Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = nickel–cobalt–manganese battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1830 KB  
Article
Material and Energy Flow Analysis of Hydrometallurgical Recycling for Lithium-Ion Battery Based on Aspen Plus
by Yifei Zhang, Valentin Mussehl and Dequan Piao
Coatings 2025, 15(9), 990; https://doi.org/10.3390/coatings15090990 - 26 Aug 2025
Viewed by 505
Abstract
The exponential growth of global electric vehicle deployment has precipitated a critical need for the sustainable recycling of end-of-life lithium-ion batteries (LIBs), particularly nickel–cobalt–manganese (NCM) ternary cathodes, which dominate the retired battery stream. This study establishes an integrated Aspen Plus-based hydrometallurgical process model, [...] Read more.
The exponential growth of global electric vehicle deployment has precipitated a critical need for the sustainable recycling of end-of-life lithium-ion batteries (LIBs), particularly nickel–cobalt–manganese (NCM) ternary cathodes, which dominate the retired battery stream. This study establishes an integrated Aspen Plus-based hydrometallurgical process model, focusing on “acid dissolution–LiOH precipitation–electrolysis” for closed-loop NCM recycling. Gibbs reactor-based dissolution kinetics is used for selective metal leaching (achieving > 99% efficiency at 185 kg/h acid flow), the thermodynamic prioritization of sequential hydroxide precipitation (Co → Ni → Mn at 10–60 kg/h LiOH), and the electrochemical regeneration of LiOH/H2SO4 from Li2SO4 (70.01 kg/h LiOH at 0.8 conversion). Material balance analysis confirms a net production of 10.01 kg LiOH per 100 kg of NCM feedstock with 41.87 kg of acid consumption, while the energy of electrolysis power is 452.96 kW at 6 V/1360 A/m2. This work provides a techno-economic framework for industrial-scale battery recycling. Full article
Show Figures

Figure 1

13 pages, 2181 KB  
Article
Raman Spectroscopy of Practical LIB Cathodes: A Study of Humidity-Induced Degradation
by Claudio Mele, Filippo Ravasio, Andrea Casalegno, Elisa Emanuele, Claudio Rabissi and Benedetto Bozzini
Molecules 2025, 30(16), 3448; https://doi.org/10.3390/molecules30163448 - 21 Aug 2025
Viewed by 555
Abstract
Exposure of LIB materials to ambient conditions with some level of humidity, either accidentally owing to imperfect fabrication or cell damage, or deliberately due to battery opening operations for analytical or recycling purposes, is a rather common event. As far as humidity-induced damage [...] Read more.
Exposure of LIB materials to ambient conditions with some level of humidity, either accidentally owing to imperfect fabrication or cell damage, or deliberately due to battery opening operations for analytical or recycling purposes, is a rather common event. As far as humidity-induced damage is concerned, on the one hand the general chemistry is well known, but on the other hand, concrete structural details of these processes have received limited explicit attention. The present study contributes to this field with an investigation centered on the use of Raman spectroscopy for the assessment of structural modifications using common lithium iron phosphate (LFP) and nickel–cobalt–manganese/lithium–manganese oxide (NCM-LMO) cathodes. The impact of humidity has been followed through the observation of differences in Raman bands of pristine and humidity-exposed cathode materials. Vibrational spectroscopy has been complemented with morphological (SEM), chemical (EDS), and electrochemical analyses. We have thus pinpointed the characteristic morphological and compositional changes corresponding to corrosion and active material dissolution. Electrochemical tests with cathodes reassembled in coin cells allowed for the association of specific capacity losses with humidity damaging. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices—2nd Edition)
Show Figures

Graphical abstract

18 pages, 5965 KB  
Article
Al2O3-Embedded LiNi0.9Mn0.05Al0.05O2 Cathode Engineering for Enhanced Cyclic Stability in Lithium-Ion Batteries
by Fei Liu, Chenfeng Wang, Ning Yang, Zundong Xiao, Aoxuan Wang and Rijie Wang
Metals 2025, 15(8), 892; https://doi.org/10.3390/met15080892 - 8 Aug 2025
Viewed by 514
Abstract
With the rapid advancement of new energy electric vehicles, high-capacity nickel-rich layered oxides have emerged as predominant cathode materials in lithium-ion battery systems. However, their widespread implementation necessitates rigorous investigation into cycling stability. We synthesized nickel-manganese-aluminum hydroxide precursors as raw materials by co-precipitation [...] Read more.
With the rapid advancement of new energy electric vehicles, high-capacity nickel-rich layered oxides have emerged as predominant cathode materials in lithium-ion battery systems. However, their widespread implementation necessitates rigorous investigation into cycling stability. We synthesized nickel-manganese-aluminum hydroxide precursors as raw materials by co-precipitation method, and synthesized ultrathin Al2O3-coated LiNi0.9Mn0.05Al0.05O2 cathode materials by hydrolysis reaction. The cathode material was uniformly covered by an Al2O3 layer with an average thickness of 5–10 nm by high resolution transmission electron microscopy (HRTEM). Electrochemical performance tests showed that the modified cathode material exhibited significantly enhanced reversible capacity, cycling stability, and rate performance, and a more favorable differential capacity curve. In particular, the LNMA-2 samples were able to maintain 90.6% and 88.3% of their initial capacity after 100 cycle tests (with cutoff voltages of 4.3 and 4.5 V, respectively) at 0.5 C charge/discharge rate. These improved electrochemical properties are mainly attributed to the advantages offered by the unique Al2O3 coating structure. This study provides significant theoretical value for designing and optimizing the production of high-nickel cobalt-free cathode materials with high cycling performance. Full article
Show Figures

Graphical abstract

36 pages, 10414 KB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 440
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

21 pages, 3984 KB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Viewed by 815
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

16 pages, 2528 KB  
Article
An Adaptable Capacity Estimation Method for Lithium-Ion Batteries Based on a Constructed Open Circuit Voltage Curve
by Linjing Zhang, Xiaoqian Su, Caiping Zhang, Yubin Wang, Yao Wang, Tao Zhu and Xinyuan Fan
Batteries 2025, 11(7), 265; https://doi.org/10.3390/batteries11070265 - 14 Jul 2025
Viewed by 428
Abstract
The inevitable decline in battery performance presents a major barrier to its widespread industrial application. Adaptive and accurate estimation of battery capacity is paramount for battery operation, maintenance, and residual value evaluation. In this paper, we propose a novel battery capacity estimation method [...] Read more.
The inevitable decline in battery performance presents a major barrier to its widespread industrial application. Adaptive and accurate estimation of battery capacity is paramount for battery operation, maintenance, and residual value evaluation. In this paper, we propose a novel battery capacity estimation method based on an approximate open circuit voltage curve. The proposed method is rigorously tested using both lithium–iron–phosphate (LFP) and nickel–cobalt–manganese (NCM) battery packs at multiple charging rates under varied aging conditions. To further enhance capacity estimation accuracy, a voltage correction strategy is implemented utilizing the incremental capacity (IC) curve. This strategy also verifies the potential benefits of increasing the charging rate to shorten the overall test duration. Eventually, the capacity estimation error is consistently controlled within 2%. With optimal state of charge (SOC) interval selection, the estimation error can be further reduced to 1%. Clearly, our proposed method exhibits excellent compatibility across diverse battery materials and degradation states. This adaptability holds substantial scientific value and practical importance. It contributes to the safe and economic utilization of Li-ion batteries throughout their entire lifespan. Full article
Show Figures

Figure 1

13 pages, 1068 KB  
Review
Battery Electric Vehicles in Underground Mining: Benefits, Challenges, and Safety Considerations
by Epp Kuslap, Jiajie Li, Aibaota Talehatibieke and Michael Hitch
Energies 2025, 18(14), 3588; https://doi.org/10.3390/en18143588 - 8 Jul 2025
Viewed by 830
Abstract
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. [...] Read more.
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. It discusses various lithium-ion battery chemistries used in BEVs, particularly lithium–iron–phosphate (LFP) and nickel–manganese–cobalt (NMC), comparing their performance, safety, and suitability for underground mining applications. The research highlights the significant benefits of BEVs, including reduced greenhouse gas emissions, improved air quality in confined spaces, and potential ventilation cost savings. However, it also addresses critical safety concerns, such as fire risks associated with lithium-ion batteries and the emission of toxic gases during thermal runaway events. The manuscript emphasises the importance of comprehensive risk assessment and mitigation strategies when introducing BEVs to underground mining environments. It concludes that while BEVs offer promising solutions for more sustainable and environmentally friendly mining operations, further research is needed to ensure their safe integration into underground mining practices. This study contributes valuable insights to the ongoing discussion on the future of mining technology and its environmental impact. Full article
Show Figures

Figure 1

12 pages, 23410 KB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 394
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

16 pages, 5110 KB  
Article
Fast Identification of LiNMC Cells for Railway Applications
by Luca Pugi, Aljon Kociu, Antonio Scardina, Lorenzo Berzi, Nico Tiezzi and Massimo Delogu
Energies 2025, 18(13), 3300; https://doi.org/10.3390/en18133300 - 24 Jun 2025
Viewed by 289
Abstract
Batteries are a key element in the development of both battery-operated and hybrid trains. For this type of system, the most common anode choice is LTO (lithium titanate), as the adoption of lithium titanate instead of graphite for anodes ensures an unrivaled level [...] Read more.
Batteries are a key element in the development of both battery-operated and hybrid trains. For this type of system, the most common anode choice is LTO (lithium titanate), as the adoption of lithium titanate instead of graphite for anodes ensures an unrivaled level of reliability, especially against calendar aging. LTO also ensures prolonged load-cycle lifespans. However, LTO’s known drawbacks involve its high production cost and mediocre energy density, which is mainly due to its high anodic potential compared to graphite. In this study, we perform a rapid identification of an LiNMC (lithium, nickel, manganese, and cobalt) cell and propose some preliminary scaled HIL (hardware in the loop) and SIL (software in the loop) testing, aiming to verify the possible usage of LiNMC cells for railway applications. Full article
Show Figures

Figure 1

19 pages, 289 KB  
Review
Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art
by Alessandra Zanoletti, Alberto Mannu and Antonella Cornelio
Materials 2025, 18(12), 2761; https://doi.org/10.3390/ma18122761 - 12 Jun 2025
Viewed by 848
Abstract
The rapid growth in lithium-ion battery (LIB) demand has underscored the urgent need for sustainable recycling methods to recover critical metals such as lithium, cobalt, nickel, and manganese. Traditional pyrometallurgical and hydrometallurgical approaches often suffer from high energy consumption, environmental impact, and limited [...] Read more.
The rapid growth in lithium-ion battery (LIB) demand has underscored the urgent need for sustainable recycling methods to recover critical metals such as lithium, cobalt, nickel, and manganese. Traditional pyrometallurgical and hydrometallurgical approaches often suffer from high energy consumption, environmental impact, and limited metal selectivity. As an emerging alternative, solvometallurgy, and in particular the use of low-melting mixtures solvents, including deep eutectic solvents, offers a low-temperature, tunable, and potentially more environmentally compatible pathway for black mass processing. This review presents a comprehensive assessment of the recent advances (2020–2025) in the application of LoMMSs for metal recovery from LCO and NCM cathodes, analyzing 71 reported systems across binary, ternary, hydrated, and non-ChCl-based solvent families. Extraction efficiencies, reaction kinetics, coordination mechanisms, and solvent recyclability are critically evaluated, highlighting how solvent structure influences performance and selectivity. Particular attention is given to the challenges of lithium recovery, solvent degradation, and environmental trade-offs such as energy usage, waste generation, and chemical stability. A comparative synthesis identifies the most promising systems based on their mechanistic behavior and industrial relevance. The future outlook emphasizes the need for greener formulations, enhanced lithium selectivity, and life-cycle integration to support circular economy goals in battery recycling. Full article
(This article belongs to the Special Issue Systems and Materials for Recycling Spent Lithium-Ion Batteries)
22 pages, 2958 KB  
Article
Accurate Chemistry Identification of Lithium-Ion Batteries Based on Temperature Dynamics with Machine Learning
by Ote Amuta, Jiaqi Yao, Dominik Droese and Julia Kowal
Batteries 2025, 11(6), 208; https://doi.org/10.3390/batteries11060208 - 26 May 2025
Viewed by 874
Abstract
Lithium-ion batteries (LIBs) are widely used in diverse applications, ranging from portable ones to stationary ones. The appropriate handling of the immense amount of spent batteries has, therefore, become significant. Whether recycled or repurposed for second-life applications, knowing their chemistry type can lead [...] Read more.
Lithium-ion batteries (LIBs) are widely used in diverse applications, ranging from portable ones to stationary ones. The appropriate handling of the immense amount of spent batteries has, therefore, become significant. Whether recycled or repurposed for second-life applications, knowing their chemistry type can lead to higher efficiency. In this paper, we propose a novel machine learning-based approach for accurate chemistry identification of the electrode materials in LIBs based on their temperature dynamics under constant current cycling using gated recurrent unit (GRU) networks. Three different chemistry types, namely lithium nickel cobalt aluminium oxide cathode with silicon-doped graphite anode (NCA-GS), nickel cobalt aluminium oxide cathode with graphite anode (NCA-G), and lithium nickel manganese cobalt oxide cathode with graphite anode (NMC-G), were examined under four conditions, 0.2 C charge, 0.2 C discharge, 1 C charge, and 1 C discharge. Experimental results showed that the unique characteristics in the surface temperature measurement during the full charge or discharge of the different chemistry types can accurately carry out the classification task in both experimental setups, where the model is trained on data under different cycling conditions separately and jointly. Furthermore, experimental results show that the proposed approach for chemistry type identification based on temperature dynamics appears to be more universal than voltage characteristics. As the proposed approach has proven to be efficient in the chemistry identification of the electrode materials LIBs in most cases, we believe it can greatly benefit the recycling and second-life application of spent LIBs in real-life applications. Full article
Show Figures

Graphical abstract

19 pages, 1500 KB  
Article
Comprehensive Study of the Gas Volume and Composition Generated by 5 Ah Nickel Manganese Cobalt Oxide (NMC) Li-Ion Pouch Cells Through Different Failure Mechanisms at Varying States of Charge
by Gemma E. Howard, Katie C. Abbott, Jonathan E. H. Buston, Jason Gill, Steven L. Goddard and Daniel Howard
Batteries 2025, 11(5), 197; https://doi.org/10.3390/batteries11050197 - 17 May 2025
Cited by 1 | Viewed by 912
Abstract
Lithium-ion batteries risk failing when subjected to different abuse tests, resulting in gas and flames. In this study, 5 Ah nickel manganese cobalt oxide (NMC) pouch cells were subjected to external heating; overcharge at rates of 2.5, 5 and 10 A; and nail [...] Read more.
Lithium-ion batteries risk failing when subjected to different abuse tests, resulting in gas and flames. In this study, 5 Ah nickel manganese cobalt oxide (NMC) pouch cells were subjected to external heating; overcharge at rates of 2.5, 5 and 10 A; and nail penetration. Tests were conducted in air and N2 atmospheres. Additional external heat tests were performed on cells at 5, 25, 50, and 75% SoC and on two, three, and four cell blocks. Gas volumes were calculated, and the gas composition was given for H2, CO, CO2, C2H4, C2H6, CH4, C3H6, and C3H8. For tests under an air atmosphere at 100% SoC, the volume of gas varied between abuse methods: 3.9 L (external heat), 6.4 L (overcharge), and 8.9 L (nail penetration). The gas composition was found to predominantly contain H2, CO2, and CO for all abuse methods; however, higher concentrations of H2 and CO were present in tests performed under N2. External heat tests at different SoCs showed that the gas volume decreased with SoC. Overall, the type of abuse method can have a large effect on the gas volume and composition produced by cell failure. Full article
Show Figures

Figure 1

18 pages, 2444 KB  
Article
A Material Flow Analysis of Electric Vehicle Lithium-ion Batteries: Sustainable Supply Chain Management Strategies
by Hyeong-Jin Choi, Minjung Kim, Hyung Joo Roh, Donggun Hwang, Young-Sam Yoon, Young-Yeul Kang and Tae-Wan Jeon
Sustainability 2025, 17(10), 4560; https://doi.org/10.3390/su17104560 - 16 May 2025
Cited by 1 | Viewed by 1199
Abstract
The increasing adoption of electric vehicles (EVs) has highlighted the need for sustainable lithium-ion battery (LIB) management. This study presents a material flow analysis (MFA) of EV LIBs in the Republic of Korea (RoK), using both a mass-based MFA and a substance flow [...] Read more.
The increasing adoption of electric vehicles (EVs) has highlighted the need for sustainable lithium-ion battery (LIB) management. This study presents a material flow analysis (MFA) of EV LIBs in the Republic of Korea (RoK), using both a mass-based MFA and a substance flow analysis (SFA). The analysis defines 33 systems and 170 flows across the manufacturing, consumption, discharge and collection, and treatment stages, based on national statistics and data from 11 commercial facilities. In 2022, about 72,446 t of EV LIBs entered the consumption stage through new vehicle sales and battery replacements. However, domestic recovery was limited, as approximately 76.5% of used EVs were exported, reducing the volume of batteries available for recycling. The SFA, focusing on nickel (Ni), cobalt (Co), manganese (Mn), and lithium (Li), showed recovery rates of 69% for Ni, 80% for Co, 1% for Mn, and 80% for Li. Mn was not recovered because its low market price made the recovery process economically impractical. Additional losses occurred from the incineration of separators containing black mass and lithium discharged through wastewater. These findings offer data-driven insights to improve recovery efficiency, guide policy, and enhance the circularity of EV LIB management in the RoK. Full article
Show Figures

Figure 1

15 pages, 2920 KB  
Article
Battery Health Diagnosis via Neural Surrogate Model: From Lab to Field
by Hojin Cheon, Jihun Jeon, Byungil Jung and Hongseok Kim
Energies 2025, 18(9), 2405; https://doi.org/10.3390/en18092405 - 7 May 2025
Viewed by 685
Abstract
Batteries degrade over time. Such degradation leads to performance loss, but more importantly, safety issues arise. To evaluate the battery degradation, traditional diagnostic techniques rely on model-based or data-driven approaches; however, those methods often require controlled conditions or specific tests, which may not [...] Read more.
Batteries degrade over time. Such degradation leads to performance loss, but more importantly, safety issues arise. To evaluate the battery degradation, traditional diagnostic techniques rely on model-based or data-driven approaches; however, those methods often require controlled conditions or specific tests, which may not be applicable in real fields. In this regard, we propose a deep learning-based method addressing these limitations by accurately modeling batteries using real-world operational data from photovoltaic (PV)-integrated battery energy storage system (BESSs), where charging currents vary dynamically and SOC is capped at 70% by regulation. The proposed method is based on a neural surrogate model for batteries, employing a sequence-to-sequence architecture, which directly captures the dynamic behavior of batteries from operational data, eliminating the need for specialized characterization tests or feature extraction. The proposed model synthesizes the terminal voltage with a mean absolute error of 6.4 mV for lithium–iron–phosphate (LFP) cells and 49 mV for nickel–cobalt–manganese (NCM) battery modules, respectively, which is only 0.4% and 0.29% of the voltage swing. As a health indicator, we also propose the concept of voltage deviation (VD), defined as the deviation between the synthesized and actual terminal voltages. We demonstrate that VD can be evaluated not only in laboratory data but also in field data. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

40 pages, 4760 KB  
Review
Sustainable Electric Micromobility Through Integrated Power Electronic Systems and Control Strategies
by Mohamed Krichi, Abdullah M. Noman, Mhamed Fannakh, Tarik Raffak and Zeyad A. Haidar
Energies 2025, 18(8), 2143; https://doi.org/10.3390/en18082143 - 21 Apr 2025
Cited by 1 | Viewed by 1317
Abstract
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 [...] Read more.
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 km/h, such as bicycles, e-scooters, and skateboards, which offer flexible, eco-friendly alternatives to traditional transportation, easing congestion and promoting sustainable urban mobility ecosystems. This review aims to guide researchers by consolidating key technical insights and offering a foundation for future exploration in this domain. It examines critical components of EMM systems, including electric motors, batteries, power converters, and control strategies. Likewise, a comparative analysis of electric motors, such as PMSM, BLDC, SRM, and IM, highlights their unique advantages for micromobility applications. Battery technologies, including Lithium Iron Phosphate, Nickel Manganese Cobalt, Nickel-Cadmium, Sodium-Sulfur, Lithium-Ion and Sodium-Ion, are evaluated with a focus on energy density, efficiency, and environmental impact. The study delves deeply into power converters, emphasizing their critical role in optimizing energy flow and improving system performance. Furthermore, control techniques like PID, fuzzy logic, sliding mode, and model predictive control (MPC) are analyzed to enhance safety, efficiency, and adaptability in diverse EMM scenarios by using cutting-edge semiconductor devices like Silicon Carbide (SiC) and Gallium Nitride (GaN) in well-known configurations, such as buck, boost, buck–boost, and bidirectional converters to ensure great efficiency, reduce energy losses, and ensure compact and reliable designs. Ultimately, this review not only addresses existing gaps in the literature but also provides a guide for researchers, outlining future research directions to foster innovation and contribute to the development of sustainable, efficient, and environmentally friendly urban transportation systems. Full article
Show Figures

Figure 1

Back to TopTop