Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = nonstandard tripping characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1055 KB  
Article
Optimal Coordination of Directional Overcurrent Relays in Microgrids Considering European and North American Curves
by León F. Serna-Montoya, Sergio D. Saldarriaga-Zuluaga, Jesús M. López-Lezama and Nicolás Muñoz-Galeano
Energies 2024, 17(23), 5887; https://doi.org/10.3390/en17235887 - 23 Nov 2024
Cited by 3 | Viewed by 1476
Abstract
Protecting AC microgrids (MGs) is a challenging task due to their dual operating modes—grid-connected and islanded—which cause sudden variations in fault currents. Traditional protection methods may no longer ensure network security. This paper presents a novel approach to protection coordination in AC MGs [...] Read more.
Protecting AC microgrids (MGs) is a challenging task due to their dual operating modes—grid-connected and islanded—which cause sudden variations in fault currents. Traditional protection methods may no longer ensure network security. This paper presents a novel approach to protection coordination in AC MGs using non-standard features of directional over-current relays (DOCRs). Three key optimization variables are considered: Time Multiplier Setting (TMS), the plug setting multiplier’s (PSM) maximum limit, and the standard characteristic curve (SCC). The proposed model is formulated as a mixed-integer nonlinear programming problem and solved using four metaheuristic techniques: the genetic algorithm (GA), Imperialist Competitive Algorithm (ICA), Harmonic Search (HS), and Firefly Algorithm (FA). Tests on a benchmark IEC MG with distributed generation and various operating modes demonstrate that this approach reduces coordination times compared to existing methods. This paper’s main contributions are threefold: (1) introducing a methodology for assessing the optimal performance of different standard curves in MG protection; (2) utilizing non-standard characteristics for optimal coordination of DOCRs; and (3) enabling the selection of curves from both North American and European standards. This approach improves trip time performance across multiple operating modes and topologies, enhancing the reliability and efficiency of MG protection systems. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

20 pages, 4902 KB  
Article
Hybrid Tripping Characteristic-Based Protection Coordination Scheme for Photovoltaic Power Systems
by Feras Alasali, Abdelaziz Salah Saidi, Naser El-Naily, Mahmoud A. Smadi and William Holderbaum
Sustainability 2023, 15(2), 1540; https://doi.org/10.3390/su15021540 - 13 Jan 2023
Cited by 8 | Viewed by 3231
Abstract
Due to the high penetration of renewable energy sources into the electrical power network, overcurrent relays coordination with highly sensitive and selective protection systems are now two of the most important power protection concerns. In this research, an optimal coordination strategy utilising a [...] Read more.
Due to the high penetration of renewable energy sources into the electrical power network, overcurrent relays coordination with highly sensitive and selective protection systems are now two of the most important power protection concerns. In this research, an optimal coordination strategy utilising a new hybrid tripping scheme based on current–voltage characteristics has been devised for overcurrent relays in a power network coupled to a photovoltaic system. This research develops and proves a new optimal coordination scheme based on two optimisation methods, the vibrating particles system and particle swarm optimisation algorithms, in consideration of the impact of renewable sources on fault characteristics. The new optimal coordination approach aims to improve the sensitivity and dependability of the protection system by reducing the tripping time of the overcurrent relays by employing a new hybrid tripping scheme. A specific case study, Conseil International des Grands Réseaux Electriques (CIGRE) distribution network connected to two photovoltaic systems is constructed and presented utilising Industrial software (namely ETAP), and the outcomes of the proposed optimal coordination scheme are compared with standard and recent characteristics from the literature. The hybrid tripping scheme and optimisation techniques are evaluated using different fault and power network model scenarios. The results show that the optimal hybrid tripping scheme provided successfully decreases the overall operating time of the overcurrent relays and increases the sensitivity of the relay during all fault scenarios. The reduction in overall time for the proposed hybrid tripping scheme was 35% compared to the literature for the scenario of a power grid with and without photovoltaic systems. Full article
(This article belongs to the Special Issue Applications and Technologies of Renewable Energy)
Show Figures

Figure 1

29 pages, 3805 KB  
Article
Innovative Optimal Nonstandard Tripping Protection Scheme for Radial and Meshed Microgrid Systems
by Salima Abeid, Yanting Hu, Feras Alasali and Naser El-Naily
Energies 2022, 15(14), 4980; https://doi.org/10.3390/en15144980 - 7 Jul 2022
Cited by 7 | Viewed by 2101
Abstract
The coordination of optimal overcurrent relays (OCRs) for modern power networks is nowadays one of the critical concerns due to the increase in the use of renewable energy sources. Modern grids connected to inverter-based distributed generations (IDGs) and synchronous distributed generations (SDGs) have [...] Read more.
The coordination of optimal overcurrent relays (OCRs) for modern power networks is nowadays one of the critical concerns due to the increase in the use of renewable energy sources. Modern grids connected to inverter-based distributed generations (IDGs) and synchronous distributed generations (SDGs) have a direct impact on fault currents and locations and then on the protection system. In this paper, a new optimal OCR coordination scheme has been developed based on the nonstandard time–current characteristics (NSTCC) approach. The proposed scheme can effectively minimize the impact of distributed generations (DGs) on OCR coordination by using two optimization techniques: genetic algorithm (GA) and hybrid gravitational search algorithm–sequential quadratic programming (GSA–SQP) algorithm. In addition, the proposed optimal OCR coordination scheme has successfully employed a new constraint reduction method for eliminating the considerable number of constraints in the coordination and tripping time formula by using only one variable dynamic coefficient. The proposed protection scheme has been applied in IEEE 9-bus and IEC MG systems as benchmark radial networks as well as IEEE 30-bus systems as meshed structures. The results of the proposed optimal OCR coordination scheme have been compared to standard and nonstandard characteristics reported in the literature. The results showed a significant improvement in terms of the protection system sensitivity and reliability by minimizing the operating time (OT) of OCRs and demonstrating the effectiveness of the proposed method throughout minimum and maximum fault modes. Full article
(This article belongs to the Special Issue Electrical Power Engineering and Renewable Energy Technologies)
Show Figures

Figure 1

Back to TopTop