGFA, MET, and HRAS are downregulated. During the middle and late stages of differentiation, the expressions of TP53, CASP3, STAT3, CTNNB1, JUN, EGFR, and MYC are upregulated, while IGF1R, PTEN, and HRAS are downregulated. In conclusion, the primary enrichment pathways of DEGs vary at distinct stages of adipocyte induction and differentiation in baNCSCs. Full article
Show Figures

Figure 1

26 pages, 6895 KB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Viewed by 623
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

21 pages, 719 KB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 665
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

14 pages, 4627 KB  
Communication
BDNF Overexpression Enhances Neuronal Activity and Axonal Growth in Human iPSC-Derived Neural Cultures
by Alba Ortega-Gasco, Francesca Percopo, Ares Font-Guixe, Santiago Ramos-Bartolome, Andrea Cami-Bonet, Marc Magem-Planas, Marc Fabrellas-Monsech, Emma Esquirol-Albala, Luna Goulet, Sergi Fornos-Zapater, Ainhoa Arcas-Marquez, Anna-Christina Haeb, Claudia Gomez-Bravo, Clelia Introna, Josep M. Canals and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(15), 7262; https://doi.org/10.3390/ijms26157262 - 27 Jul 2025
Viewed by 794
Abstract
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional [...] Read more.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development. In this study, we investigated whether constitutive BDNF expression in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) enhances their neurogenic and integrative potential in vitro. We found that NPCs engineered to overexpress BDNF produced neuronal cultures with increased numbers of mature and spontaneously active neurons, without altering the overall structure or organization of functional networks. Furthermore, BDNF-expressing neurons exhibited significantly greater axonal outgrowth, including directed axon extension in a compartmentalized microfluidic system, suggesting a chemoattractive effect of localized BDNF secretion. These effects were comparable to those observed with the early supplementation of recombinant BDNF. Our results demonstrate that sustained BDNF expression enhances neuronal maturation and axonal projection without disrupting network integrity. These findings support the use of BDNF not only as a therapeutic agent to improve cell therapy outcomes but also as a tool to accelerate the development of functional neural networks in vitro. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

24 pages, 1540 KB  
Review
The Search for Disease Modification in Parkinson’s Disease—A Review of the Literature
by Daniel Barber, Tissa Wijeratne, Lakshman Singh, Kevin Barnham and Colin L. Masters
Life 2025, 15(8), 1169; https://doi.org/10.3390/life15081169 - 23 Jul 2025
Viewed by 624
Abstract
Sporadic Parkinson’s Disease (PD) affects 3% of people over 65 years of age. People are living longer, thanks in large part to improvements in global health technology and health access for non-neurological diseases. Consequently, neurological diseases of senescence, such as PD, are representing [...] Read more.
Sporadic Parkinson’s Disease (PD) affects 3% of people over 65 years of age. People are living longer, thanks in large part to improvements in global health technology and health access for non-neurological diseases. Consequently, neurological diseases of senescence, such as PD, are representing an ever-increasing share of global disease burden. There is an intensifying research focus on the processes that underlie these conditions in the hope that neurological decay may be arrested at the earliest time point. The concept of neuronal death linked to ageing- neural senescence- first emerged in the 1800s. By the late 20th century, it was recognized that neurodegeneration was common to all ageing human brains, but in most cases, this process did not lead to clinical disease during life. Conditions such as PD are the result of accelerated neurodegeneration in particular brain foci. In the case of PD, degeneration of the substantia nigra pars compacta (SNpc) is especially implicated. Why neural degeneration accelerates in these particular regions remains a point of contention, though current evidence implicates a complex interplay between a vast array of neuronal cell functions, bioenergetic failure, and a dysfunctional brain immunological response. Their complexity is a considerable barrier to disease modification trials, which seek to intercept these maladaptive cell processes. This paper reviews current evidence in the domain of neurodegeneration in Parkinson’s disease, focusing on alpha-synuclein accumulation and deposition and the role of oxidative stress and inflammation in progressive brain changes. Recent approaches to disease modification are discussed, including the prevention or reversal of alpha-synuclein accumulation and deposition, modification of oxidative stress, alteration of maladaptive innate immune processes and reactive cascades, and regeneration of lost neurons using stem cells and growth factors. The limitations of past research methodologies are interrogated, including the difficulty of recruiting patients in the clinically quiescent prodromal phase of sporadic Parkinson’s disease. Recommendations are provided for future studies seeking to identify novel therapeutics with disease-modifying properties. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

26 pages, 1122 KB  
Article
Gene Expression Analysis of HPRT-Deficient Cells Maintained with Physiological Levels of Folic Acid
by Rosa J. Torres, Gerard Valentines-Casas, Claudia Cano-Estrada, Neus Ontiveros and José M. López
Cells 2025, 14(14), 1105; https://doi.org/10.3390/cells14141105 - 18 Jul 2025
Viewed by 593
Abstract
Lesch–Nyhan disease (LND) is associated with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity due to mutations in the HPRT1 gene. Although the physiopathology of LND-related neurological manifestations remains unknown, a defective neuronal developmental process is the most widely accepted hypothesis. We generated [...] Read more.
Lesch–Nyhan disease (LND) is associated with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity due to mutations in the HPRT1 gene. Although the physiopathology of LND-related neurological manifestations remains unknown, a defective neuronal developmental process is the most widely accepted hypothesis. We generated an HPRT-deficient line from the pluripotent human embryonic cell line NT2/D1 by CRISPR-Cas9 and induced its differentiation along neuroectodermal lineages by retinoic acid treatment. As levels of folic acid in the culture media may affect results in LND models, we employed physiological levels of folate. The effect of HPRT deficiency on neural development-related gene expression was evaluated using two methodological approaches: a directed qPCR array of genes related to neuronal differentiation, and global gene expression by RNAseq. HPRT-deficient pluripotent cells presented altered expression of genes related to pluripotency in human embryonic stem cells, such as DPPA3 and CFAP95, along with genes of the homeobox gene family. HPRT-deficient pluripotent cells were able to differentiate along neuro-ectodermal lineages but presented consistent dysregulation of several genes from the homeobox gene family, including EN1 and LMX1A. GO enrichment analysis of up- and downregulated genes in HPRT-deficient cells showed that the most significant biological processes affected are related to development and nervous system development. Full article
Show Figures

Figure 1

29 pages, 17950 KB  
Article
Organ-Specific Small Protein Networks in 100 kDa Ultrafiltrates: Functional Analysis and Implications for Neuroregenerative Medicine
by Jakub Peter Slivka, Chris Bauer, Tasneem Halhouli, Alexander Younsi, Michelle B. F. Wong, Mike K. S. Chan and Thomas Skutella
Int. J. Mol. Sci. 2025, 26(14), 6659; https://doi.org/10.3390/ijms26146659 - 11 Jul 2025
Viewed by 403
Abstract
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues [...] Read more.
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues and a tissue mixture for inducing neurite outgrowth, and subsequently to identify the molecular networks and proteins that could explain such effects. Proteins were isolated by gentle homogenization followed by crossflow ultrafiltration. Proteomic evaluation involved gel electrophoresis, complemented by mass spectrometry and bioinformatics. GO (Gene Ontology) and protein analysis of the mass spectrometry results identified a diverse array of proteins involved in critical specific biological functions, including neuronal development, regulation of growth, immune response, and lipid and metal binding. Data from this study are accessible from the ProteomeXchange repository (identifier PXD051701). Our findings highlight the presence of small proteins that play key roles in metabolic processes and biosynthetic modulation. In vitro outgrowth experiments with neural stem cells (NSCs) showed that 100 kDa protein extracts from the brain resulted in a greater increase in neurite length compared to the liver and organ mixture extracts. The protein networks identified in the NOP ultrafiltrates may significantly improve biological therapeutic strategies related to neural differentiation and outgrowth. This comprehensive proteomic analysis of 100 kDa ultrafiltrates revealed a diverse array of proteins involved in key biological processes, such as neuronal development, metabolic regulation, and immune response. Brain-specific extracts demonstrated the capacity to promote neurite outgrowth in NSCs, suggesting potential application for neuroregenerative therapies. Our findings highlight the potential of small proteins and organ-specific proteins in the development of novel targeted treatments for various diseases, particularly those related to neurodegeneration and aging. Full article
Show Figures

Figure 1

9 pages, 209 KB  
Review
Glial Diversity and Evolution: Insights from Teleost Fish
by Carla Lucini and Claudia Gatta
Brain Sci. 2025, 15(7), 743; https://doi.org/10.3390/brainsci15070743 - 11 Jul 2025
Viewed by 571
Abstract
Glial cells, once considered mere support for neurons, have emerged as key players in brain function across vertebrates. The historical study of glia dates to the 19th century with the identification of ependymal cells and astrocytes, followed by the discovery of oligodendrocytes and [...] Read more.
Glial cells, once considered mere support for neurons, have emerged as key players in brain function across vertebrates. The historical study of glia dates to the 19th century with the identification of ependymal cells and astrocytes, followed by the discovery of oligodendrocytes and microglia. While neurocentric perspectives overlooked glial functions, recent research highlights their essential roles in neurodevelopment, synapse regulation, brain homeostasis, and neuroimmune responses. In teleost fish, a group comprising over 32,000 species, glial cells exhibit unique properties compared to their mammalian counterparts. Thus, the aim of this review is synthesizing the current literature on fish glial cells, emphasizing their evolutionary significance, diversity, and potential as models for understanding vertebrate neurobiology. Microglia originate from both yolk sac cells and hematopoietic stem cells, forming distinct populations with specialized functions in the adult brain. Neural stem cells, including radial glial cells (RGCs) and neuroepithelial cells, remain active throughout life, supporting continuous neuro- and gliogenesis, a phenomenon far more extensive than in mammals. Ependymocytes line brain ventricles and show structural variability, with some resembling quiescent progenitor cells. Astrocytes are largely absent in most fish species. However, zebrafish exhibit astrocyte-like glial cells which show some structural and functional features in common with mammalian astrocytes. Oligodendrocytes share conserved mechanisms with mammals in myelination and axon insulation. Full article
(This article belongs to the Section Neuroglia)
25 pages, 1538 KB  
Review
Cell Carriers for Oncolytic Virus Delivery: Prospects for Systemic Administration
by Viktoria A. Sarkisova, Alexandra A. Dalina, Daria O. Neymysheva, Martin A. Zenov, Galina V. Ilyinskaya and Peter M. Chumakov
Cancers 2025, 17(14), 2296; https://doi.org/10.3390/cancers17142296 - 10 Jul 2025
Viewed by 994
Abstract
Treatment of malignant diseases using oncolytic viruses (OVs) is currently considered a promising therapeutic approach. Initial encouraging results fueled a large number of clinical trials, showcasing favorable safety profiles of OVs—but therapeutic outcomes remain far from perfect. The efficacy of systemically administered OVs [...] Read more.
Treatment of malignant diseases using oncolytic viruses (OVs) is currently considered a promising therapeutic approach. Initial encouraging results fueled a large number of clinical trials, showcasing favorable safety profiles of OVs—but therapeutic outcomes remain far from perfect. The efficacy of systemically administered OVs is limited due to rapid immune clearance and suboptimal biodistribution, while locally administered OVs encounter an additional barrier of poor bioavailability. Cell-based carriers that can shield viral particles and provide tumor-targeted OV delivery, represent one of the potential ways to address these challenges. The feasibility of this approach was demonstrated using a broad range of cell types, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), different subsets of immune cells, and cancer cell lines. The resulting spectrum of carriers can be viewed as a multifaceted tool, taking into account the specific properties, advantages, and limitations of each cell carrier type discussed in this review. Careful consideration of these features will provide the basis for successful development of cell-based OV delivery platforms. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Figure 1

21 pages, 935 KB  
Review
From Adipose to Action: Reprogramming Stem Cells for Functional Neural Progenitors for Neural Regenerative Therapy
by Junjie Peng, Zhu Zhang, Min Li, Ken Kin Lam Yung and King-ho Cheung
Int. J. Mol. Sci. 2025, 26(14), 6599; https://doi.org/10.3390/ijms26146599 - 9 Jul 2025
Viewed by 723
Abstract
Neural stem cells have shown great potential in the therapy of neurodegenerative diseases such as Parkinson’s disease (PD), because of their ability to differentiate into various types of neural cells and substitute for damaged neurons. Their clinical application is, however, impeded by limitations [...] Read more.
Neural stem cells have shown great potential in the therapy of neurodegenerative diseases such as Parkinson’s disease (PD), because of their ability to differentiate into various types of neural cells and substitute for damaged neurons. Their clinical application is, however, impeded by limitations such as low survival rates following transplantation, low efficiency of differentiation, the potential for tumorigenesis, and the risk of immune rejection by the host. Adipose-derived stem cells (ADSCs) have become increasingly popular as an alternative tool in regenerative medicine due to their accessibility, multipotency, and low immunogenicity. The recent advance in inducing ADSCs into neural stem cell-like cells (iNSCs) opens up a new avenue for the treatment of PD by restoring dopaminergic neuron populations. Here, the biological characteristics, induction protocols, molecular mechanisms, and prospective applications of ADSCs in neural repair are summarized systematically. We also covered current technical challenges, such as differentiation protocol optimization and functional integration, and future perspectives, including biomaterial and gene editing applications to enhance ADSC-based therapies. With these challenges met, ADSCs hold excellent potential for advancing personalized and combination therapies for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Challenges and Innovation in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop