Nitrogen Enrichment Reshapes Contrasting Microbial Networks in Northern Tibetan Alpine Meadow vs. Steppe
Abstract
1. Introduction
2. Results
2.1. Changes in Soil Properties and Plant Characteristics
2.2. Soil Microbial Community Composition and Diversity
2.3. Soil Microbial Co-Occurrence Network
2.4. Environment Factors Affecting the Structure of Soil Microbial Community and Co-Occurrence Networks
3. Discussion
3.1. Soil Microbial Community Composition and Diversity and Its Determinants Under N Additions
3.2. Changes in Co-Occurrence Network Patterns and Topological Characteristics
3.3. Mechanisms Underlying Changes in Co-Occurrence Network Structure of Different Grasslands Under N Additions
4. Materials and Methods
4.1. Study Area and Experiment Design
4.2. Plant Community and Soil Sampling
4.3. Soil Properties
4.4. Soil Microbial Community and Diversity
4.5. Microbial Co-Occurrence Network
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Sardans, J.; Rivas-ubach, A.; Janssens, I.A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 2012, 18, 3–6. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; van Groenigen, K.J.; Hungate, B.; Cao, J.; Zhou, X.; Wang, R.-w. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 2018, 4, eaaq1689. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Li, W.B.; Gan, X.L.; Jiang, Y.; Cao, F.F.; Lu, X.T.; Ceulemans, T.; Zhao, C.Y. Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environ. Pollut. 2022, 309, 119720. [Google Scholar] [CrossRef]
- Clark, C.M.; Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 2008, 451, 712–715. [Google Scholar] [CrossRef]
- Yang, G.-J.; Hautier, Y.; Zhang, Z.-J.; Lü, X.-T.; Han, X.-G. Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Glob. Change Biol. 2022, 28, 2711–2720. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Baskin, C.C.; Wei, C.; Yang, J.; Zhang, Y.; Jiang, Y.; Jiang, L.; Han, X. Intra-annual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. J. Ecol. 2022, 110, 1942–1956. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, F.; Quan, Q.; Song, B.; Wang, J.; Zhou, Q.; Niu, S. Common Species Stability and Species Asynchrony Rather than Richness Determine Ecosystem Stability Under Nitrogen Enrichment. Ecosystems 2021, 24, 686–698. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, Y.; Li, F.; Yang, G.; Wang, J.; Yu, J.; Zhou, G.; Yang, Y. Changes in above-/below-ground biodiversity and plant functional composition mediate soil respiration response to nitrogen input. Funct. Ecol. 2021, 35, 1171–1182. [Google Scholar] [CrossRef]
- Lan, Z.; Bai, Y. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 3125–3134. [Google Scholar] [CrossRef]
- Chen, X.Y.; Hou, G.; Shi, P.L.; Zong, N.; Yu, J.L. Functional Groups Dominate Aboveground Net Primary Production under Long-Term Nutrient Additions in a Tibetan Alpine Meadow. Plants 2024, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, Z.; Li, A.; Geng, T.; Liu, L.; Liu, W. Long-term nitrogen input reduces soil bacterial network complexity by shifts in life history strategy in temperate grassland. iMeta 2024, 3, e194. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Coban, O.; De Deyn, G.B.; van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Dong, L.; Wang, W. Grassland degradation amplifies the negative effect of nitrogen enrichment on soil microbial community stability. Glob. Change Biol. 2024, 30, e17217. [Google Scholar] [CrossRef]
- Bever, J.D.; Broadhurst, L.M.; Thrall, P.H. Microbial phylotype composition and diversity predicts plant productivity and plant–soil feedbacks. Ecol. Lett. 2013, 16, 167–174. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.; Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L.; Yang, X.; Deng, M.; Wang, Z.; Wang, P.; Yang, S.; Li, P.; Peng, Z.; Yang, L.; et al. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Glob. Change Biol. 2021, 27, 3939–3950. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, S.; Zhang, X.; Mao, Q.; Li, X.; You, Y.; Wang, J.; Zheng, M.; Zhang, W.; Lu, X.; et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 2018, 127, 22–30. [Google Scholar] [CrossRef]
- Yuan, X.; Qin, W.; Xu, H.; Zhang, Z.; Zhou, H.; Zhu, B. Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow. Soil Biol. Biochem. 2020, 150, 107984. [Google Scholar] [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Campbell, C.D.; Chapman, S.J.; Cameron, C.M. The ecological engineering impact of a single tree species on the soil microbial community. J. Ecol. 2010, 98, 50–61. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Meier, I.C.; Finzi, A.C.; Phillips, R.P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 2017, 106, 119–128. [Google Scholar] [CrossRef]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Marschner, P.; Crowley, D.; Yang, C.H. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 2004, 261, 199–208. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Bakker, M.G.; Bradeen, J.M.; Kinkel, L.L. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 2015, 96, 134–142. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, J.; Chen, X.; Meng, Z.; Xu, R.; Duoji, D.; Zhang, J.; He, J.; Wang, Z.; Chen, J.; et al. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biol. Biochem. 2022, 172, 108766. [Google Scholar] [CrossRef]
- Gui, H.; Breed, M.; Li, Y.; Xu, Q.; Yang, J.; Wanasinghe, D.N.; Li, Y.; Xu, J.; Mortimer, P. Continental-scale insights into the soil microbial co-occurrence networks of Australia and their environmental drivers. Soil Biol. Biochem. 2023, 186, 109177. [Google Scholar] [CrossRef]
- Pržulj, N.; Malod-Dognin, N. Network analytics in the age of big data. Science 2016, 353, 123–124. [Google Scholar] [CrossRef]
- Wang, J.; Liao, L.; Ye, Z.; Liu, H.; Zhang, C.; Zhang, L.; Liu, G.; Wang, G. Different bacterial co-occurrence patterns and community assembly between rhizosphere and bulk soils under N addition in the plant–soil system. Plant Soil 2022, 471, 697–713. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, J.; Wang, B.; Fan, B.; Zhou, G. Soil microbial network complexity predicts soil multifunctionality better than soil microbial diversity during grassland-farmland-shrubland conversion on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2025, 379, 109356. [Google Scholar] [CrossRef]
- Wang, X.-B.; Lü, X.-T.; Yao, J.; Wang, Z.-W.; Deng, Y.; Cheng, W.-X.; Zhou, J.-Z.; Han, X.-G. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. 2017, 11, 1345–1358. [Google Scholar] [CrossRef]
- Liu, A.; Yin, W.; Ma, D.; Wang, X.; Kan, S. Vertical distribution patterns and potential activities of methanogenic and methanotrophic communities in permafrost peatlands of Greater Khingan Mountains. Ecol. Indic. 2025, 175, 113539. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Yu, G.-H.; Hong, W.-D.; Yuan, J.; Niu, G.-Q.; Xie, P.-H.; Sun, F.-S.; Guo, L.-D.; Kuzyakov, Y.; Shen, Q.-R. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundam. Res. 2022, 2, 697–707. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef]
- Dong, X.; Man, H.; Liu, C.; Wu, X.; Zhu, J.; Zheng, Z.; Ma, D.; Li, M.; Zang, S. Changes in soil bacterial community along a gradient of permafrost degradation in Northeast China. Catena 2023, 222, 106870. [Google Scholar] [CrossRef]
- Ricketts, M.P.; Poretsky, R.S.; Welker, J.M.; Gonzalez-Meler, M.A. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska. Soil 2016, 2, 459–474. [Google Scholar] [CrossRef]
- Luláková, P.; Perez-Mon, C.; Šantrůčková, H.; Ruethi, J.; Frey, B. High-alpine permafrost and active-layer soil microbiomes differ in their response to elevated temperatures. Front. Microbiol. 2019, 10, 668. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Yang, Y.; Zhang, Y.; Wang, J.; Zhang, M.; Wu, C.; Zou, J.; Zhou, H.; Li, J. Alpine meadow degradation regulates soil microbial diversity via decreasing plant production on the Qinghai-Tibetan Plateau. Ecol. Indic. 2024, 163, 112097. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Ao, G.; Qin, W.; Han, M.; Shen, Y.; Liu, M.; Chen, Y.; Zhu, B. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biol. Biochem. 2023, 179, 108982. [Google Scholar] [CrossRef]
- Campbell, B.J.; Polson, S.W.; Hanson, T.E.; Mack, M.C.; Schuur, E.A.G. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 2010, 12, 1842–1854. [Google Scholar] [CrossRef] [PubMed]
- Kaspari, M.; Bujan, J.; Weiser, M.; Ning, D.; Michaletz, S.; He, Z.; Enquist, B.; Waide, R.; Zhou, J.; Turner, B.; et al. Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. Ecology 2017, 98, 2019–2028. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Chao, A. Non-parametric estimation of the classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Schleuss, P.-M.; Widdig, M.; Heintz-Buschart, A.; Guhr, A.; Martin, S.; Kirkman, K.; Spohn, M. Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biol. Biochem. 2019, 135, 294–303. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef]
- Zhan, P.; Liu, Y.; Wang, H.; Wang, C.; Xia, M.; Wang, N.; Cui, W.; Xiao, D.; Wang, H. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Sci. Total Environ. 2021, 753, 142194. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Z.; Wang, Y.; Ma, P.; Niu, D.; Fu, H.; Elser, J.J. Soil bacterial communities vary with grassland degradation in the Qinghai Lake watershed. Plant Soil 2021, 460, 541–557. [Google Scholar] [CrossRef]
- Lei, S.; Wang, X.; Wang, J.; Zhang, L.; Liao, L.; Liu, G.; Wang, G.; Song, Z.; Zhang, C.; Shade, A. Effect of aridity on the β-diversity of alpine soil potential diazotrophs: Insights into community assembly and co-occurrence patterns. mSystems 2023, 9, e01042-23. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Li, J.; Li, X. The diversity and co-occurrence patterns of diazotrophs in the steppes of Inner Mongolia. Catena 2017, 157, 130–138. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Han, X.; Deng, Y. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Glob. Ecol. Biogeogr. 2018, 27, 570–580. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Kou, Y.; Yao, M.; He, Z.; Li, X. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiol. Ecol. 2020, 96, fiaa030. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cheng, L.; Che, L.; Su, Y.; Li, Y. Nutrients addition decreases soil fungal diversity and alters fungal guilds and co-occurrence networks in a semi-arid grassland in northern China. Sci. Total Environ. 2024, 926, 172100. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, H.; Dou, Y.; An, S. Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Sci. Total Environ. 2020, 708, 134560. [Google Scholar] [CrossRef]
- Zhao, Z.-B.; He, J.-Z.; Geisen, S.; Han, L.-L.; Wang, J.-T.; Shen, J.-P.; Wei, W.-X.; Fang, Y.-T.; Li, P.-P.; Zhang, L.-M. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 2019, 7, 33. [Google Scholar] [CrossRef]
- Dong, K.; Yu, Z.; Kerfahi, D.; Lee, S.-s.; Li, N.; Yang, T.; Adams, J.M. Soil microbial co-occurrence networks become less connected with soil development in a high Arctic glacier foreland succession. Sci. Total Environ. 2022, 813, 152565. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ma, W.; Wang, C.; Xu, Y. Nitrogen and phosphorus supply controls stability of soil organic carbon in alpine meadow of the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2025, 379, 109336. [Google Scholar] [CrossRef]
- Ye, C.; Chen, D.; Hall, S.J.; Pan, S.; Yan, X.; Bai, T.; Guo, H.; Zhang, Y.; Bai, Y.; Hu, S. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecol. Lett. 2018, 21, 1162–1173. [Google Scholar] [CrossRef]
- Hu, Z.; Delgado-Baquerizo, M.; Fanin, N.; Chen, X.; Zhou, Y.; Du, G.; Hu, F.; Jiang, L.; Hu, S.; Liu, M. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat. Commun. 2024, 15, 2858. [Google Scholar] [CrossRef]
- Cleland, E.E.; Harpole, W.S. Nitrogen enrichment and plant communities. Ann. N. Y. Acad. Sci. 2010, 1195, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Harpole, W.S.; Sullivan, L.L.; Lind, E.M.; Firn, J.; Adler, P.B.; Borer, E.T.; Chase, J.; Fay, P.A.; Hautier, Y.; Hillebrand, H.; et al. Addition of multiple limiting resources reduces grassland diversity. Nature 2016, 537, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.A.; Guo, Z.; Moniruzzaman, M.; He, D.; Yu, Q.; Rao, X.; Liu, S.; Tan, X.; Shen, W. Plant Taxonomic Diversity Better Explains Soil Fungal and Bacterial Diversity than Functional Diversity in Restored Forest Ecosystems. Plants 2019, 8, 479. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | Grassland Types | Treatments | ||||
---|---|---|---|---|---|---|
CK | N50 | N100 | N200 | |||
pH | AM | 5.92 ± 0.01 a | 5.45 ± 0.12 b | 5.63 ± 0.01 b | 4.93 ± 0.03 c | |
AS | 7.54 ± 0.4 a | 7.65 ± 0.0 a | 8.02 ± 0.03 a | 7.91 ± 0.07 a | ||
AP (mg·kg−1) | AM | 4.30 ± 0.4 a | 3.12 ± 0.12 a | 3.34 ± 0.4 a | 4.23 ± 0.4 a | |
AS | 2.27 ± 0.2 b | 5.93 ± 0.3 ab | 3.20 ± 0.3 b | 9.77 ± 0.3 a | ||
TP (g·kg−1) | AM | 0.45 ± 0.0 ab | 0.45 ± 0.01 ab | 0.47 ± 0.0 a | 0.43 ± 0.0 b | |
AS | 0.29 ± 0.0 b | 0.29 ± 0.0 b | 0.35 ± 0.0 a | 0.35 ± 0.0 a | ||
TN (g·kg−1) | AM | 2.74 ± 0.2 a | 2.65 ± 0.07 a | 3.27 ± 0.1 a | 2.49 ± 0.3 a | |
AS | 1.21 ± 0.0 b | 1.51 ± 0.0 a | 1.16 ± 0.1 b | 1.50 ± 0.1 a | ||
TAN (mg·kg−1) | AM | 19.81 ± 4.4 b | 24.68 ± 0.7 ab | 29.09 ± 0.4 a | 29.81 ± 2.4 a | |
AS | 9.37 ± 1.3 c | 44.18 ± 4.2 b | 44.06 ± 4.8 b | 81.36 ± 1.2 a |
Grassland Types | CK | N50 | N100 | N200 | ||
---|---|---|---|---|---|---|
Bacteria | Chao 1 | AM | 2721.90 ± 95.9 a | 2272.88 ± 182.6 ab | 2351.03 ± 322.4 ab | 1800.66 ± 87.7 b |
AS | 2567.75 ± 116.4 a | 2386.46 ± 208.8 ab | 1878.26 ± 250.0 b | 1989.5 ± 177.5 b | ||
Shannon | AM | 10.14 ± 0.1 a | 9.93 ± 0.1 ab | 9.77 ± 0.2 ab | 9.63 ± 0.1 b | |
AS | 10.09 ± 0.0 a | 9.87 ± 0.1 ab | 9.63 ± 0.1 b | 9.67 ± 0.1 b | ||
Fungi | Chao1 | AM | 2195.34 ± 119.6 a | 2007.88 ± 14.6 ab | 1760.39 ± 80.3 b | 1810.70 ± 105.4 b |
AS | 1849.24 ± 01.1 a | 1723.18 ± 19.7 a | 1780.11 ± 58.4 a | 1902.03 ± 96.1 a | ||
Shannon | AM | 8.51 ± 0.1 a | 8.65 ± 0.1 a | 8.15 ± 0.3 a | 8.45 ± 0.1 a | |
AS | 8.74 ± 0.1 a | 8.62 ± 0.0 a | 8.70 ± 0.1 a | 8.60 ± 0.2 a |
Topological Features | CK | N50 | N100 | N200 | ||
---|---|---|---|---|---|---|
AM | Bacteria | Node number | 356 | 331 | 394 | 356 |
Edge number | 2960 | 2627 | 3499 | 2667 | ||
Positive edge | 1923 | 1691 | 2645 | 1885 | ||
Negative edge | 1037 | 936 | 854 | 782 | ||
Average degree | 16.63 | 15.87 | 17.76 | 14.98 | ||
Density | 0.05 | 0.05 | 0.05 | 0.04 | ||
Modularity | 0.90 | 0.92 | 0.91 | 0.92 | ||
Fungi | Node number | 294 | 303 | 287 | 288 | |
Edge number | 3062 | 2939 | 2429 | 2112 | ||
Positive edge | 2950 | 2636 | 2184 | 1662 | ||
Negative edge | 112 | 303 | 245 | 450 | ||
Average degree | 20.83 | 19.40 | 16.93 | 14.67 | ||
Density | 0.07 | 0.06 | 0.06 | 0.05 | ||
Modularity | 0.80 | 0.86 | 0.82 | 0.90 | ||
AS | Bacteria | Node number | 431 | 421 | 412 | 394 |
Edge number | 4708 | 4259 | 4248 | 5512 | ||
Positive edge | 3289 | 3513 | 3766 | 5472 | ||
Negative edge | 1419 | 746 | 482 | 40 | ||
Average degree | 21.85 | 20.23 | 20.62 | 27.98 | ||
Density | 0.05 | 0.05 | 0.05 | 0.07 | ||
Modularity | 0.90 | 0.92 | 0.89 | 0.78 | ||
Fungi | Node number | 281 | 293 | 285 | 286 | |
Edge number | 1599 | 1844 | 1817 | 2545 | ||
Positive edge | 1184 | 1382 | 1562 | 2198 | ||
Negative edge | 415 | 462 | 255 | 347 | ||
Average degree | 11.38 | 12.59 | 12.75 | 17.80 | ||
Density | 0.04 | 0.04 | 0.04 | 0.06 | ||
Modularity | 0.94 | 0.92 | 0.92 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Shi, P.; Yu, J.; Hou, G.; Zong, N.; Hei, H. Nitrogen Enrichment Reshapes Contrasting Microbial Networks in Northern Tibetan Alpine Meadow vs. Steppe. Plants 2025, 14, 2803. https://doi.org/10.3390/plants14172803
Chen X, Shi P, Yu J, Hou G, Zong N, Hei H. Nitrogen Enrichment Reshapes Contrasting Microbial Networks in Northern Tibetan Alpine Meadow vs. Steppe. Plants. 2025; 14(17):2803. https://doi.org/10.3390/plants14172803
Chicago/Turabian StyleChen, Xueying, Peili Shi, Jialuo Yu, Ge Hou, Ning Zong, and Huixin Hei. 2025. "Nitrogen Enrichment Reshapes Contrasting Microbial Networks in Northern Tibetan Alpine Meadow vs. Steppe" Plants 14, no. 17: 2803. https://doi.org/10.3390/plants14172803
APA StyleChen, X., Shi, P., Yu, J., Hou, G., Zong, N., & Hei, H. (2025). Nitrogen Enrichment Reshapes Contrasting Microbial Networks in Northern Tibetan Alpine Meadow vs. Steppe. Plants, 14(17), 2803. https://doi.org/10.3390/plants14172803