Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = nicotinic acetylcholine receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3817 KB  
Article
Low Concentrations of Sulfoxaflor Do Not Adversely Affect mRNA Levels in Various Testicular Cells When Administered to Either Mature or Immature Mice
by Hayato Terayama, Kenta Nagahori, Daisuke Kiyoshima, Tsutomu Sato, Yoko Ueda, Masahito Yamamoto, Kaori Suyama, Tomoko Tanaka, Midori Yamamoto, Akifumi Eguchi, Emiko Todaka, Kenichi Sakurai, Shogo Hayashi, Haruki Yamada and Kou Sakabe
J. Xenobiot. 2025, 15(6), 189; https://doi.org/10.3390/jox15060189 - 7 Nov 2025
Viewed by 172
Abstract
Sulfoxaflor, an insecticide, acts on nicotinic acetylcholine receptors. It has a functional group similar to that of neonicotinoid insecticides, which are testicular toxicants. Recently, the adverse effects of sulfoxaflor on the testes have been reported in rats. This study aimed to address the [...] Read more.
Sulfoxaflor, an insecticide, acts on nicotinic acetylcholine receptors. It has a functional group similar to that of neonicotinoid insecticides, which are testicular toxicants. Recently, the adverse effects of sulfoxaflor on the testes have been reported in rats. This study aimed to address the lack of reports on sulfoxaflor administration in mice and its effects on the testes. ICR mice (3- and 10-week-old) were treated ad libitum with two different concentrations (10 and 100 mg/kg) of sulfoxaflor for 4 and 8 weeks. Histological analysis and real-time reverse transcription polymerase chain reaction were performed. Testis weights relative to body weights in the sulfoxaflor groups showed no significant difference compared to the control group. Testicular tissue in the sulfoxaflor groups was unchanged compared to that in the control group. The sulfoxaflor-treated group showed no significant differences in the mRNA expression of luteinizing hormone and follicle-stimulating hormone in the pituitary gland compared to the control group. Furthermore, no significant differences were noted in the mRNA expression levels of various gene markers in the testes between the sulfoxaflor-treated and control groups. These markers include those related to Leydig cells, testosterone synthesis, Sertoli cells, proliferating cells, meiotic cells, pachytene spermatocytes, round spermatids, apoptotic cells, antioxidant enzymes, oxidative stress factors, and mitochondrial function. In contrast to findings in rats, which showed testicular toxicity, sulfoxaflor administration at low concentrations did not adversely affect intratesticular cells in either mature or immature mice at the doses and time points examined. In the future, we would like to conduct research on high concentrations of sulfoxaflor by changing the administration method. Full article
Show Figures

Graphical abstract

19 pages, 6283 KB  
Article
Scorpion Venom Heat-Resistant Synthetic Peptide Alleviates DSS-Induced Colitis via α7nAChR-Mediated Modulation of the JAK2/STAT3 Pathway
by Kang Cheng, Guangbo He, Xiaxia Li, Yuqian Li, Xiaolin Cui, Xuefei Wu, Jau-Shyong Hong, Jie Zhao, Sheng Li and Yanjie Guo
Antioxidants 2025, 14(11), 1296; https://doi.org/10.3390/antiox14111296 - 28 Oct 2025
Viewed by 365
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with limited treatment options. Emerging evidence reveals bidirectional crosstalk between gut and brain through inflammatory signaling, leading us to hypothesize that anti-neuroinflammatory agents may concurrently ameliorate intestinal inflammation. The scorpion venom-derived heat-resistant [...] Read more.
Background: Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with limited treatment options. Emerging evidence reveals bidirectional crosstalk between gut and brain through inflammatory signaling, leading us to hypothesize that anti-neuroinflammatory agents may concurrently ameliorate intestinal inflammation. The scorpion venom-derived heat-resistant synthetic peptide (SVHRSP), a bioactive peptide initially identified in scorpion venom and subsequently synthesized by our laboratory, possesses neuroprotective, anti-inflammatory, and antioxidative activities. Its properties make SVHRSP a promising candidate for investigating the therapeutic potential of anti-neuroinflammatory strategies in mitigating intestinal inflammation. Methods: Using a chronic dextran sodium sulfate (DSS)-induced colitis model in wild-type and α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice, along with lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, we assessed SVHRSP’s effects on inflammation, histopathology, gut permeability, oxidative stress markers, and α7nAChR-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling. Results: SVHRSP treatment significantly ameliorated colitis symptoms in wild-type mice by reducing inflammation, repairing histological damage, restoring gut barrier function, and attenuating oxidative stress, with these effects abolished in α7nAChR knockout mice. Mechanistically, SVHRSP activated JAK2/STAT3 signaling through α7nAChR engagement, suppressing proinflammatory cytokine production in macrophages. Conclusion: These results demonstrated that SVHRSP alleviated intestinal inflammation via α7nAChR-dependent JAK2/STAT3 activation. Combined with its known neuroprotective properties, our findings support the repurposing of this neuroactive peptide, SVHRSP, for treating intestinal inflammatory disorders. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

19 pages, 2273 KB  
Article
Prenatal Exposure to Imidacloprid Affects Cognition and Anxiety-Related Behaviors in Male and Female CD-1 Mice
by Colin Lee, Jessica Quito, Truman Poteat, Vasiliki E. Mourikes, Jodi A. Flaws and Megan M. Mahoney
Toxics 2025, 13(11), 918; https://doi.org/10.3390/toxics13110918 - 27 Oct 2025
Viewed by 630
Abstract
Neonicotinoid pesticides, including imidacloprid (IMI), are widely used in agriculture and as household insecticides. IMI displays strong affinity for insect nicotinic acetylcholine receptors (nAChRs); however, neonicotinoids still partially bind to mammalian nAChRs. Relatively little is known about how neonicotinoid exposure alters learning, memory [...] Read more.
Neonicotinoid pesticides, including imidacloprid (IMI), are widely used in agriculture and as household insecticides. IMI displays strong affinity for insect nicotinic acetylcholine receptors (nAChRs); however, neonicotinoids still partially bind to mammalian nAChRs. Relatively little is known about how neonicotinoid exposure alters learning, memory or mood, even though nAChRs play a role in these mechanisms. We tested the hypothesis that developmental exposure to IMI impairs performance on memory tasks, and anxiety- and depressive-like behavior. We orally dosed pregnant CD-1 mice from gestation day 10 to birth with vehicle or IMI at 0.5 mg/kg/day or 5.7 mg/kg/day. When exposed animals were adults, we examined cognitive and emotional behaviors and we examined the effect of IMI on α7 and α4 nAChR subunit mRNA expression using qPCR. For both sexes, IMI exposure was associated with impaired striatal-dependent procedural learning task and hippocampal-dependent spatial learning but had no effect on hippocampal-dependent working memory. Males, but not females, displayed increased anxiety-like behavior, with low dose subjects displaying more pronounced effects, suggesting a non-linear dose response. In males, we found lower α7 subunit mRNA expression in the hippocampus and amygdala and lower α4 mRNA expression in the striatum compared to controls. Thus, exposure to IMI during a critical period is associated with disruptions to cognitive and anxiety-like behaviors. Additionally, in males, IMI exposure is associated with reduced expression of nAChR subunits in relevant brain regions. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

22 pages, 7453 KB  
Article
Comparative Analysis of Cholinergic Machinery in Carcinomas: Discovery of Membrane-Tethered ChAT as Evidence for Surface-Based ACh Synthesis in Neuroblastoma Cells
by Banita Thakur, Samar Tarazi, Lada Doležalová, Homira Behbahani and Taher Darreh-Shori
Int. J. Mol. Sci. 2025, 26(21), 10311; https://doi.org/10.3390/ijms262110311 - 23 Oct 2025
Viewed by 310
Abstract
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models [...] Read more.
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models to enable drug screening, mechanistic studies, and exploration of new therapeutic avenues. In this study, we investigated four cancer cell lines: one of neuroblastoma origin previously used in cholinergic signaling studies (SH-SY5Y), one non-small cell lung adenocarcinoma line (A549), and two small cell lung carcinoma lines (H69 and H82). We assessed the expression and localization of key components of the cholinergic system, along with the cellular capacity for acetylcholine (ACh) synthesis and release. Whole-cell flow cytometry following membrane permeabilization revealed that all cell lines expressed the ACh-synthesizing enzyme choline acetyltransferase (ChAT). HPLC-MS analysis confirmed that ChAT was functionally active, as all cell lines synthesized and released ACh into the conditioned media, suggesting the presence of autocrine and/or paracrine ACh signaling circuits, consistent with previous reports. The cell lines also demonstrated choline uptake, indicative of functional choline and/or organic cation transporters. Additionally, all lines expressed the ACh-degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as well as the alfa seven (α7) nicotinic and M1 muscarinic ACh receptor subtypes. Notably, flow cytometry of intact SH-SY5Y cells revealed two novel findings: (1) ChAT was localized to the extracellular membrane, a feature not observed in the lung cancer cell lines, and (2) BChE, rather than AChE, was the predominant membrane-bound ACh-degrading enzyme. These results were corroborated by both whole-cell and surface-confocal microscopy. In conclusion, our findings suggest that a functional cholinergic phenotype is a shared feature of several carcinoma cell lines, potentially serving as a survival checkpoint that could be therapeutically explored. The discovery of extracellular membrane-bound ChAT uniquely in neuroblastoma SH-SY5Y cells points to a novel form of in situ ACh signaling that warrants further investigation. Full article
(This article belongs to the Special Issue New Research Progresses on Multifaceted Cholinergic Signaling)
Show Figures

Figure 1

22 pages, 803 KB  
Article
New Insights into Biochemical, Genotoxic, and Analytical Aspects of Low-Level Imidacloprid Exposure in Liver and Kidney Tissue of Adult Male Wistar Rats
by Anja Katić, Vilena Kašuba, Nevenka Kopjar, Blanka Tariba Lovaković, Gordana Mendaš, Vedran Micek, Mirta Milić, Alica Pizent, Suzana Žunec and Ana Lucić Vrdoljak
Toxics 2025, 13(10), 879; https://doi.org/10.3390/toxics13100879 - 15 Oct 2025
Viewed by 572
Abstract
Besides its neurotoxic action and selective toxicity on insecticidal nicotinic acetylcholine receptors, recent studies have shown that imidacloprid may cause other adverse effects in mammals. In the present study, cholinesterase activity, oxidative stress response, genotoxicity in the liver and kidney, and imidacloprid levels [...] Read more.
Besides its neurotoxic action and selective toxicity on insecticidal nicotinic acetylcholine receptors, recent studies have shown that imidacloprid may cause other adverse effects in mammals. In the present study, cholinesterase activity, oxidative stress response, genotoxicity in the liver and kidney, and imidacloprid levels in the urine, liver, and kidney of male Wistar rats orally administered with 0.06, 0.8, and 2.25 mg imidacloprid/kg bw/day for 28 days were evaluated. Imidacloprid urine mass concentrations in treated rats increased dose-dependently. Exposure to 0.8 mg imidacloprid/kg bw/per day significantly decreased cholinesterase activities in the liver and kidney. Reactive oxygen species levels decreased significantly in the liver at the same dose. Lipid peroxidation was significantly reduced in the liver at two higher doses. No significant changes in glutathione levels or the activities of superoxide dismutase and catalase were observed. A significant decrease in the activity of glutathione peroxidase was detected in the liver at the highest dose. DNA damage was low in both liver and kidney. Exposure to imidacloprid at studied experimental conditions did not cause a significant oxidative stress response and resulted in low genotoxic effects in the liver and kidney of rats, indicating that these organs are less susceptible to adverse imidacloprid effects at such low doses. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

26 pages, 984 KB  
Review
Emerging Role of Tripartite Synaptic Transmission in the Pathomechanism of Autosomal-Dominant Sleep-Related Hypermotor Epilepsy
by Tomoka Oka, Ruri Okubo, Eishi Motomura and Motohiro Okada
Int. J. Mol. Sci. 2025, 26(19), 9671; https://doi.org/10.3390/ijms26199671 - 3 Oct 2025
Viewed by 581
Abstract
Autosomal-dominant sleep-related hypermotor epilepsy (ADSHE) was the first distinct genetic epilepsy proven to be caused by mutation of the CHRNA4 gene, originally reported in 1994. In the past three decades, pathomechanisms of ADSHE associated with mutant nicotinic acetylcholine receptors (nAChRs) have been explored [...] Read more.
Autosomal-dominant sleep-related hypermotor epilepsy (ADSHE) was the first distinct genetic epilepsy proven to be caused by mutation of the CHRNA4 gene, originally reported in 1994. In the past three decades, pathomechanisms of ADSHE associated with mutant nicotinic acetylcholine receptors (nAChRs) have been explored via various studies, including in vitro experiments and genetic rodent models. However, findings emphasize that functional abnormalities of ADSHE-mutant nAChRs alone cannot generate ictogenesis; rather, development of abnormalities in various other transmission systems induced by ADSHE-mutant nAChRs during the neurodevelopmental process before the ADSHE onset is involved in development of epileptogenesis/ictogenesis. Intra-thalamic GABAergic disinhibition induced by loss-of-function of S284L-mutant nAChRs (S286L-mutant nAChRs in rat ADSHE models) contributes to enhancing propagation of physiological ripple-burst high-frequency oscillation (HFO) and Erk signaling during sleep, leading to enhancement of the trafficking of pannexin1, connexin43, and P2X7 purinergic receptor to the astroglial plasma membrane. The combination of activation of physiological ripple-HFO and upregulation of astroglial hemichannels under the GABAergic disinhibition plays an important role in generation of epileptogenic fast-ripple-HFO during sleep. Therefore, loss-of-function of the S284L-mutation alone cannot drive ictogenesis but contributes to the development of epileptogenesis as an initial abnormality. Based on these recent findings using genetic rat ADSHE models, harboring the rat S286L-mutant Chrna4 corresponding to the human S284L-mutant CHRNA4, this report proposes hypothetical pathomechanisms of ADSHE. Full article
Show Figures

Figure 1

20 pages, 7958 KB  
Article
Copper-Mediated Homocoupling of N-propargylcytisine—Synthesis and Spectral Characterization of Novel Cytisine-Based Diyne Dimer
by Anna K. Przybył, Adam Huczyński and Ewa Krystkowiak
Molecules 2025, 30(19), 3955; https://doi.org/10.3390/molecules30193955 - 1 Oct 2025
Viewed by 852
Abstract
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the [...] Read more.
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the development of new cytisine derivatives. Among these, N-propargylcytisine combines the biological activity of the parent compound with the synthetic versatility of the terminal alkyne group. Herein, we report the synthesis and characterization of N-propargylcytisine, and its symmetrical dimer linked through 1,3-diyne moiety obtained via a copper-mediated Glaser–Hay oxidative coupling. The products were analyzed by NMR, FT-IR, and mass spectrometry, confirming the introduction of the propargyl moiety and the formation of the diyne bridge. Solvatochromic study of both compounds were performed using UV-VIS absorption spectroscopy in solvents of varying polarity, including protic solvents capable of hydrogen bonding. The 1,3-diyne motif, commonly found in bioactive natural products, endows the resulting dimer with potential for further derivatization and biological evaluation. This study demonstrates the utility of the Glaser–Hay reaction in the functionalization of alkaloid scaffolds and highlights the prospects of N-propargylcytisine derivatives in drug discovery targeting the central nervous system. Full article
(This article belongs to the Special Issue Organic Synthesis of Nitrogen-Containing Molecules)
Show Figures

Figure 1

15 pages, 488 KB  
Review
Marine-Derived Ligands of Nicotinic Acetylcholine Receptors in Cancer Research
by Igor E. Kasheverov, Irina V. Shelukhina, Yuri N. Utkin and Victor I. Tsetlin
Mar. Drugs 2025, 23(10), 389; https://doi.org/10.3390/md23100389 - 30 Sep 2025
Viewed by 858
Abstract
Marine sources contain compounds that act on a wide variety of systems, including ligand-gated ion channels. This review will focus on the effectors of nicotinic acetylcholine receptors (nAChRs), for which the diversity of ligands and modulators from marine sources is determined mainly by [...] Read more.
Marine sources contain compounds that act on a wide variety of systems, including ligand-gated ion channels. This review will focus on the effectors of nicotinic acetylcholine receptors (nAChRs), for which the diversity of ligands and modulators from marine sources is determined mainly by neurotoxic peptides (α-conotoxins) from mollusks of the Conus genus. These are very selective compounds that allow the study of the role of different nAChR subtypes in the cancer cells. They have analgesic or anti-inflammatory activities associated with cholinergic transmission and have shown analgesic effect in case of chemotherapy-induced neuropathic pain. Another class of marine compounds targeting nAChRs for which cytotoxicity for cancer cells was shown is represented by low molecular organic substances found mostly in dinoflagellates and marine sponges. Some of the compounds discussed in this review show promise for developing drugs that suppress cancer growth. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

13 pages, 1098 KB  
Article
The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes
by Doris C. Jackson, Marcel K. Hall and Sterling N. Sudweeks
Int. J. Mol. Sci. 2025, 26(19), 9506; https://doi.org/10.3390/ijms26199506 - 28 Sep 2025
Viewed by 492
Abstract
Diverse neuronal nicotinic acetylcholine receptor (nAChR) subtypes are expressed in hippocampal interneurons. Single-cell analysis of mRNA expression previously revealed prominent co-expression of the α3 and β2 subunits within rat interneurons in the CA1 region. Although the α3 subunit (traditionally expressed together with β4) [...] Read more.
Diverse neuronal nicotinic acetylcholine receptor (nAChR) subtypes are expressed in hippocampal interneurons. Single-cell analysis of mRNA expression previously revealed prominent co-expression of the α3 and β2 subunits within rat interneurons in the CA1 region. Although the α3 subunit (traditionally expressed together with β4) is usually associated with the peripheral nervous system, its significant co-expression with the β2 subunit in hippocampal interneurons suggests a distinct, potentially novel central nervous system nAChR subtype. We demonstrate that the human α3 and β2 subunits injected into Xenopus laevis oocytes can assemble into at least two functionally distinct subtypes of nAChRs based on different subunit stoichiometries. These subtypes exhibit similar reversal potentials but differ significantly in their desensitization kinetics and acetylcholine (ACh) affinities. The response obtained from a 1:5 α3:β2 mRNA injection ratio shows a higher affinity for ACh and significantly greater desensitization during prolonged ACh application compared to the response obtained from a 5:1 α3:β2 mRNA injection ratio. The identification of distinct functional α3β2 subtypes, characterized by differential desensitization kinetics and ACh affinity, could represent novel targets for the potential development of highly selective cognitive therapeutics for conditions such as Alzheimer’s disease, autism spectrum disorder, and attention deficit hyperactivity disorder, where hippocampal nAChRs are implicated. Full article
(This article belongs to the Special Issue New Research Progresses on Multifaceted Cholinergic Signaling)
Show Figures

Figure 1

30 pages, 3375 KB  
Article
Pro-Inflammatory Protein PSCA Is Upregulated in Neurological Diseases and Targets β2-Subunit-Containing nAChRs
by Mikhail A. Shulepko, Yuqi Che, Alexander S. Paramonov, Milita V. Kocharovskaya, Dmitrii S. Kulbatskii, Anisia A. Ivanova, Anton O. Chugunov, Maxim L. Bychkov, Artem V. Kirichenko, Zakhar O. Shenkarev, Mikhail P. Kirpichnikov and Ekaterina N. Lyukmanova
Biomolecules 2025, 15(10), 1381; https://doi.org/10.3390/biom15101381 - 28 Sep 2025
Viewed by 634
Abstract
Prostate stem cell antigen (PSCA) is a Ly6/uPAR protein that targets neuronal nicotinic acetylcholine receptors (nAChRs). It exists in membrane-tethered and soluble forms, with the latter upregulated in Alzheimer’s disease. We hypothesize that PSCA may be linked to a wider spectrum of neurological [...] Read more.
Prostate stem cell antigen (PSCA) is a Ly6/uPAR protein that targets neuronal nicotinic acetylcholine receptors (nAChRs). It exists in membrane-tethered and soluble forms, with the latter upregulated in Alzheimer’s disease. We hypothesize that PSCA may be linked to a wider spectrum of neurological diseases and could induce neuroinflammation. Indeed, PSCA expression is significantly upregulated in the brain of patients with multiple sclerosis, Huntington’s disease, Down syndrome, bipolar disorder, and HIV-associated dementia. To investigate PSCA’s structure, pharmacology, and inflammatory function, we produced a correctly folded water-soluble recombinant analog (ws-PSCA). In primary hippocampal neurons and astrocytes, ws-PSCA differently regulates secretion of inflammatory factors and adhesion molecules and induces pro-inflammatory responses by increasing TNFβ secretion. Heteronuclear NMR and 15N relaxation measurements reveal a classical β-structural three-finger fold with conformationally disordered loops II and III. Positive charge clustering on the molecular surface suggests the functional importance of ionic interactions by these loops. Electrophysiological studies in Xenopus oocytes point on ws-PSCA inhibition of α3β2-, high-, and low-sensitive variants of α4β2- (IC50 ~50, 27, and 15 μM, respectively) but not α4β4-nAChRs, suggesting targeting of the β2 subunit. Ensemble docking and molecular dynamics simulations predict PSCA binding to high-sensitive α4β2-nAChR at α4/β2 and β2/β2 interfaces. Complexes are stabilized by ionic and hydrogen bonds between PSCA’s loops II and III and the primary and complementary receptor subunits, including glycosyl groups. This study gives new structural and functional insights into PSCA’s interaction with molecular targets and provides clues to understand its role in the brain function and mental disorders. Full article
Show Figures

Figure 1

27 pages, 5912 KB  
Article
Expression Dynamics of Neurotransmitter System Genes in Early Sea Urchin Embryos: Insights from a Four-Species Comparative Transcriptome Analysis
by Yuri B. Shmukler, Nina M. Alyoshina, Yulia O. Nikishina and Denis A. Nikishin
Biology 2025, 14(9), 1262; https://doi.org/10.3390/biology14091262 - 12 Sep 2025
Viewed by 1090
Abstract
Transmitters such as serotonin, dopamine, noradrenaline, and acetylcholine act as regulators or triggers of numerous processes in the early embryo, including in sea urchins. However, the identity of these mechanisms relative to mature nervous systems remains controversial. The aim of this study was [...] Read more.
Transmitters such as serotonin, dopamine, noradrenaline, and acetylcholine act as regulators or triggers of numerous processes in the early embryo, including in sea urchins. However, the identity of these mechanisms relative to mature nervous systems remains controversial. The aim of this study was to comprehensively characterize the transcriptomic basis of these as well as glutamatergic, GABAergic and histaminergic systems by comparing publicly available RNA-Seq data across four sea urchin species (Mesocentrotus franciscanus, Lytechinus variegatus, Paracentrotus lividus, Strongylocentrotus purpuratus) during early development (egg to early gastrula). Transcript abundance was normalized using the geometric mean of housekeeping genes (GHG) to facilitate comparative analysis and to use the universal significance threshold. We detected mRNA transcripts encoding numerous components (enzymes, receptors, transporters) for all seven transmitter systems from the earliest stages, suggesting a complex signaling potential prior to neurogenesis. The expression of multiple mRNAs of receptors for the same transmitter indirectly supports our earlier notion of the possibility of simultaneous regulation of different processes by this transmitter even in the single-cell embryo. Notably, transcripts for key synthesis enzymes (TPH, DBH) were often low, indicating limited de novo synthesis, while transcripts for degradation enzymes (MAO, AChE) were abundant. Consistent expression across species was observed for specific receptors such as HTR6, D1-like dopamine, β-adrenergic receptors and the α7 subunit of nicotinic AChR. However, the expression profiles of many components, particularly glutamatergic receptors and metabolic enzymes, showed considerable interspecies variability. These findings indicate that multiple transmitter systems are transcriptionally represented early in development, suggesting substantial molecular overlap with mature systems, while the diversity between species points to possible evolutionary plasticity. This comparative transcriptomic dataset provides a basis for targeted functional studies of the role and interactions of these pre-nervous transmitter pathways in orchestrating embryogenesis. Full article
(This article belongs to the Special Issue Research Advances in Aquatic Omics)
Show Figures

Figure 1

15 pages, 2952 KB  
Article
Antifibrotic Effects of an α7 Nicotinic Acetylcholine Receptor Agonist in Keloid Fibroblasts and a Rat Scar Model
by Hyun Roh, Yo Han Kim, Kyung Jun Heo, Jong Won Hong and Won Jai Lee
Int. J. Mol. Sci. 2025, 26(18), 8868; https://doi.org/10.3390/ijms26188868 - 11 Sep 2025
Viewed by 714
Abstract
Keloids are characterized by excessive extracellular matrix (ECM) accumulation and persistent inflammation, leading to disfiguring scars and poor therapeutic outcomes. The α7 nicotinic acetylcholine receptor (α7nAChR) has emerged as a key modulator of inflammatory and fibrotic signaling. This study evaluated the antifibrotic effects [...] Read more.
Keloids are characterized by excessive extracellular matrix (ECM) accumulation and persistent inflammation, leading to disfiguring scars and poor therapeutic outcomes. The α7 nicotinic acetylcholine receptor (α7nAChR) has emerged as a key modulator of inflammatory and fibrotic signaling. This study evaluated the antifibrotic effects of tropisetron, a clinically available α7nAChR agonist, in keloid fibroblasts (KFs) and a rat incisional scar model. In vitro, KFs exhibited reduced α7nAChR expression, which was restored by tropisetron in a dose-dependent manner. Tropisetron treatment significantly decreased KF viability, downregulated pro-fibrotic genes (COL1A1, COL3A1, α-SMA), and upregulated matrix metalloproteinases (MMP1 and MMP3). Additionally, it suppressed phosphorylation of Smad2/3 and reduced expression of NF-κB and TNF-α, indicating inhibition of both TGF-β and inflammatory pathways. In vivo, tropisetron-treated rats showed a ~40% reduction in scar area, improved collagen organization, and increased α7nAChR expression in scar tissue. Western blot analysis confirmed decreased levels of collagen I, p-Smad2/3, α-SMA, NF-κB, and TNF-α. These results indicate that tropisetron exerts dual antifibrotic and anti-inflammatory effects through α7nAChR-mediated signaling and enhanced ECM remodeling. This study provides the first evidence supporting α7nAChR activation as a promising therapeutic strategy for managing keloids and other fibrotic skin disorders. Full article
Show Figures

Figure 1

11 pages, 1320 KB  
Article
Fenmezoditiaz Inhibited the Acquisition and Transmission of Southern Rice Black-Streaked Dwarf Virus by Sogatella furcifera
by Yuting Chen, Lixin Mao, Xiulan Ding, Hengchien Liu, Devendra J. Vyas and Dongsheng Jia
Insects 2025, 16(9), 875; https://doi.org/10.3390/insects16090875 - 23 Aug 2025
Viewed by 820
Abstract
Rice planthoppers are the most destructive pests of rice production and the vectors of rice viruses. Fenmezoditiaz as a novel mesoionic insecticide is used for rice planthopper management by targeting the insect’s neural nicotinic acetylcholine receptor. This study aimed to evaluate the effects [...] Read more.
Rice planthoppers are the most destructive pests of rice production and the vectors of rice viruses. Fenmezoditiaz as a novel mesoionic insecticide is used for rice planthopper management by targeting the insect’s neural nicotinic acetylcholine receptor. This study aimed to evaluate the effects of fenmezoditiaz on the acquisition, propagation, and transmission of southern rice black-streaked dwarf virus (SRBSDV) by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacida). The results revealed that sublethal concentrations of fenmezoditiaz significantly impaired SRBSDV acquisition and viral replication in S. furcifera. Fenmezoditiaz-treated viruliferous S. furcifera exhibited a lower transmission efficiency of SRBSDV to un-infected rice seedlings. Electrical penetration graph (EPG) recordings revealed prolonged non-probing (NP), salivary secretion (N2/N3), and xylem feeding (N5) durations, alongside shortened phloem contact behavior (N4a/N4b), of fenmezoditiaz-treated individuals, indicating disrupted feeding behaviors, which are critical for reducing viral infection. By reducing viral titers and interfering with phloem ingestion, fenmezoditiaz significantly suppresses SRBSDV transmission. These findings revealed fenmezoditiaz’s dual role in pest control and viral transmission blockage, providing a foundation for incorporation into integrated management of vector-borne plant viruses. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

10 pages, 975 KB  
Article
Neuromuscular System of Nematodes Is a Target of Synergistic Pharmacological Effects of Carvacrol and Geraniol
by Maja Stojković, Djordje S. Marjanović, Dragana Medić, Claude L. Charvet and Saša M. Trailović
Pharmaceuticals 2025, 18(8), 1232; https://doi.org/10.3390/ph18081232 - 20 Aug 2025
Viewed by 712
Abstract
Background: The active ingredients of essential plant oils appear as potentially effective antinematodal drugs or substances that can potentiate the action of already-existing anthelmintics. So far, we have verified that, aside from the direct effect on the neuromuscular system of nematodes, some of [...] Read more.
Background: The active ingredients of essential plant oils appear as potentially effective antinematodal drugs or substances that can potentiate the action of already-existing anthelmintics. So far, we have verified that, aside from the direct effect on the neuromuscular system of nematodes, some of them can potentiate the effects of drugs that are agonists or antagonists of nematode cholinergic receptors. Methods: In this study, the antinematodal effects of geraniol and carvacrol were compared, as well as their interaction in the experimental model Caenorhabditis elegans, on the contractile properties of Ascaris suum neuromuscular preparations and on the ACR-16 nicotinic acetylcholine receptor (nAChR) of A. suum expressed in Xenopus leavis oocytes. Results: The combination of geraniol and carvacrol showed a synergistic nematocidal effect in the tests on C. elegans, reducing the value of individual LC50 by almost 10-times. This combination also exerted a synergistic inhibitory effect on the contractions of A. suum, significantly increased the EC50 of ACh and reduced the maximal contractile effect. The synergistic interaction of these two monoterpenes on Asu-ACR-16 nAChR expressed in Xenopus oocytes resulted in a significant decrease in the maximum current, while the ACh EC50 value remained unchanged. Conclusions: Our findings provide a better understanding of the mode of action of monoterpene plant compounds. The possible antiparasitic application of active ingredients of essential plant oils that exhibit a synergistic anthelmintic effect represents an important basis for the development of new drugs and new therapeutic procedures. Full article
Show Figures

Graphical abstract

29 pages, 2190 KB  
Review
The Sublethal Effects of Neonicotinoids on Honeybees
by Zunair Ahsan, Zhijia Wu, Zheguang Lin, Ting Ji and Kang Wang
Biology 2025, 14(8), 1076; https://doi.org/10.3390/biology14081076 - 18 Aug 2025
Viewed by 3096
Abstract
Honeybees (Apis mellifera) are indispensable pollinators vital to global biodiversity, ecosystem stability, and agricultural productivity, and they promote over 35% of food crops and 75% of flowering plants. Yet, they are in unprecedented decline, partly as a result of neonicotinoid pesticide [...] Read more.
Honeybees (Apis mellifera) are indispensable pollinators vital to global biodiversity, ecosystem stability, and agricultural productivity, and they promote over 35% of food crops and 75% of flowering plants. Yet, they are in unprecedented decline, partly as a result of neonicotinoid pesticide use elsewhere. These effects on honey bee health are synthesized in this paper through molecular, physiological, and behavioral data showing that sublethal effects of neonicotinoids impair honey bee health. As neurotoxic insecticides that target nicotinic acetylcholine receptors (nAChRs), these insecticides interfere with neurotransmission and underlie cognitive impairment, immune suppression, and oxidative stress. Developmental toxicity is manifested in larvae as retarded growth, reduced feeding, and increased death; queen and drone reproduction are impaired, lowering colony viability. As a result, adult bees have shortened lives and erratic foraging, are further disoriented, and experience impaired navigation, communication, and resource collection. Together, these effects cascade to reduced brood care, thermoregulatory failure, and heretofore unrecognized increased susceptibility to pathogens, increasing the probability of colony collapse at the colony level. Contaminants such as pesticides may cause pollinator exposure and, in turn, may cause their population to be undermined if they are not mitigated; therefore, urgent mitigation strategies, including integrated pest management (IPM), regulatory reforms, and adoption of biopesticides, are needed to mitigate pollinator exposure. The focus of this review lies in the ecological necessity of restructuring how agriculture is managed to simultaneously meet food security and the conservation of honeybee health, the linchpin of global ecosystems. Full article
Show Figures

Figure 1

Back to TopTop