Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (221)

Search Parameters:
Keywords = nuclear pore complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2733 KB  
Article
The Evolution Law of Wettability Degree After Energy Replenishment in Tight Type-II Reservoirs with Different Pore Structures
by Chunguang Li and Daiyin Yin
Processes 2025, 13(9), 2797; https://doi.org/10.3390/pr13092797 (registering DOI) - 1 Sep 2025
Abstract
Tight oil is an important resource replacement in the petroleum industry, with the reserves of Type-II energy accounting for over 40%. However, these reservoirs have small pore throats and complex structures, and their wettability directly affects the EOR by affecting the occurrence of [...] Read more.
Tight oil is an important resource replacement in the petroleum industry, with the reserves of Type-II energy accounting for over 40%. However, these reservoirs have small pore throats and complex structures, and their wettability directly affects the EOR by affecting the occurrence of crude oil and multiphase flow mechanisms. In response to an unclear understanding of the evolution mechanism of wettability after energy replenishment in tight reservoirs with different reservoir formation conditions, the evolution law of wettability in different energy replenishment media for tight type-II reservoirs is evaluated by performing wettability experiments and nuclear magnetic resonance experiments, and the mechanism of differential changes in wettability after energy replenishment in different media is elucidated. The results show that the block with well-developed pores and good connectivity (Block: Z401) had the smallest in situ wetting angle, ranging from 27.1° to 30.4°, and that the interface effect had a small impact, resulting in a small change in the wetting angle after energy replenishment. The wetting angle of the developmental intersection block (Block: G93) is the highest, ranging from 36.6° to 46.4°. The connected pore and throats fully interact with the medium at the interface, resulting in a significant change in the wetting angle. In addition, after natural gas energy supplementation, the principle of similar solubility causes a significant change in the wetting angle of the pore throat interface after adsorption, with a maximum angle of 19.6°. The change in the wetting angle change of the CO2 mixed-phase principle is in the middle, at about 13.6°, while the change in the wetting angle is minimal after N2 replenishment, around 10°. The research results improve our understanding of the basic theory of tight oil supplementary energy development and have important practical significance. Full article
(This article belongs to the Special Issue Structure Optimization and Transport Characteristics of Porous Media)
Show Figures

Figure 1

18 pages, 6449 KB  
Article
Analysis of the Microscopic Pore Structure Characteristics of Sandstone Based on Nuclear Magnetic Resonance Experiments and Nuclear Magnetic Resonance Logging Technology
by Shiqin Li, Chuanqi Tao, Haiyang Fu, Huan Miao and Jiutong Qiu
Fractal Fract. 2025, 9(8), 532; https://doi.org/10.3390/fractalfract9080532 - 14 Aug 2025
Viewed by 285
Abstract
This study focuses on the complex pore structure and pronounced heterogeneity of tight sandstone reservoirs in the Linxing area of the Ordos Basin and develops a multi-scale quantitative characterization approach to investigate the coupling mechanism between pore structure and reservoir properties. Six core [...] Read more.
This study focuses on the complex pore structure and pronounced heterogeneity of tight sandstone reservoirs in the Linxing area of the Ordos Basin and develops a multi-scale quantitative characterization approach to investigate the coupling mechanism between pore structure and reservoir properties. Six core samples were selected from the Shiqianfeng Formation (depth interval: 1326–1421 m) for detailed analysis. Cast thin sections and scanning electron microscopy (SEM) experiments were employed to characterize pore types and structural features. Nuclear magnetic resonance (NMR) experiments were conducted to obtain T2 spectra, which were used to classify bound and movable pores, and their corresponding fractal dimensions were calculated separately. In addition, NMR logging data from the corresponding well intervals were integrated to assess the applicability and consistency of the fractal characteristics at the logging scale. The results reveal that the fractal dimension of bound pores shows a positive correlation with porosity, whereas that of movable pores is negatively correlated with permeability, indicating that different scales of pore structural complexity exert distinct influences on reservoir performance. Mineral composition affects the evolution of pore structures through mechanisms such as framework support, dissolution, and pore-filling, thereby further enhancing reservoir heterogeneity. The consistency between logging responses and experimental observations verifies the regional applicability of fractal analysis. Bound pores dominate within the studied interval, and the vertical variation of the PMF/BVI ratio aligns closely with both the NMR T2 spectra and fractal results. This study demonstrates that fractal dimension is an effective descriptor of structural characteristics across different pore types and provides a theoretical foundation and methodological support for the evaluation of pore complexity and heterogeneity in tight sandstone reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

20 pages, 4663 KB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 316
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

26 pages, 21628 KB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 442
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

26 pages, 9458 KB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 409
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

26 pages, 7464 KB  
Article
Pore Structure and Multifractal Characteristics of the Upper Lianggaoshan Formation in the Northeastern Sichuan Basin, China
by Jingjing Guo, Guotao Luo, Haitao Wang and Liehui Zhang
Fractal Fract. 2025, 9(7), 430; https://doi.org/10.3390/fractalfract9070430 - 30 Jun 2025
Viewed by 350
Abstract
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of [...] Read more.
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of siltstone and shale samples from the Upper LGS Formation using low-pressure CO2 adsorption (LTCA), low-temperature N2 adsorption (LTNA), high-pressure mercury intrusion (HPMI), and nuclear magnetic resonance (NMR) methods. The single-exponent and multifractal dimensions of samples were determined, and the relationships between fractal dimensions and pore structures were explored. Results show that the pore size distribution (PSD) of siltstone and shale samples exhibits multi-peak characteristics, with mesopores (2–50 nm) being dominant in the total pore volumes. The multi-scaled pores in shale and siltstone samples exhibit fractal characteristics. The average values of single-fractal dimensions (D1, D2) obtained by LTNA data are 2.39 and 2.62 for shale samples, and 2.24 and 2.59 for siltstone samples, respectively. Compared to siltstones, the pore structures of shale samples exhibit greater complexity, indicated by larger fractal dimensions. The samples from subsections Liang 2 and Liang 3 exhibit greater heterogeneity compared to subsection Liang 1. The single-fractal dimensions of micropores and mesopores show positive correlations with specific surface area (SSA) and pore volume (PV), while the fractal dimension of macropores shows a negative correlation with average pore diameter and median radius. The average values of single-fractal dimension D3 obtained from HPMI data are 2.9644 and 2.9471 for shale and siltstone samples, respectively, indicating more complex structures of macropores in shale samples compared to siltstone samples. The average value of ΔDNMR and singularity strength range Δα obtained by a multifractal model for core samples from subsection Liang 1 are 1.868 and 2.155, respectively, which are the smallest among all of the three subsections, indicating that the heterogeneity of pore structures of subsection Liang 1 is the weakest. This research provides valuable guidance for shale oil development in the northeastern Sichuan Basin, China. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

25 pages, 4737 KB  
Article
Fractal Analysis of Pore–Throat Structures in Triassic Yanchang Formation Tight Sandstones, Ordos Basin, China: Implications for Reservoir Permeability and Fluid Mobility
by Pan Li
Fractal Fract. 2025, 9(7), 415; https://doi.org/10.3390/fractalfract9070415 - 26 Jun 2025
Viewed by 493
Abstract
Microscopic pore–throat structures, known for their complexity and heterogeneity, significantly influence the characteristics of tight sandstone reservoirs. Despite the advances in geological research, studies leveraging fractal theory to elucidate differences across pore scales are limited, and conventional testing methods often fail to effectively [...] Read more.
Microscopic pore–throat structures, known for their complexity and heterogeneity, significantly influence the characteristics of tight sandstone reservoirs. Despite the advances in geological research, studies leveraging fractal theory to elucidate differences across pore scales are limited, and conventional testing methods often fail to effectively characterize these complex structures. This gap poses substantial challenges for the exploration and evaluation of tight oil reservoirs, highlighting the need for refined analytical approaches. This study addresses these challenges by applying fractal analysis to the pore–throat structures of the Triassic Yanchang Formation tight sandstones in the Wuqi Area of the Ordos Basin. Employing a combination of experimental techniques—including pore-casted thin sections, scanning electron microscopy, high-pressure mercury intrusion, constant-rate mercury intrusion, and nuclear magnetic resonance (NMR)—this study analyzes the fractal dimensions of pore–throats. Findings reveal that tight sandstone reservoirs are predominantly composed of micron-scale pore–throats, displaying complex configurations and pronounced heterogeneity. Fractal curves feature distinct inflection points, effectively categorizing the pore–throats into large and small scales based on their mercury intrusion pressures. By linearly fitting slopes of fractal curves, we calculate variable fractal dimensions across these scales. Notably, NMR-derived fractal dimensions exhibit a two-segment distribution; smaller-scale pore–throats show less heterogeneity and spatial deformation, resulting in lower fractal dimensions, while larger-scale pore–throats, associated with extensive storage capacity and significant deformation, display higher fractal dimensions. Full article
Show Figures

Figure 1

36 pages, 23546 KB  
Article
Tight Sandstone Gas Reservoir Types and Formation Mechanisms in the Second Member of the Xujiahe Formation in the Anyue Area, Sichuan Basin
by Lin Jiang, Xuezhen Sun, Dongxia Chen, Wenzhi Lei, Hanxuan Yang, Yani Deng, Zhenhua Wang, Chenghai Li, Tian Liu, Chao Geng, Tian Gao and Zhipeng Ou
Energies 2025, 18(12), 3009; https://doi.org/10.3390/en18123009 - 6 Jun 2025
Viewed by 586
Abstract
With the advancement of oil and gas exploration and development, tight sandstone gas has become a major current exploration field. However, the effective development of tight sandstone gas faces significant challenges due to the strong heterogeneity of tight sandstone reservoirs, diverse reservoir types, [...] Read more.
With the advancement of oil and gas exploration and development, tight sandstone gas has become a major current exploration field. However, the effective development of tight sandstone gas faces significant challenges due to the strong heterogeneity of tight sandstone reservoirs, diverse reservoir types, complex pore structures, and unclear understanding of reservoir formation mechanisms, which brings great difficulties. Clarifying the types and formation mechanisms of tight sandstone reservoirs is vital for guiding oil and gas exploration and development. This study investigates the characteristics, types, and formation mechanisms of tight sandstone gas reservoirs in the Xujiahe Formation (T3X2) of the Anyue area using core observation, cast thin-section identification, scanning electron microscopy, high pressure mercury intrusion, nuclear magnetic resonance, and other experimental methods. It defines the physical property lower limit of T3X2 reservoirs in Anyue, classifies reservoir types, elaborates on the basic characteristics of each type, and analyzes their genetic mechanisms. The results show that T3X2 reservoirs in the Anyue area can be divided into four types. Sedimentary, diagenetic, and tectonic processes are identified as the primary factors controlling reservoir quality, governing the formation mechanisms of different reservoir types. Based on these findings, a reservoir formation mechanism model for T3X2 reservoirs in the Anyue area is established, providing an important basis for subsequent oil and gas exploration and development in the region. Full article
Show Figures

Figure 1

23 pages, 5181 KB  
Article
Fractal Characterization and NMR Analysis of Curing-Dependent Pore Structures in Cemented Tailings Waste RockBackfill
by Jianhui Qiu, Xin Xiong and Keping Zhou
Fractal Fract. 2025, 9(6), 367; https://doi.org/10.3390/fractalfract9060367 - 4 Jun 2025
Cited by 1 | Viewed by 618
Abstract
This study investigates the coupled effects of waste rock-to-tailings ratio (WTR) and curing temperature on the pore structure and mechanical performance of cemented tailings waste rock backfill (CTRB). Four WTRs (6:4, 7:3, 8:2, 9:1) and curing temperatures (20–50 °C) were tested. Low-field nuclear [...] Read more.
This study investigates the coupled effects of waste rock-to-tailings ratio (WTR) and curing temperature on the pore structure and mechanical performance of cemented tailings waste rock backfill (CTRB). Four WTRs (6:4, 7:3, 8:2, 9:1) and curing temperatures (20–50 °C) were tested. Low-field nuclear magnetic resonance (NMR) was used to characterize pore size distributions and derive fractal dimensions (Da, Db, Dc) at micropore, mesopore, and macropore scales. Uniaxial compressive strength (UCS) and elastic modulus (E) were also measured. The results reveal that (1) the micropore structure complexity was found to be a key indicator of structural refinement, while excessive temperature led to pore coarsening and strength reduction. Da = 2.01 reaches its peak at WTR = 7:3 and curing temperature = 40 °C; (2) at this condition, the UCS and E achieved 20.5 MPa and 1260 MPa, increasing by 45% and 38% over the baseline (WTR = 6:4, 20 °C); (3) when the temperature exceeded 40 °C, Da dropped significantly (e.g., to 1.51 at 50 °C for WTR = 7:3), indicating thermal over-curing and micropore coarsening; (4) correlation analysis showed strong negative relationships between total pore volume and mechanical strength (R = −0.87 for δavs.UCS), and a positive correlation between Da and UCS (R = 0.43). (5) multivariate regression models incorporating pore volume fractions, T2 relaxation times, and fractal dimensions predicted UCS and E with R2 > 0.98; (6) the hierarchical sensitivity of fractal dimensions follows the order micro-, meso-, macropores. This study provides new insights into the microstructure–mechanical performance relationship in CTRB and offers a theoretical and practical basis for the design of high-performance backfill materials in deep mining environments. Full article
Show Figures

Figure 1

17 pages, 8752 KB  
Article
Normalization of Relative-Permeability Curves of Cores in High-Water-Content Tight Sandstone Gas Reservoir
by Bo Hu, Jingang Fu, Wenxin Yan, Kui Chen and Jingchen Ding
Energies 2025, 18(9), 2335; https://doi.org/10.3390/en18092335 - 3 May 2025
Viewed by 635
Abstract
The gas–water relative-permeability relationship in tight gas is complex due to interactions between the gas and water phases within the porous media in the reservoir. To clarify the fluid occurrence and the gas–water relative-permeability behavior in such reservoirs, the Dongsheng tight water-bearing reservoir [...] Read more.
The gas–water relative-permeability relationship in tight gas is complex due to interactions between the gas and water phases within the porous media in the reservoir. To clarify the fluid occurrence and the gas–water relative-permeability behavior in such reservoirs, the Dongsheng tight water-bearing reservoir from the Ordos Basin of China is taken as the research object. A non-steady state method is employed to explore the co-permeability of gas and water phases under dynamic conditions. The irreducible water saturation of different core samples is analyzed using nuclear magnetic resonance (NMR) centrifugation. The Simplified Stone equation is applied for phase permeability normalization. The results indicate that with the decrease in core permeability, the irreducible water saturation increases, and the gas and water permeability decreases. When the displacement pressure difference increases, the gas phase permeability decreases, and the water phase permeability increases. The centrifugal method is effective in reducing the saturation of bound water in rock cores. The displacement method forms channels using gas, which effectively removes free water, particularly in larger or smaller pores. In contrast, centrifugation further displaces water from smaller or capillary pores, where flow is more restricted. Based on these experimental findings, a relationship between displacement pressure difference, critical irreducible water saturation, and residual gas saturation is established. The Stone equation is further refined, and a phase permeability normalization curve is proposed, accounting for the true irreducible water saturation of rock. This provides a more accurate theoretical framework for understanding and managing the gas–water interaction in tight gas reservoirs with a high water content, ultimately aiding in the optimization of reservoir development strategies. Full article
Show Figures

Figure 1

21 pages, 7083 KB  
Article
Pore Structure Evolution Characteristics and Damage Mechanism of Sandstone Subjected to Freeze–Thaw Cycle Treatment: Insights from Low-Field Nuclear Magnetic Resonance Testing and Fractal Theory
by Xin Xiong, Feng Gao, Jielin Li, Keping Zhou and Chengye Yang
Fractal Fract. 2025, 9(5), 293; https://doi.org/10.3390/fractalfract9050293 - 1 May 2025
Cited by 1 | Viewed by 613
Abstract
To investigate the pore structure evolution characteristics and damage mechanism of sandstone subjected to treatment with freeze–thaw cycles, quantitative analyses were conducted on the longitudinal wave velocity (LWV) and T2 spectrum of sandstone before and after 10, 20, 30, and 40 freeze–thaw [...] Read more.
To investigate the pore structure evolution characteristics and damage mechanism of sandstone subjected to treatment with freeze–thaw cycles, quantitative analyses were conducted on the longitudinal wave velocity (LWV) and T2 spectrum of sandstone before and after 10, 20, 30, and 40 freeze–thaw cycles, using longitudinal wave velocity testing, low-field nuclear magnetic resonance (NMR) testing, and fractal theory. The results show that, with the increase in the number of freeze–thaw cycles, the LWV of sandstone gradually decreases, the amplitude of the saturated T2 spectrum gradually increases, the amplitude of the centrifugal T2 spectrum gradually decreases, the total porosity and effective porosity increase, and the residual porosity decreases. After undergoing freeze–thaw cycles, sandstone exhibits obvious fractal characteristics in both the total porosity NMR fractal dimension and the effective porosity NMR fractal dimension, and the growth rates of both decrease exponentially with the increase in the number of freeze–thaw cycles. The magnitude of the fractal dimensions reflects the complexity of the pore structure, with smaller fractal dimensions indicating better pore connectivity. In summary, the damage evolution mechanism of sandstone under freeze–thaw cycles is characterized by the gradual expansion and interconnection of internal closed micro-pores (cracks), along with increased total porosity and effective porosity, leading to enhanced freeze–thaw damage. Full article
Show Figures

Figure 1

27 pages, 8263 KB  
Article
Intelligent Design of Pavement Concrete Based on RSM-NSGA-III-CRITIC-VIKOR
by Yuren Huo, Zhaoguang Li and Yan Wang
Appl. Sci. 2025, 15(9), 5030; https://doi.org/10.3390/app15095030 - 30 Apr 2025
Viewed by 456
Abstract
Climate-change-induced extreme environments exacerbate pavement degradation in arid regions, where traditional concrete incurs 23~40% higher life-cycle costs due to premature cracking. Particularly in the Gobi Desert, concrete pavements suffer from conflicting performance requirements—high flexural-to-compressive strength ratio (Rf/Rc), low shrinkage, [...] Read more.
Climate-change-induced extreme environments exacerbate pavement degradation in arid regions, where traditional concrete incurs 23~40% higher life-cycle costs due to premature cracking. Particularly in the Gobi Desert, concrete pavements suffer from conflicting performance requirements—high flexural-to-compressive strength ratio (Rf/Rc), low shrinkage, and controlled porosity—with traditional design methods failing to address multi-objective trade-offs. Existing optimization methods have proven insufficient for such complex environments, with conventional approaches addressing only individual parameters or employing subjective weighting techniques that fail to capture the interrelated nature of critical performance indicators. This study develops an integrated optimization framework combining Response Surface Methodology (RSM), Non-dominated Sorting Genetic Algorithm III (NSGA-III), Criteria Importance Through Intercriteria Correlation (CRITIC) weighting, and VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) decision-making to optimize the mix proportions water–cement ratio (W/C), sand ratio, and an air-entraining agent (AEA) for sustainable pavement concrete. Response Surface Methodology (RSM) analysis via Box–Behnken design revealed distinct parameter dominance: AEA exhibited the strongest non-linear effects on Rf/Rc and porosity, while W/C primarily governed shrinkage. NSGA-III generated 73 Pareto-optimal solutions, with CRITIC selecting an optimal mix (W/C = 0.35), sand ratio = 36%, AEA = 0.200%) validated experimentally (Rf/Rc = 0.141), shrinkage = 0.0446%, porosity = 2.82%. Microstructural characterization using scanning electron microscopy and low-field nuclear magnetic resonance (SEM/LF-NMR) demonstrated refined pore distribution and enhanced compactness. This framework effectively resolves trade-offs between performance indicators, providing a scientifically robust method for designing durable pavement concrete that reduces shrinkage by 13.0% and porosity by 13.5% compared to conventional mixes, lowering maintenance costs in arid regions. Full article
(This article belongs to the Special Issue Structural Mechanics in Materials and Construction)
Show Figures

Figure 1

21 pages, 4797 KB  
Article
Multifractal Characterization of Pore Heterogeneity and Water Distribution in Medium- and High-Rank Coals via Nuclear Magnetic Resonance
by Huan Liu, Shasha Zhang, Yu Qiao, Danfeng Xie and Long Chang
Fractal Fract. 2025, 9(5), 290; https://doi.org/10.3390/fractalfract9050290 - 28 Apr 2025
Cited by 1 | Viewed by 430
Abstract
Comprehensive assessment of pore structure and multiphase water distribution is critical to the flow and transport process in coalbed methane (CBM) reservoirs. In this study, nuclear magnetic resonance (NMR) and multifractal analysis were integrated to quantify the multiscale heterogeneity of nine medium- and [...] Read more.
Comprehensive assessment of pore structure and multiphase water distribution is critical to the flow and transport process in coalbed methane (CBM) reservoirs. In this study, nuclear magnetic resonance (NMR) and multifractal analysis were integrated to quantify the multiscale heterogeneity of nine medium- and high-rank coals under water-saturated and dry conditions. By applying the box-counting method to transverse relaxation time (T2) spectra, multifractal parameters were derived to characterize pore heterogeneity and residual water distribution. The influencing factors of pore heterogeneity were also discussed. The results show that pore structures in high-rank coals (HCs) exhibit a broader multifractal spectrum and stronger rightward spectrum than those of medium-rank coals, reflecting micropore-dominated heterogeneity and the complexity induced by aromatization in HCs. The vitrinite content enhances micropore development, increasing the heterogeneity and complexity of pore structure and residual water distribution. Inertinite content shows opposite trends compared to vitrinite content for the effect on pore structure and water distribution. Volatile yield reflects coal metamorphism and thermal maturity, which inversely correlates with pore heterogeneity and complexity. Residual water mainly distributes to adsorption pores and pore throats, shortening T2 relaxation (bound water effect) and reducing spectral asymmetry. The equivalence of the multifractal dimension and singularity spectrum validates their joint utility in characterizing pore structure. Minerals enhance pore connectivity but suppress complexity, while moisture and ash contents show negligible impacts. These findings provide a theoretical reference for CBM exploration, especially in optimizing fluid transportation and CBM production strategies and identifying CBM sweet spots. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

17 pages, 5850 KB  
Article
Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China
by Yifan Zhang, Shaochun Yang, Yong Wang, Shilong Ma and Dongmou Huang
Processes 2025, 13(5), 1346; https://doi.org/10.3390/pr13051346 - 28 Apr 2025
Viewed by 436
Abstract
The low-permeability gravity-flow sandstone reservoirs in the Dongying Depression, China, contain substantial oil reserves, yet their development is constrained by complex pore structures. In this study, optical and scanning electron microscopy (SEM) observations were integrated with nuclear magnetic resonance (NMR) measurements to investigate [...] Read more.
The low-permeability gravity-flow sandstone reservoirs in the Dongying Depression, China, contain substantial oil reserves, yet their development is constrained by complex pore structures. In this study, optical and scanning electron microscopy (SEM) observations were integrated with nuclear magnetic resonance (NMR) measurements to investigate the pore system, pore size distribution, and connectivity of Es3z sandstone. By applying a Gaussian multi-peak fitting algorithm to the NMR T2 spectra, parameters that directly capture the physical attributes of the rocks were extracted. Based on the correlation between these parameters and permeability, three distinct pore structure types (A, B, and C) were identified. The results demonstrate the effectiveness of using these NMR T2 spectral parameters for quantitative pore structure characterization and classification, providing a robust framework for evaluating and predicting the quality of low-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 9589 KB  
Review
The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives
by Peachanika Pankammoon, Marvin Bryan Segundo Salinas, Chatchote Thitaram and Anucha Sathanawongs
Int. J. Mol. Sci. 2025, 26(7), 3310; https://doi.org/10.3390/ijms26073310 - 2 Apr 2025
Viewed by 2836
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome [...] Read more.
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation. Full article
Show Figures

Figure 1

Back to TopTop