Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,157)

Search Parameters:
Keywords = nitrogen forms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3244 KB  
Article
Assessing the Potential of Distinctive Greek White Cultivars in Winemaking: Relationship Between Sensory Sorting Tasks and GC-MS Data
by Evangelia Anastasia Tsapou, George Ntourtoglou, Vassilis Dourtoglou and Elisabeth Koussissi
Beverages 2025, 11(5), 135; https://doi.org/10.3390/beverages11050135 - 10 Sep 2025
Abstract
This study explores the chemical and sensory differentiation of Greek white wines produced from five indigenous grape varieties—Savvatiano, Vidiano, Moschofilero, Assyrtiko, and Malagouzia—across diverse terroirs in Greece. A targeted analytical approach was employed to quantify 12 key volatile aroma compounds derived primarily from [...] Read more.
This study explores the chemical and sensory differentiation of Greek white wines produced from five indigenous grape varieties—Savvatiano, Vidiano, Moschofilero, Assyrtiko, and Malagouzia—across diverse terroirs in Greece. A targeted analytical approach was employed to quantify 12 key volatile aroma compounds derived primarily from amino acid metabolism and lipid degradation, using GC-MS and GC-FID. The selected volatiles, including isoamyl alcohol, phenylethyl alcohol, tyrosol, and hexanoic acid ethyl ester, were chosen for their sensory relevance and their biosynthetic linkage to nitrogenous precursors. Principal Component Analysis (PCA) of wines from the 2019 and 2020 vintages revealed clear varietal clustering, under standardized winemaking conditions. Malagouzia wines were characterized by rich and diverse volatile profiles, particularly long-chain fatty acids and esters, while Vidiano exhibited a consistently restrained aromatic expression. Sensory analysis using sorting and ultra-flash profiling confirmed the chemical clustering, with Moschofilero, Vidiano and Malagouzia wines forming distinct sensory groups. The findings demonstrate that key amino acid-derived volatiles can serve as biochemical markers of varietal typicity and support the use of volatile profiling as a tool for terroir-driven wine classification and quality assessment in Greek white wines. Full article
Show Figures

Figure 1

19 pages, 622 KB  
Review
Development of Edible Flower Production and the Prospects of Modern Production Technology
by Maitree Munyanont, Na Lu, Duyen T. P. Nguyen and Michiko Takagaki
Agronomy 2025, 15(9), 2159; https://doi.org/10.3390/agronomy15092159 - 10 Sep 2025
Abstract
The consumption of edible flowers is gaining global popularity due to their culinary appeal, vibrant colors, and health-promoting compounds. Traditional production methods—including wild collection, open-field cultivation, and greenhouse systems—offer limited control over environmental factors, often resulting in inconsistent yield, quality, and safety. To [...] Read more.
The consumption of edible flowers is gaining global popularity due to their culinary appeal, vibrant colors, and health-promoting compounds. Traditional production methods—including wild collection, open-field cultivation, and greenhouse systems—offer limited control over environmental factors, often resulting in inconsistent yield, quality, and safety. To address these limitations, plant factories with artificial lighting (PFALs) have emerged as a promising technology for producing high-quality edible flowers year-round in controlled environments. This review explores the evolution of edible flower cultivation, from conventional methods to PFALs, and highlights key environmental factors—light, temperature, and nutrient management—that influence growth, flowering, and phytochemical profiles. Special attention is given to how light intensity, spectrum, and photoperiod affect morphogenesis and metabolite accumulation, and how nutrient solution composition, particularly nitrogen form and EC levels, modulates flowering and plant health. While recent studies have demonstrated the potential of PFALs in cultivating species such as calendula, nasturtium, and marigold, research remains limited for many commercially relevant species. The review identifies current challenges, such as high operational costs and knowledge gaps in species-specific protocols, and outlines future research directions aimed at improving efficiency, optimizing quality, and expanding market viability. PFALs offer a transformative opportunity for the edible flower industry by integrating precision agriculture with consumer demand for safe, functional, and visually appealing food products. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 7245 KB  
Article
Nitrogen Enrichment Reshapes Contrasting Microbial Networks in Northern Tibetan Alpine Meadow vs. Steppe
by Xueying Chen, Peili Shi, Jialuo Yu, Ge Hou, Ning Zong and Huixin Hei
Plants 2025, 14(17), 2803; https://doi.org/10.3390/plants14172803 - 7 Sep 2025
Viewed by 196
Abstract
Increased Nitrogen (N) input exerts significant impact on the functional integrity of terrestrial ecosystems, with alpine grasslands being particularly susceptible. Soil microbes are intricately intertwined with nearly all facets of essential biogeochemical cycle, underscoring their pivotal role in ecosystem processes. To elucidate how [...] Read more.
Increased Nitrogen (N) input exerts significant impact on the functional integrity of terrestrial ecosystems, with alpine grasslands being particularly susceptible. Soil microbes are intricately intertwined with nearly all facets of essential biogeochemical cycle, underscoring their pivotal role in ecosystem processes. To elucidate how N enrichment modulates soil microbes and their diversity, 11-year N addition experiments were conducted in a semi-humid alpine meadow (AM) and an arid alpine steppe (AS) on the Northern Tibetan Plateau. We measured soil properties, aboveground net primary productivity (ANPP), plant diversity, microbial composition and diversity, as well as microbial co-occurrence networks. The results revealed that N additions profoundly reshaped microbial co-occurrence in alpine grasslands, albeit via divergent mechanisms in different ecosystems. In AM, N enrichment destabilized microbial networks mainly through reduced bacterial diversity linked to plant diversity loss. Conversely, in the harsher AS, N addition fostered closer microbial interactions, forming a more stable co-occurrence network despite lower plant richness, predominantly attributed to increased soil nutrient availability. Our results highlight the significance of co-occurrence networks as a key component of microbial biodiversity and emphasize the imperative of deciphering microbial interaction mechanisms to unravel soil functional dynamics under global nitrogen enrichment. Full article
Show Figures

Figure 1

25 pages, 6231 KB  
Review
1,3-Dipolar Cycloaddition of Nitrile Imines and Nitrile Oxides to Exocyclic C=N Bonds—An Approach to Spiro-N-Heterocycles
by Juliana V. Petrova, Maxim E. Kukushkin and Elena K. Beloglazkina
Int. J. Mol. Sci. 2025, 26(17), 8673; https://doi.org/10.3390/ijms26178673 - 5 Sep 2025
Viewed by 474
Abstract
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with [...] Read more.
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with these dipoles, spiro-fused 1,2,4-triazoline or 1,2,4-oxadiazoline cycles are formed. Such reactions can provide efficient synthetic approaches to spiro-heterocyclic compounds with enhanced biological activity. This review comprehensively summarizes the literature data on the 1,3-dipolar cycloaddition of nitrile imines and nitrile oxides to exo-C=N bonds for spiro compound synthesis. The research area covers reactions of both saturated and unsaturated dipolarophiles, monocyclic and polycyclic molecules, as well as compounds containing one to three heteroatoms, with special emphasis on systems containing biologically significant heterocyclic pharmacophores. Recent advances in reaction techniques, such as microwave and ultrasonic activation, as well as one-pot and diffusion protocols, are also mentioned. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

31 pages, 2847 KB  
Article
Effects of Crystallinity and Pore Architecture of Titanium Silicalites on α-Pinene Oxidation
by Jadwiga Grzeszczak, Agnieszka Wróblewska and Beata Michalkiewicz
Catalysts 2025, 15(9), 860; https://doi.org/10.3390/catal15090860 - 5 Sep 2025
Viewed by 316
Abstract
Titanium silicalite-1 (TS-1) is an effective catalyst, but its limited pore size restricts the access of bulky substrates such as α-pinene. In our previous studies, a TS-1 catalyst with a Si/Ti molar ratio of 20:1 demonstrated high activity in α-pinene oxidation but suffered [...] Read more.
Titanium silicalite-1 (TS-1) is an effective catalyst, but its limited pore size restricts the access of bulky substrates such as α-pinene. In our previous studies, a TS-1 catalyst with a Si/Ti molar ratio of 20:1 demonstrated high activity in α-pinene oxidation but suffered from diffusion limitations. To overcome this drawback, four new titanium silicate catalysts were synthesized using the reference TS-1 as the parent material (TS-1 catalyst with the Si/Ti molar ratio of 20:1). MTS-1_1 and MTS-1_2 were prepared via a co-templating method, while HTS-1_1 and HTS-1_2 were obtained through post-synthetic recrystallization using triethylamine (method I) or sulfuric acid followed by triethylamine (method II). All catalysts were characterized by UV–Vis, FTIR, XRD, SEM, EDXRF, and nitrogen sorption, and their activity was tested in solvent-free oxidation of α-pinene using molecular oxygen. The influence of temperature, catalyst content, and reaction time on the conversion of α-pinene and the selectivities of the main products was investigated. All modified materials exhibited higher catalytic activity than the reference TS-1 material. HTS-1_2 showed the best results, achieving the conversion of α-pinene of 21 mol% and the selectivity of transformation to α-pinene oxide of 35 mol%. Verbenol and verbenone were also formed as valuable oxygenated products. The developed catalysts enable a green and efficient transformation of renewable α-pinene into high-value derivatives. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section, 2nd Edition)
Show Figures

Figure 1

19 pages, 677 KB  
Article
Enhancing Soilless Production of Portulaca oleracea, Mesembryanthemum crystallinum and Valerianella locusta Through Nitrogen Form Ratio Optimization and Biostimulant Application
by Theodora Ntanasi, Ioannis Karavidas, Evangelos Giannothanasis, George P. Spyrou, Theoni Karaviti, Sofia Marka, Simona Napoli, Damianos Neocleous and Georgia Ntatsi
Horticulturae 2025, 11(9), 1076; https://doi.org/10.3390/horticulturae11091076 - 5 Sep 2025
Viewed by 175
Abstract
Underutilized leafy greens are considered as functional plant species primarily due to their resilience to abiotic stress factors, low nutrient requirements, and high nutritional value. Over the past 30 years, many experiments have been conducted to identify nutrient-efficient species, cultivars, landraces, and ecotypes, [...] Read more.
Underutilized leafy greens are considered as functional plant species primarily due to their resilience to abiotic stress factors, low nutrient requirements, and high nutritional value. Over the past 30 years, many experiments have been conducted to identify nutrient-efficient species, cultivars, landraces, and ecotypes, but few have successfully entered mainstream agriculture. The integration of these species into advanced horticultural systems, such as hydroponics, has the potential to further strengthen their impact on sustainable agriculture by minimizing use of resources, enabling year-round cultivation, and improving the nutritional profile of the harvested produce. As leafy vegetables, a primary food safety concern is the accumulation of nitrates in the leaves. In hydroponics, this issue is usually addressed by balancing the NH4-N/total-N ratio (Nr) in the nutrient solution. Provided that the plant responses to high ammonia supply are species-dependent, three wild leafy greens, iceplant, corn salad, and common purslane, were grown in a soilless culture, with perlite as the substrate, under low (0.04) and high (0.12) Nr on a molar basis. Additionally, the potential of protein hydrolysates (PH) and seaweed extracts (SW) to alleviate plant tolerance to excess ammonia supply was also investigated. In terms of yield, high Nr led to significant yield restrictions in iceplant that reached 28%, while on corn salad, it had a positive impact, with yield increasing by 18%. Both biostimulant applications enhanced iceplant productivity only under optimal Nr conditions (0.04). Apart from yield responses, biofertilizers had no substantial impact on the plant nutrient profile. In contrast, high Nr suppressed nitrate accumulation in fresh leaves, while enhancing micronutrient uptake in all three plant species. In conclusion, this study highlights the pivotal role of biostimulants as plant stress protectors and growth regulators and identifies the optimal Nr ratio for maximizing the yield and quality performance of corn salad, iceplant, and common purslane in soilless cultivation systems. Full article
Show Figures

Figure 1

32 pages, 1902 KB  
Review
The Neuroprotective Potential of Ocimum Plant Species: Seasoning the Mind with Sweet and Holy Basil
by Alexandru Vasincu, Răzvan-Nicolae Rusu, Daniela-Carmen Ababei, Delia Bulea, Oana Dana Arcan, Ioana Mirela Vasincu, Sorin Beșchea Chiriac, Ionuț-Răducu Popescu, Walther Bild and Veronica Bild
Nutrients 2025, 17(17), 2877; https://doi.org/10.3390/nu17172877 - 5 Sep 2025
Viewed by 381
Abstract
Neurodegenerative diseases (NDs) encompass a group of chronic conditions, characterized by neuronal losses in large areas of the brain, leading to cognitive and behavioral impairments. Alzheimer’s Disease (AD), the most common form of dementia, is a progressive ND, characterized by the accumulation of [...] Read more.
Neurodegenerative diseases (NDs) encompass a group of chronic conditions, characterized by neuronal losses in large areas of the brain, leading to cognitive and behavioral impairments. Alzheimer’s Disease (AD), the most common form of dementia, is a progressive ND, characterized by the accumulation of amyloid β and tau protein, entails cognitive decline, neuroinflammation, mitochondrial dysfunction, and blood–brain barrier impairment, with oxidative stress playing a critical role in its pathogenesis. To date, the available pharmacotherapy has shown limited efficacy, and multitarget activity of plant-derived neuroprotective bioactive compounds is currently in focus. This review synthesizes experimental evidence regarding Ocimum species with neuroprotective potential in AD, particularly Ocimum sanctum and Ocimum basilicum. These plants are rich in bioactive compounds including polyphenols, flavonoids, essential oils, and triterpenoids that synergistically scavenge reactive oxygen/nitrogen species, upregulate endogenous antioxidant enzymes (SOD, CAT, and GPx), and reduce lipid peroxidation. Furthermore, these extracts have demonstrated the ability to decrease β-amyloid accumulation and tau protein levels, key pathological features of AD. Even though additional research is required to fully assess their potential as therapeutic agents for NDs, by diving into the specific mechanisms through which they improve neurodegenerative processes, important steps can be made towards this endpoint. Full article
(This article belongs to the Special Issue Therapeutic Potential of Phytochemicals in Neurodegenerative Diseases)
18 pages, 3048 KB  
Article
Comparison of Plasma Polymerized Thin Films Deposited from 2-Methyl-2-oxazoline and 2-Ethyl-2-oxazoline: II Analysis of Deposition Process
by Peter Papp, Věra Mazánková, Ladislav Moravský, Ján Blaško, Pavel Sťahel, Lubomír Prokeš, Radek Horňák, Marián Lehocký, Hana Pištěková and David Trunec
Int. J. Mol. Sci. 2025, 26(17), 8641; https://doi.org/10.3390/ijms26178641 - 5 Sep 2025
Viewed by 522
Abstract
Poly(2-oxazoline) coatings with antibiofouling properties and good biocompatibility can also be deposited by the plasma polymerization method using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline as monomers. Plasma polymers are formed of various monomer fragments and recombination products. Commonly, plasma polymers are highly crosslinked structures created by [...] Read more.
Poly(2-oxazoline) coatings with antibiofouling properties and good biocompatibility can also be deposited by the plasma polymerization method using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline as monomers. Plasma polymers are formed of various monomer fragments and recombination products. Commonly, plasma polymers are highly crosslinked structures created by many different fragments, preferably of no repeating unit. Thus, chemical analysis of plasma polymers is difficult. To obtain a better description of plasma polymerized poly(2-oxazoline) coatings, the analysis of their plasma deposition process was performed. The electron ionization of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline molecules was studied using the crossed electron–molecular beam technique with mass spectrometric detection of the produced ions. The chemical composition of gaseous compounds at plasma polymerization was determined by gas chromatography-mass spectrometry (GC-MS), ion mobility spectrometry (IMS) and optical emission spectroscopy (OES). Also, the chemical composition and antibacterial activity of the water leachates from previously deposited poly(2-oxazoline) films were tested using FTIR spectroscopy and the disk diffusion method, respectively. It was found that acetonitrile and propionitrile are the main neutral products created in the nitrogen discharge with 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline monomers. The water leachates from deposited films do not exhibit any antibacterial activity. It was concluded that the antibacterial properties of POx films are due to their hydrophility. Full article
(This article belongs to the Special Issue Bioactive Materials with Antimicrobial Properties: 2nd Edition)
Show Figures

Figure 1

13 pages, 990 KB  
Article
Strain- and System-Specific Enhancement of Artemisinin in Artemisia annua Composite Plants Grown in Hydroponic and Aeroponic Systems
by Martina Paponov, Pembi S. Lama, Jörg Ziegler, Cathrine Lillo and Ivan A. Paponov
Horticulturae 2025, 11(9), 1070; https://doi.org/10.3390/horticulturae11091070 - 5 Sep 2025
Viewed by 324
Abstract
Efficient production of artemisinin, a valuable secondary metabolite from Artemisia annua, remains a challenge for pharmaceutical applications. This study investigated the use of ex vitro composite plants—generated by inoculation with Agrobacterium rhizogenes strains 2659 and 1523—under hydroponic and aeroponic conditions to enhance [...] Read more.
Efficient production of artemisinin, a valuable secondary metabolite from Artemisia annua, remains a challenge for pharmaceutical applications. This study investigated the use of ex vitro composite plants—generated by inoculation with Agrobacterium rhizogenes strains 2659 and 1523—under hydroponic and aeroponic conditions to enhance artemisinin and phenolic compound accumulation. In leaves, artemisinin content increased in a cultivation-specific, strain-dependent manner: strain 2659 was effective under aeroponics (+36%), while strain 1523 enhanced accumulation under hydroponics (+32%). In roots, strain 2659 led to higher artemisinin accumulation than strain 1523 under both systems, with increases of up to 145% in hydroponics and 75% in aeroponics. Strain 1523 strongly promoted artemisinin exudation, especially in hydroponics, suggesting active regulation of artemisinin export. Aeroponic cultivation increased total phenolic content (TPC) in roots, while strain 1523 reduced TPC in leaves. Although total biomass was unaffected, A. rhizogenes altered assimilate partitioning, decreasing the shoot-to-root ratio and enhancing root metabolism. These findings demonstrate that ex vitro composite plants, combined with optimized soilless cultivation, represent a flexible tool to boost accumulation and secretion of high-value compounds in A. annua. The strain and environment-specific responses emphasize the importance of selecting appropriate bacterial strain–cultivation combinations for scalable production systems. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

19 pages, 1105 KB  
Review
Ecosystem and Climate Change Impacts on the Nitrogen Cycle and Biodiversity
by Rohini Mattoo, Suman B. Mallikarjuna and Naveenachar Hemachar
Nitrogen 2025, 6(3), 78; https://doi.org/10.3390/nitrogen6030078 - 5 Sep 2025
Viewed by 304
Abstract
Nitrogen in all of its forms sustains Earth. In every known terrestrial and aquatic habitat, nitrogen controls microbial activity, plant productivity, trophic dynamics, and animal and human growth. This review has tried to show how nitrogen cycling is influenced by both terrestrial and [...] Read more.
Nitrogen in all of its forms sustains Earth. In every known terrestrial and aquatic habitat, nitrogen controls microbial activity, plant productivity, trophic dynamics, and animal and human growth. This review has tried to show how nitrogen cycling is influenced by both terrestrial and marine ecosystems in addition to by changes spurred on by the climate. The availability, transformation, and final fate of nitrogen throughout the various ecosystems are influenced by these interconnected biochemical and biophysical processes, which are fueled by microbial communities. Predicting and reducing human impacts on the changing ecosystem requires an understanding of these complex interconnections. Anthropogenic and climatic changes alter the structure and function of soil microbial communities, as well as the main metabolic processes of the nitrogen cycle, such as nitrification, denitrification, nitrogen fixation, and ammonification. The mechanisms by which anthropogenic stress alters nitrogen cycling processes, the effects on ecosystem function, and possible mitigation techniques for a balanced nitrogen cycle are all discussed in this review. Full article
Show Figures

Figure 1

18 pages, 1527 KB  
Article
Gene-Level Shift in Response to Synthetic Nitrogen Addition Promotes Larix olgensis (Ussurian Larch) Growth in a Short-Term Field Trial
by Muhammad Jamal Ameer, Yushan Liu, Siyu Yan and Tongbao Qu
Life 2025, 15(9), 1403; https://doi.org/10.3390/life15091403 - 4 Sep 2025
Viewed by 264
Abstract
Climate change and injudicious nitrogen addition alter the soil physico-chemical properties and microbial activity in oligotrophic forest soil, which disrupts the nitrogen cycle balance. Nevertheless, recommended fertilizer forms and levels are considered to be crucial for stable nitrogen application. We established a short-term [...] Read more.
Climate change and injudicious nitrogen addition alter the soil physico-chemical properties and microbial activity in oligotrophic forest soil, which disrupts the nitrogen cycle balance. Nevertheless, recommended fertilizer forms and levels are considered to be crucial for stable nitrogen application. We established a short-term field trial for the first time using a randomized complete block design under the yellow larch forest, with six treatments applied, including urea CO(NH2)2, ammonium chloride NH4Cl, and sodium nitrate NaNO3 at concentrations of 10 and 20 kg N hm−2 yr−1, each extended by three replicates. The gene abundances were measured using quantitative PCR (qPCR), in which the abundance levels of AOA (amoA) and nirS were higher under high CO(NH2)2 2.87 × 1010 copies g−1 dry soil and low NO3 8.82 × 109 copies g−1 dry soil, compared to CK, representing 2.8-fold and 1.5-fold increases, respectively. We found niche partitioning as revealed despite AOA (amoA) increasing in number, AOB (amoA) contributing more to ammonia oxidation while nirS proved opportunistic under stress conditions. This was supported by distinct significant correlations among factors, in which soil urease enzymatic activity (S-UE) was associated with AOA (amoA) and nirK, while AOB (amoA) and nirS positively correlated with NH4+ content and soil potential of hydrogen (pH), respectively. Among the applied treatments, high-level NO3 increased total nitrogen content and had a significant effect on soil N-acetyl-β-d-glucosaminidase (S-NAG) and soil acid protease (S-ACPT) activity. In summary, we observed an increase in Larix olgensis growth with high nitrogen retention. Full article
(This article belongs to the Special Issue Carbon and Nitrogen Cycles in Terrestrial Ecosystems)
Show Figures

Figure 1

16 pages, 530 KB  
Article
Investigating the Cosmic and Solar Drivers of Stratospheric 7Be Variability
by Alessandro Rizzo, Giuseppe Antonacci, Massimo Astarita, Enrico Maria Borra, Luca Ciciani, Nadia di Marco, Giovanna la Notte, Patrizio Ripesi, Luciano Sperandio, Ignazio Vilardi and Francesca Zazzaron
Environments 2025, 12(9), 312; https://doi.org/10.3390/environments12090312 - 4 Sep 2025
Viewed by 348
Abstract
Space weather exerts a significant influence on the Earth’s atmosphere, driving a variety of physical processes, including the production of cosmogenic radionuclides. Among these, 7Be is a naturally occurring radionuclide formed through spallation reactions induced by cosmic-ray showers interacting with atmospheric constituents, [...] Read more.
Space weather exerts a significant influence on the Earth’s atmosphere, driving a variety of physical processes, including the production of cosmogenic radionuclides. Among these, 7Be is a naturally occurring radionuclide formed through spallation reactions induced by cosmic-ray showers interacting with atmospheric constituents, primarily oxygen and nitrogen. Over long timescales, the atmospheric concentration of 7Be exhibits a direct correlation with the cosmic-ray flux reaching the Earth and an inverse correlation with solar activity, which modulates this flux via variations of the heliosphere. The large availability of 7Be concentration data, resulting from its use as a natural tracer employed in atmospheric transport studies and in monitoring the fallout from radiological incidents such as the Chernobyl disaster, can also be exploited to investigate the impact of space weather conditions on the terrestrial atmosphere and related geophysical processes. The present study analyzes a long-term dataset of monthly 7Be activity concentrations in air samples collected at ground level since 1987 at the ENEA Casaccia Research Center in Rome, Italy. In particular, the linear correlation of this time series with the galactic cosmic ray flux on Earth and solar activity have been investigated. Data from a ground-based neutron monitor and sunspot numbers have been used as proxies for galactic cosmic rays and solar activity, respectively. A centered running-mean low-pass filter was applied to the monthly 7Be time series to extract its low-frequency component associated with cosmic drivers, which is partially hidden by high-frequency modulations induced by atmospheric dynamics. For Solar Cycles 22, 23, 24, and partially 25, the analysis shows that a substantial portion of the relationship between stratospheric 7Be concentrations and cosmic drivers is captured by linear correlation. Within a statistically consistent framework, the evidence supports a correlation between 7Be and cosmic drivers consistent with solar-cycle variability. The 7Be radionuclide can therefore be regarded as a reliable atmospheric tracer of cosmic-ray variability and, indirectly, of solar modulation. Full article
Show Figures

Figure 1

16 pages, 2773 KB  
Article
Anti-Interference Fe-N-C/PMS System: Synergistic Radical-Nonradical Pathways Enabled by sp2 Carbon and Metal-N Coordination
by Qiongqiong He, Xuewen Wu, Ping Ma, Zhaoyang Song, Xiaoqi Wu, Ruize Gao and Zhenyong Miao
Catalysts 2025, 15(9), 850; https://doi.org/10.3390/catal15090850 - 3 Sep 2025
Viewed by 403
Abstract
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. [...] Read more.
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. The Fe-N-C/PMS system achieved a phenol degradation rate of 99.71%, which follows a first-order kinetic model, with the reaction rate constant of 0.1419 min−1. The phenol degradation rate remained above 92% in inorganic anions (Cl, SO42−, HCO3) and humic acid and the system maintained a 100% phenol removal rate over a wide pH range (3–9). The iron in the catalyst predominantly exists in the forms of Fe0 and Fe3C, and Fe0, Fe2+/Fe3+ are the main active sites that promote PMS activation during the reaction. Additionally, Fe-N-C has a large specific surface area (1041.36 m2/g). Quenching experiments and electron spin resonance (ESR) spectroscopy detected the active free radicals in the Fe-N-C/PMS system: SO4•−, •OH, O2•−, and 1O2. The mechanism for phenol degradation was discussed, involving radical pathways (SO4•−, •OH, O2•−) and the non-radical pathway (1O2), in the Fe-N-C/PMS system activated by Fe0, Fe2+/Fe3+, sp2 hybridized carbon, C-O/C-N, C=O, and graphitic nitrogen active sites. This study provides new insights into the synthesis of efficient carbon-based catalysts for phenol degradation and water remediation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

16 pages, 2350 KB  
Article
High Selectivity and Yield in Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by Zirconium Propoxide Modified Mesoporous Silica
by Agnieszka Ciemięga, Katarzyna Maresz, Katarzyna Janoszka and Julita Mrowiec-Białoń
Molecules 2025, 30(17), 3600; https://doi.org/10.3390/molecules30173600 - 3 Sep 2025
Viewed by 635
Abstract
The aim of the work was to develop a highly effective catalyst for the conversion of furfural into furfuryl alcohol through catalytic transfer hydrogenation, which is an important process for converting biomass-derived compounds into valuable chemicals. A highly mesoporous silica was modified with [...] Read more.
The aim of the work was to develop a highly effective catalyst for the conversion of furfural into furfuryl alcohol through catalytic transfer hydrogenation, which is an important process for converting biomass-derived compounds into valuable chemicals. A highly mesoporous silica was modified with various zirconium and aluminium precursors to obtain Lewis acid centres. The materials were characterised by nitrogen adsorption, FTIR spectroscopy, pyridine adsorption, thermogravimetry, SEM and XRD. The catalytic properties of the materials versus acid site concentration, alcohol type, zirconium content and reaction time were investigated in a batch reactor. The zirconium propoxide-modified materials appeared to be the most active and selective catalysts in the reaction studied. They showed complete furfural conversion with ca. 99% selectivity of furfuryl alcohol, which was attributed to the predominantly Lewis acidic character of these catalysts. High productivity, 15.2 molFA/molZr·h, was obtained for the most active catalyst. Good catalytic stability was confirmed in repeated cycles. The oxide form of zirconium and aluminium species resulted in the mixed Lewis and Brönsted acidity, which encouraged further transformation of furfuryl alcohol into butyl furfuryl ether, angelica lactone and butyl levulinate. The elaborated catalyst offers a promising approach for converting renewable resources into industrially relevant chemicals. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

18 pages, 13493 KB  
Article
Fatigue Performance of Nitrided H13 Tool Steel Pre-Treated with Fine Particle Peening
by Hung-Chi Lee, Tai-Cheng Chen, Wen-Han Chen and Leu-Wen Tsay
Materials 2025, 18(17), 4121; https://doi.org/10.3390/ma18174121 - 2 Sep 2025
Viewed by 599
Abstract
This study evaluated the fatigue performance of nitrided H13 steel with and without a compound layer (CL), using two nitrogen potentials (KN = 0.8, designated as LN, and KN = 2.0, designated as HN). Fine particle peening (FPP) was applied prior [...] Read more.
This study evaluated the fatigue performance of nitrided H13 steel with and without a compound layer (CL), using two nitrogen potentials (KN = 0.8, designated as LN, and KN = 2.0, designated as HN). Fine particle peening (FPP) was applied prior to gas nitriding to introduce a refined microstructure and compressive residual stress (CRS) in the peened zone. After gas nitriding at 540 °C for 8 h, the refined structure remained on the outermost layer of all samples, regardless of the nitrogen potential. A CL primarily composed of Fe3N formed on the external surface of the HN sample, whereas the LN sample remained free of CL. A higher KN promoted CL formation and slightly increased the case depth in the HN sample compared to the LN sample. Fatigue cracks initiated at the external surface of the H13 steel substrate (SB). Overall, the LN and HN samples exhibited similar residual stress fields and, consequently, comparable fatigue performance. In the high-cycle fatigue regime, fatigue cracks originated from subsurface inclusions, resulting in significantly improved fatigue strength and life for both the LN and HN samples compared to the SB sample. Under cyclic stresses at or above 1100 MPa, the crack initiation site in the HN sample tended to shift from subsurface inclusions to the external surface. Throughout the fatigue tests, no multi-cracking or spalling of the CL was observed in the HN sample, regardless of the cyclic stress. Full article
(This article belongs to the Special Issue Fatigue Crack Growth in Metallic Materials (3rd Edition))
Show Figures

Figure 1

Back to TopTop