Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = nonlinear elastic characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1356 KB  
Article
Predictive Numerical Modeling of Inelastic Buckling for Process Optimization in Cold Forging of Aluminum, Stainless Steel, and Copper
by Dan Lagat, Huzeifa Munawar, Eliakim Akhusama, Alfayo Alugongo and Hilary Rutto
Processes 2025, 13(10), 3177; https://doi.org/10.3390/pr13103177 - 7 Oct 2025
Viewed by 303
Abstract
The growing demand for precision and consistency in the forging industry has heightened the need for predictive simulation tools. While extensive research has focused on parameters such as flow stress, die wear, billet fracture, and residual stresses, the phenomenon of billet buckling, especially [...] Read more.
The growing demand for precision and consistency in the forging industry has heightened the need for predictive simulation tools. While extensive research has focused on parameters such as flow stress, die wear, billet fracture, and residual stresses, the phenomenon of billet buckling, especially during cold upset forging, remains underexplored. Most existing models address only elastic buckling for slender billets using classical approaches like Euler and Rankine-Gordon formulae, which are not suitable for inelastic deformation in shorter billets. This study presents a numerical model developed to analyze inelastic buckling during cold forging and to determine associated stresses and deflection characteristics. The model was validated through finite element simulations across a range of billet geometries (10–40 mm diameter, 120 mm length), materials (aluminum, stainless steel, and copper), and friction coefficients (µ = 0.12, 0.16, and 0.35). Stress distributions were evaluated against die stroke, with particular emphasis on the influence of strain hardening and geometry. The results showed that billet geometry and strain-hardening exponent significantly affect buckling behavior, whereas friction had a secondary effect, mainly altering overall stress levels. A nonlinear regression approach incorporating material properties, geometric parameters, and friction was used to formulate the numerical model. The developed model effectively estimated buckling stresses across various conditions but could not precisely predict buckling points based on stress differentials. This work contributes a novel framework for integrating material, geometric, and process variables into stress prediction during forging, advancing defect control strategies in industrial metal forming. Full article
Show Figures

Figure 1

23 pages, 2593 KB  
Article
A Nonlinear Visco-Elasto-Plastic Bingham Fatigue Model of Soft Rock Under Cyclic Loading
by Yonghui Li, Yi Liang, Anyuan Sun and Feng Zhu
Mathematics 2025, 13(19), 3138; https://doi.org/10.3390/math13193138 - 1 Oct 2025
Viewed by 131
Abstract
The fatigue constitutive model under cyclic loading is of vital importance for studying the fatigue deformation characteristics of soft rocks. In this paper, based on the classical Bingham model, a modified Bingham fatigue model for describing the fatigue deformation characteristics of soft rocks [...] Read more.
The fatigue constitutive model under cyclic loading is of vital importance for studying the fatigue deformation characteristics of soft rocks. In this paper, based on the classical Bingham model, a modified Bingham fatigue model for describing the fatigue deformation characteristics of soft rocks under cyclic loading was developed. Firstly, the traditional constant-viscosity component was replaced by an improved nonlinear viscoelastic component related to the number of cycles. The elastic component was replaced by an improved nonlinear elastic component that decays as the number of cycle loads increases. Meanwhile, by decomposing the cyclic dynamic loads into static loads and alternating loads, a one-dimensional nonlinear viscoelastic-plastic Bingham fatigue model was developed. Furthermore, a rock fatigue yield criterion was proposed, and by using an associated flow rule compatible with this criterion, the one-dimensional fatigue model was extended to a three-dimensional constitutive formulation under complex stress conditions. Finally, the applicability of the developed Bingham fatigue model was verified through fitting with experimental data, and the parameters of the model were identified. The model fitting results show high consistency with experimental data, with correlation coefficients exceeding 0.978 and 0.989 under low and high dynamic stress conditions, respectively, and root mean square errors (RMSEs) below 0.028. Comparative analysis between theoretical predictions and existing soft rock fatigue test data demonstrates that the developed Bingham fatigue model more effectively captures the complete fatigue deformation process under cyclic loading, including the deceleration, constant velocity, and acceleration phases. With its simplified component configuration and straightforward combination rules, this model provides a valuable reference for studying fatigue deformation characteristics of rock materials under dynamic loading conditions. Full article
Show Figures

Figure 1

23 pages, 4535 KB  
Article
Effective Elastic Moduli at Reservoir Scale: A Case Study of the Soultz-sous-Forêts Fractured Reservoir
by Dariush Javani, Jean Schmittbuhl and François H. Cornet
Geosciences 2025, 15(10), 371; https://doi.org/10.3390/geosciences15100371 - 24 Sep 2025
Viewed by 340
Abstract
The presence of discontinuities in fractured reservoirs, their mechanical and physical characteristics, and fluid flow through them are important factors influencing their effective large-scale properties. In this paper, the variation of elastic moduli in a block measuring 100 × 100 × 100 m [...] Read more.
The presence of discontinuities in fractured reservoirs, their mechanical and physical characteristics, and fluid flow through them are important factors influencing their effective large-scale properties. In this paper, the variation of elastic moduli in a block measuring 100 × 100 × 100 m3 that hosts a discrete fracture network (DFN) is evaluated using the discrete element method (DEM). Fractures are characterised by (1) constant, (2) interlocked, and (3) mismatched stiffness properties. First, three uniaxial verification tests were performed on a block (1 × 1 × 2 m3) containing a circular finite fracture (diameter = 0.5 m) to validate the developed numerical algorithm that implements the three fracture stiffnesses mentioned above. The validated algorithms were generalised to fractures in a DFN embedded in a 100 × 100 × 100 m3 rock block that reproduces in situ conditions at various depths (4.7 km, 2.3 km, and 0.5 km) of the Soultz-sous-Forêts geothermal site. The effective elastic moduli of this large-scale rock mass were then numerically evaluated through a triaxial loading scenario by comparing to the numerically evaluated stress field using the DFN, with the stress field computed using an effective homogeneous elastic block. Based on the results obtained, we evaluate the influence of fracture interaction and stress perturbation around fractures on the effective elastic moduli and subsequently on the large-scale P-wave velocity. The numerical results differ from the elastic moduli of the rock matrix at higher fracture densities, unlike the other methods. Additionally, the effect of nonlinear fracture stiffness is reduced by increasing the depth or stress level in both the numerical and semi-analytical methods. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

23 pages, 3798 KB  
Article
Production Performance Analysis and Fracture Volume Parameter Inversion of Deep Coalbed Methane Wells
by Jianshu Wu, Xuesong Xin, Lei Zou, Guangai Wu, Jie Liu, Shicheng Zhang, Heng Wen and Cong Xiao
Energies 2025, 18(18), 4897; https://doi.org/10.3390/en18184897 - 15 Sep 2025
Viewed by 315
Abstract
Deep coalbed methane development faces technical challenges, such as high in situ stress and low permeability. The dynamic evolution of fractures after hydraulic fracturing and the flowback mechanism are crucial for optimizing productivity. This paper focuses on the inversion of post-fracturing fracture volume [...] Read more.
Deep coalbed methane development faces technical challenges, such as high in situ stress and low permeability. The dynamic evolution of fractures after hydraulic fracturing and the flowback mechanism are crucial for optimizing productivity. This paper focuses on the inversion of post-fracturing fracture volume parameters and dynamic analysis of the flowback in deep coalbed methane wells, with 89 vertical wells in the eastern margin of the Ordos Basin as the research objects, conducting systematic studies. Firstly, through the analysis of the double-logarithmic curve of normalized pressure and material balance time, the quantitative inversion of the volume of propped fractures and unpropped secondary fractures was realized. Using Pearson correlation coefficients to screen characteristic parameters, four machine learning models (Ridge Regression, Decision Tree, Random Forest, and AdaBoost) were constructed for fracture volume inversion prediction. The results show that the Random Forest model performed the best, with a test set R2 of 0.86 and good generalization performance, so it was selected as the final prediction model. With the help of the SHAP model to analyze the influence of each characteristic parameter, it was found that the total fluid volume into the well, proppant intensity, minimum horizontal in situ stress, and elastic modulus were the main driving factors, all of which had threshold effects and exerted non-linear influences on fracture volume. The interaction of multiple parameters was explored by the Partial Dependence Plot (PDP) method, revealing the synergistic mechanism of geological and engineering parameters. For example, a high elastic modulus can enhance the promoting effect of fluid volume into the well and proppant intensity. There is a critical threshold of 2600 m3 in the interaction between the total fluid volume into the well and the minimum horizontal in situ stress. These findings provide a theoretical basis and technical support for optimizing fracturing operation parameters and efficient development of deep coalbed methane. Full article
Show Figures

Figure 1

25 pages, 5884 KB  
Article
Influence of Post-Curing Time and Print Orientation on the Mechanical Behavior of Photosensitive Resins in mSLA 3D Printing
by Geraldo Cesar Rosario de Oliveira, Vania Aparecida Rosario de Oliveira, Carla Carvalho Pinto, Luis Felipe Barbosa Marques, Tuane Stefania Reis dos Santos, Antonio dos Reis de Faria Neto, Carlos Alexis Alvarado Silva, Marcelo Sampaio Martins, Fernando de Azevedo Silva and Erick Siqueira Guidi
Appl. Mech. 2025, 6(3), 71; https://doi.org/10.3390/applmech6030071 - 11 Sep 2025
Viewed by 430
Abstract
This study investigates the mechanical behavior of water-washable photosensitive resins used in masked stereolithography (mSLA) 3D printing, evaluating the effect of post-curing time (0, 5, 10, 30, and 60 min) and printing orientation (Flat [XY], Vertical [Z], and On-edge [XZ]) on the material [...] Read more.
This study investigates the mechanical behavior of water-washable photosensitive resins used in masked stereolithography (mSLA) 3D printing, evaluating the effect of post-curing time (0, 5, 10, 30, and 60 min) and printing orientation (Flat [XY], Vertical [Z], and On-edge [XZ]) on the material characteristics. Specimens were manufactured according to ISO 527-2 type 1B and ISO 178 standards for tensile and bending tests, respectively. A Matlab algorithm was developed to automate the processing of experimental data. This tool enabled the extraction of parameters to fit distinct mathematical models for the elastic (linear) and nonlinear (polynomial) regimes, allowing the material response to be characterized at different curing times and print orientations. These models were implemented in Ansys Workbench for comparison with experimental results. The results show that increasing the post-curing time from 0 to 60 min raises the elastic modulus from 964.5 to 1892.4 MPa in the Flat [XY] orientation and from 774 to 1661.2 MPa in the Vertical [Z] orientation for tensile testing. In bending testing, the Flat [XY] orientation presented the best mechanical properties, while the Vertical [Z] and On-edge [XZ] orientations showed similar behavior. The numerical simulations adequately reproduced the experimental results, validating the developed constitutive models. Finally, a stress–strain correlation model is presented that enables estimation for any post-curing time between 0 and 60 min. This study provides essential data for optimizing 3D printing processes and developing structural applications with photopolymer resins. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Computational and Experimental Mechanics)
Show Figures

Figure 1

23 pages, 5034 KB  
Article
Study on Early Warning of Stiffness Degradation and Collapse of Steel Frame Under Fire
by Ming Xie, Fangbo Xu, Xiangdong Wu, Zhangdong Wang, Li’e Yin, Mengqi Xu and Xiang Li
Buildings 2025, 15(17), 3146; https://doi.org/10.3390/buildings15173146 - 2 Sep 2025
Viewed by 550
Abstract
Frequent building fires seriously threaten the safety of steel structures. According to the data, fire accidents account for about 35% of the total number of production safety accidents. The collapse of steel structures accounted for 42% of the total collapse. The early warning [...] Read more.
Frequent building fires seriously threaten the safety of steel structures. According to the data, fire accidents account for about 35% of the total number of production safety accidents. The collapse of steel structures accounted for 42% of the total collapse. The early warning problem of steel structure fire collapse is imminent. This study aims to address this challenge by establishing a novel early warning framework, which is used to quantify the critical early warning threshold of steel frames based on elastic modulus degradation and its correlation with ultrasonic wave velocity under different collapse modes. The sequential thermal–mechanical coupling numerical method is used in the study. Firstly, Pyrosim is used to simulate the high-fidelity fire to obtain the real temperature field distribution, and then it is mapped to the Abaqus finite element model as the temperature load for nonlinear static analysis. The critical point of structural instability is identified by monitoring the mutation characteristics of the displacement and the change rate of the key nodes in real time. The results show that when the steel frame collapses inward as a whole, the three-level early warning elastic modulus thresholds of the beam are 153.6 GPa, 78.6 GPa, and 57.5 GPa, respectively. The column is 168.7 GPa, 122.4 GPa, and 72.6 GPa. Then the three-level warning threshold of transverse and longitudinal wave velocity is obtained. The three-stage shear wave velocity warning thresholds of the fire column are 2828~2843 m/s, 2409~2434 m/s, and 1855~1874 m/s, and the three-stage longitudinal wave velocity warning thresholds are 5742~5799 m/s, 4892~4941 m/s, and 3804~3767 m/s. The core innovation of this study is to quantitatively determine a three-level early warning threshold system, which corresponds to the three stages of significant degradation initiation, local failure, and critical collapse. Based on the theoretical relationship, these elastic modulus thresholds are converted into corresponding ultrasonic wave velocity thresholds. The research results provide a direct and reliable scientific basis for the development of new early warning technology based on acoustic emission real-time monitoring and fill the gap between the mechanism research and engineering application of steel structure fire resistance design. Full article
Show Figures

Figure 1

30 pages, 8981 KB  
Article
Vibration Transmission Characteristics of Bistable Nonlinear Acoustic Metamaterials Based on Effective Negative Mass
by Ming Gao, Guodong Shang, Jing Guo, Lingfeng Xu and Guiju Fan
Nanomaterials 2025, 15(16), 1269; https://doi.org/10.3390/nano15161269 - 17 Aug 2025
Viewed by 594
Abstract
The growing demand for low-frequency, broadband vibration and noise suppression technologies in next-generation mechanical equipment has become increasingly urgent. Effective negative mass locally resonant structures represent one of the most paradigmatic classes of acoustic metamaterials. Their unique elastic wave bandgaps enable efficient suppression [...] Read more.
The growing demand for low-frequency, broadband vibration and noise suppression technologies in next-generation mechanical equipment has become increasingly urgent. Effective negative mass locally resonant structures represent one of the most paradigmatic classes of acoustic metamaterials. Their unique elastic wave bandgaps enable efficient suppression of low-frequency vibrations, while inherent nonlinear effects provide significant potential for the design and tunability of these bandgaps. To achieve ultra-low-frequency and ultra-broadband vibration attenuation, this study employs Duffing oscillators exhibiting negative-stiffness characteristics as structural elements, establishing a bistable nonlinear acoustic-metamaterial mechanical model. Subsequently, based on the effective negative mass local resonance theory, the perturbation solution for the dispersion curves is derived using the perturbation method. Finally, the effects of mass ratio, stiffness ratio, and nonlinear term on the starting and cutoff frequencies of the bandgap are analyzed, and key geometric parameters influencing the design of ultra-low vibration reduction bandgaps are comprehensively investigated. Subsequently, the influence of external excitation amplitude and the nonlinear term on bandgap formation is analyzed using numerical computation methods. Finally, effective positive mass, negative mass, and zero-mass phenomena within distinct frequency ranges of the bandgap and passband are examined to validate the theoretically derived results. The findings demonstrate that, compared to a positive-stiffness system, the bandgap of the bistable nonlinear acoustic metamaterial incorporating negative-stiffness Duffing oscillators shifts to higher frequencies and widens by a factor of 2. The external excitation amplitude F changes the bandgap starting frequency and cutoff frequency. As F increases, the starting frequency rises while the cutoff frequency decreases, resulting in a narrowing of the bandgap width. Within the frequency range bounded by the bandgap starting frequency and cutoff frequency, the region between the resonance frequency and cutoff frequency corresponds to an effective negative mass state, whereas the region between the bandgap starting frequency and resonance frequency exhibits an effective positive mass state. Critically, the bandgap encompasses both effective positive mass and negative mass regions, wherein vibration propagation is suppressed. Concurrently, a zero-mass state emerges within this structure, with its frequency precisely coinciding with the bandgap cutoff frequency. This study provides a theoretical foundation and practical guidelines for designing nonlinear acoustic metamaterials targeting ultra-low-frequency and ultra-broadband vibration and noise mitigation. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials (Second Edition))
Show Figures

Figure 1

20 pages, 3193 KB  
Article
Experimental Study on the Impact Compression Properties of Aluminum Honeycomb with Gradient-Thickness Cell Walls Using a Three-Factor Orthogonal Matrix Design
by Peng Sun, Xiaoqiong Zhang, Yinghou Jiao, Rongqiang Liu and Tao Wang
Materials 2025, 18(16), 3785; https://doi.org/10.3390/ma18163785 - 12 Aug 2025
Viewed by 484
Abstract
A novel honeycomb with gradient-thickness cell walls (HGTCWs) is fabricated through chemical etching to achieve progressive thickness reduction in the cell walls. This engineered honeycomb demonstrates superior energy absorption by effectively eliminating the peak load during the linear elastic stage of the load–displacement [...] Read more.
A novel honeycomb with gradient-thickness cell walls (HGTCWs) is fabricated through chemical etching to achieve progressive thickness reduction in the cell walls. This engineered honeycomb demonstrates superior energy absorption by effectively eliminating the peak load during the linear elastic stage of the load–displacement curve under impact loading, thereby preventing premature structural failure caused by excessive instantaneous loads. To systematically investigate the impact compression mechanics, energy absorption characteristics, and key influencing factors of aluminum HGTCWs, a three-factor orthogonal array of low-velocity impact experiments was designed. The design of experimental parameters for the impact test has taken into account the impact mass, impact velocity, and etching height. Comparative analysis assessed how these factors influence energy absorption performance. Results reveal that chemical etching-induced thickness gradient modification effectively suppresses peak load generation. Load–displacement curves exhibit distinct bilinear characteristics: an initial single linear phase when compression displacement is below the etching height, followed by a dual-linear phase with an inflection point at the gradient height. Time–velocity profiles during impact primarily consist of an initial nonlinear deceleration phase followed by a linear deceleration phase. Range analysis and analysis of variance identify impact velocity as the dominant factor influencing the energy absorption characteristics of HGTCWs. Full article
Show Figures

Figure 1

20 pages, 4671 KB  
Article
Creep Characteristics and Fractional-Order Constitutive Modeling of Gangue–Rock Composites: Experimental Validation and Parameter Identification
by Peng Huang, Yimei Wei, Guohui Ren, Erkan Topal, Shuxuan Ma, Bo Wu and Qihe Lan
Appl. Sci. 2025, 15(15), 8742; https://doi.org/10.3390/app15158742 - 7 Aug 2025
Viewed by 358
Abstract
With the increasing depth of coal resource extraction, the creep characteristics of gangue backfill in deep backfill mining are crucial for the long-term deformation of rock strata. Existing research predominantly focuses on the instantaneous deformation response of either the backfill alone or the [...] Read more.
With the increasing depth of coal resource extraction, the creep characteristics of gangue backfill in deep backfill mining are crucial for the long-term deformation of rock strata. Existing research predominantly focuses on the instantaneous deformation response of either the backfill alone or the strata movement, lacking systematic studies that reflect the long-term time-dependent deformation characteristics of the strata-backfill system. This study addresses gangue–roof composite specimens with varying gangue particle sizes. Utilizing physical similarity ratio theory, graded loading confined compression creep experiments were designed and conducted to investigate the effects of gangue particle size and moisture content on the creep behavior of the gangue–roof composites. A fractional-order creep constitutive model for the gangue–roof composite was established, and its parameters were identified. The results indicate the following: (1) The creep of the gangue–roof composite exhibits two-stage characteristics (initial and steady-state). Instantaneous strain decreases with increasing particle size but increases with higher moisture content. Specimens reached their maximum instantaneous strain under the fourth-level loading, with values of 0.358 at a gangue particle size of 10 mm and 0.492 at a moisture content of 4.51%. (2) The fractional-order creep model demonstrated a goodness-of-fit exceeding 0.98. The elastic modulus and fractional-order coefficient showed nonlinear growth with increasing particle size, revealing the mechanism of viscoplastic attenuation in the gangue–roof composite. The findings provide theoretical support for predicting the time-dependent deformation of roofs in deep backfill mining. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

11 pages, 2717 KB  
Article
Finite Element Dynamic Modeling of Smart Structures and Adaptive Backstepping Control
by Zhipeng Xie, Dachang Zhu, Zhenzhang Liu, Yun Long and Fangyi Li
Mathematics 2025, 13(15), 2531; https://doi.org/10.3390/math13152531 - 6 Aug 2025
Viewed by 375
Abstract
Smart structures with topological configurations that integrate perception and actuation have complex geometric features. The simplification of these features can lead to deviations in dynamic characteristics, making it difficult to establish an accurate dynamic model. Uncertainties, such as material nonlinearity, hysteresis in elastic [...] Read more.
Smart structures with topological configurations that integrate perception and actuation have complex geometric features. The simplification of these features can lead to deviations in dynamic characteristics, making it difficult to establish an accurate dynamic model. Uncertainties, such as material nonlinearity, hysteresis in elastic deformation, and external disturbances, affect the trajectory tracking accuracy of the smart structure’s actuation function. This paper proposes a modeling method that combines finite element unit bodies and orthogonal characteristic mode reduction to construct an accurate dynamic model of the smart structure and design an adaptive backstepping controller. Nonlinear dynamic equations are derived through a finite element analysis of the structure, and the orthogonal characteristic mode reduction method is employed to reduce computational complexity while ensuring model accuracy. An adaptive backstepping controller is designed to mitigate model uncertainties and achieve precise trajectory tracking control. Simulation and experimental results demonstrate that the proposed method can effectively handle the nonlinearity and modeling errors of smart structures, achieving high-precision trajectory tracking and verifying the accuracy of the dynamic model as well as the robustness of the controller. Full article
Show Figures

Figure 1

28 pages, 6413 KB  
Article
Scaling the Dynamic Buckling Behavior of a Box Girder Based on the Finite Similitude Approach
by Chongxi Xu, Zhuo Wang, Xiangshao Kong, Hu Zhou, Cheng Zheng and Weiguo Wu
J. Mar. Sci. Eng. 2025, 13(8), 1496; https://doi.org/10.3390/jmse13081496 - 4 Aug 2025
Viewed by 373
Abstract
In the design of small-scale test models for hull structures, the directional dimensional analysis method is commonly employed. However, conventional dimensional analysis based on elasticity theory may be insufficient to capture the nonlinear behaviors of structural materials under dynamic loading, which restricts its [...] Read more.
In the design of small-scale test models for hull structures, the directional dimensional analysis method is commonly employed. However, conventional dimensional analysis based on elasticity theory may be insufficient to capture the nonlinear behaviors of structural materials under dynamic loading, which restricts its applicability in ultimate strength tests for small-scale hull structure models. This paper presents a scaling method grounded in the theory of finite similitude. Based on the finite similitude theory, this paper deduces similarity scaling criteria applicable to the static and dynamic responses of box girders and designs a series of trial models of box girders. The scaling criteria are verified and analyzed through numerical tests conducted under static and dynamic loads. On the basis of the numerical test results of dynamic responses, the dynamic response similarity criteria considering the similarity relationship of material constitutive parameters are modified and verified. By applying the static response scaling criteria in this paper to select appropriate materials, the prediction deviation of the box girder trial models under static loads is less than 2%. With the modified dynamic response scaling criteria proposed in this paper, the prediction deviations of each trial model under dynamic loads are less than 2% and 7%. A comprehensive analysis of material parameters was conducted to examine their impact on the nonlinear similarities observed in the processes. To validate the ultimate strength and nonlinear response scaling criterion based on the finite similitude approach, numerical experiments were performed to assess the ultimate strength and dynamic buckling response characteristics of the box girder across various scaling ratios and material parameters. The analysis demonstrated that the ultimate strength scaling criterion and the nonlinear response scaling criterion derived from the finite similitude approach effectively captured material nonlinearity. The results from the small-scale model provided accurate predictions of the ultimate strength of the full-scale model. Full article
(This article belongs to the Special Issue Safety and Reliability of Ship and Ocean Engineering Structures)
Show Figures

Figure 1

33 pages, 15108 KB  
Article
Effect of Matric Suction on Shear Strength and Elastic Modulus of Unsaturated Soil in Reconstituted and Undisturbed Samples
by Jorge Erazo, Carlos Solórzano-Blacio, Guillermo Realpe and Jorge Albuja-Sánchez
Appl. Sci. 2025, 15(15), 8309; https://doi.org/10.3390/app15158309 - 25 Jul 2025
Viewed by 864
Abstract
Most soils in natural environments undergo wetting and drying cycles, without reaching full saturation. Therefore, it is essential to analyze their properties under unsaturated conditions. However, these analyses often require expensive equipment. This study proposes an empirical-experimental methodology to evaluate the elastic modulus [...] Read more.
Most soils in natural environments undergo wetting and drying cycles, without reaching full saturation. Therefore, it is essential to analyze their properties under unsaturated conditions. However, these analyses often require expensive equipment. This study proposes an empirical-experimental methodology to evaluate the elastic modulus and shear strength of unsaturated soils under total stress conditions using undisturbed and reconstituted samples of silty soil from Quito, Ecuador. Techniques for suction measurement, soil water characteristic curve (SWCC), and predictive models for shear strength and stiffness in partially saturated soils were reviewed. Unconfined compression tests were performed, and the SWCC was determined using the filter paper method. A three-dimensional (3D) plot was generated to correlate the matric suction, shear strength, and normal stress across varying suction levels. In the reconstituted samples, the shear strength and elastic modulus exhibited nonlinear increases in the low suction range (≤500 kPa). In the high-suction range, the strength declined beyond 2228 kPa (40.23% saturation), whereas the elastic modulus stabilized. Undisturbed samples displayed greater variability owing to their heterogeneity, macrostructure, and hysteresis. The results suggest that matric suction enhances the shear strength and stiffness of the surface layers, whereas a higher saturation at depth reduces these properties. This paper further discusses the limitations and practical applicability of the proposed methodology. Full article
(This article belongs to the Special Issue Geotechnical Engineering: Principles and Applications)
Show Figures

Figure 1

18 pages, 4365 KB  
Article
Analytical and Numerical Investigation of Adhesive-Bonded T-Shaped Steel–Concrete Composite Beams for Enhanced Interfacial Performance in Civil Engineering Structures
by Tahar Hassaine Daouadji, Fazilay Abbès, Tayeb Bensatallah and Boussad Abbès
Inventions 2025, 10(4), 61; https://doi.org/10.3390/inventions10040061 - 23 Jul 2025
Viewed by 610
Abstract
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. [...] Read more.
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. It captures the nonlinear distribution of shear stresses over the entire depth of the composite section, making it applicable to various material combinations. The approach accounts for both continuous and discontinuous bonding conditions at the bonded steel–concrete interface. The analysis focuses on the top flange of the steel section, using a T-beam configuration commonly employed in bridge construction. This configuration stabilizes slab sliding, making the composite beam rigid, strong, and resistant to deformation. The numerical results demonstrate the advantages of the proposed solution over existing steel beam models and highlight key characteristics at the steel–concrete interface. The theoretical predictions are validated through comparison with existing analytical and experimental results, as well as finite element models, confirming the model’s accuracy and offering a deeper understanding of critical design parameters. The comparison shows excellent agreement between analytical predictions and finite element simulations, with discrepancies ranging from 1.7% to 4%. This research contributes to a better understanding of the mechanical behavior at the interface and supports the design of hybrid steel–concrete structures. Full article
Show Figures

Figure 1

23 pages, 4453 KB  
Article
Nonlinear Elasticity and Damage Prediction in Automated Fiber Placement Composites via Nested Micromechanics
by Hadas Hochster, Gal Raanan, Eyal Tiosano, Yoav Harari, Golan Michaeli, Yonatan Rotbaum and Rami Haj-Ali
Materials 2025, 18(14), 3394; https://doi.org/10.3390/ma18143394 - 19 Jul 2025
Viewed by 624
Abstract
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric [...] Read more.
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress–strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

17 pages, 7633 KB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 373
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

Back to TopTop