Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = nuclear quantum effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1561 KB  
Article
The Unhappy Effects of the Antidepressant Fluoxetine on the Freshwater Microalga Raphidocelis subcapitata
by Manuela D. Machado and Eduardo V. Soares
Toxics 2025, 13(10), 876; https://doi.org/10.3390/toxics13100876 - 14 Oct 2025
Viewed by 311
Abstract
Pharmaceuticals can be found in the aquatic environment and cause unwanted effects on organisms. The present work aimed to characterize the toxic mode of action of the antidepressant fluoxetine (FLX) on the freshwater microalga Raphidocelis subcapitata. With this aim, the microalga was [...] Read more.
Pharmaceuticals can be found in the aquatic environment and cause unwanted effects on organisms. The present work aimed to characterize the toxic mode of action of the antidepressant fluoxetine (FLX) on the freshwater microalga Raphidocelis subcapitata. With this aim, the microalga was exposed to low levels (µg/L) of FLX for 72 h. Exposure to 20–30 µg/L FLX arrested algal growth, which can be explained by the blockage of algal nuclear division. In addition, FLX (15–30 µg/L) deeply altered the alga’s metabolism, which was reflected by an increase in esterase activity, mitochondrial dysfunction (hyperpolarization of inner mitochondrial membrane), and reduction in the content of photosynthetic pigments: chlorophyll a (chla) and carotenoids (car). A sharp decline in photosynthetic performance, revealed by the reduction in maximum photochemical quantum yield (Fv/Fm), effective photochemical quantum yield (ΦPSII), and photosynthetic electron transport rate (ETR) of photosystem II (PSII), was also observed. FLX, at 30 µg/L, induced the intracellular accumulation of reactive oxygen species (ROS) and lipid peroxidation, with a marginal loss (1%) of cell membrane integrity. The results presented here contribute to the elucidation of the toxic mode of action of FLX on the microalgae R. subcapitata and, simultaneously, warn of the negative impact of the presence of pharmaceutical compounds in freshwater aquatic environments. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

15 pages, 2035 KB  
Article
Real-Time Technique for Semiconductor Material Parameter Measurement Under Continuous Neutron Irradiation with High Integral Fluence
by Ivan S. Vasil’evskii, Aleksey N. Klochkov, Pavel V. Nekrasov, Aleksander N. Vinichenko, Nikolay I. Kargin, Almas Yskakov, Maksim V. Bulavin, Aleksey V. Galushko, Askhat Bekbayev, Bagdaulet Mukhametuly, Elmira Myrzabekova, Nurdaulet Shegebayev, Dana Kulikbayeva, Rassim Nurulin, Aru Nurkasova and Ruslan Baitugulov
Electronics 2025, 14(19), 3802; https://doi.org/10.3390/electronics14193802 - 25 Sep 2025
Viewed by 398
Abstract
The degradation of the electronic properties of semiconductor materials and electronic devices under neutron irradiation is a critical issue for the development of electronic systems intended for use in nuclear and thermonuclear energy facilities. This study presents a methodology for real-time measurement of [...] Read more.
The degradation of the electronic properties of semiconductor materials and electronic devices under neutron irradiation is a critical issue for the development of electronic systems intended for use in nuclear and thermonuclear energy facilities. This study presents a methodology for real-time measurement of the electrical parameters of semiconductor structures during neutron irradiation in a high-flux reactor environment. A specially designed irradiation fixture with an electrical measurement system was developed and implemented at the WWR-K research reactor. The system enables simultaneous measurement of electrical conductivity and the Hall effect, with automatic temperature control and remote data acquisition. The sealed fixture, equipped with radiation-resistant wiring and a temperature control, allows for continuous measurement of remote material properties at neutron fluences exceeding 1018 cm−2, eliminating the limitations associated with post-irradiation handling of radioactive samples. The technique was successfully applied to the two different InGaAs-based heterostructures, revealing distinct mechanisms of radiation-induced modification: degradation of mobility and carrier concentration in the InGaAs quantum well structure on GaAs substrate, and transmutation-induced doping effects in the heterostructure on InP substrate. The developed methodology provides a reliable platform for evaluating radiation resistance and optimizing materials for magnetic sensors and electronic components designed for high-radiation environments. Full article
(This article belongs to the Special Issue Radiation Effects on Advanced Electronic Devices and Circuits)
Show Figures

Graphical abstract

16 pages, 1482 KB  
Article
Room Temperature Synthesis of a Novel Quinolinoxazine, Polymerization and Flammability Studies
by Maria Laura Salum, Daniela Iguchi, Carlos Rodriguez Arza, Nora Pellegri, Hatsuo Ishida and Pablo Froimowicz
Polymers 2025, 17(18), 2546; https://doi.org/10.3390/polym17182546 - 20 Sep 2025
Viewed by 328
Abstract
A novel quinoline-containing benzoxazine resin, 8HQ-fa, has been successfully synthesized at room temperature using sustainable raw materials, such as 8-hydroxyquinoline and furfurylamine as the phenol and amine source, respectively. The chemical structure of the hereinafter referred to as quinolinoxazine is fully characterized [...] Read more.
A novel quinoline-containing benzoxazine resin, 8HQ-fa, has been successfully synthesized at room temperature using sustainable raw materials, such as 8-hydroxyquinoline and furfurylamine as the phenol and amine source, respectively. The chemical structure of the hereinafter referred to as quinolinoxazine is fully characterized by Fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance spectroscopy (NMR), as well as by 2D 1H–1H nuclear Overhauser effect spectroscopy (NOESY) and 1H–13C heteronuclear multiple quantum correlation (HMQC) NMR. Thermal properties and polymerization behavior of the monomer are studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The resulting polymer is also characterized in terms of its thermal and fire-related properties by DSC, TGA, and microscale combustion calorimetry (MCC). The resulting thermoset, poly(8HQ-fa), presents good thermal stability as evidenced by its Tg (201 °C), Td5 and Td10 (307 and 351 °C, respectively), and char yield (42%), and low flammability as determined by the LOI, heat release capacity, and total heat released values (34.3, 143 J/gK, and 10.8 kJ/g, respectively), making it a self-extinguishing thermoset. The combination of properties and advantages in the synthesis of 8HQ-fa, accompanied by a low polymerization temperature, suggests its great potential in the field of high-performance polymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

31 pages, 1319 KB  
Review
Fluorescent Probes for Monitoring Toxic Elements from the Nuclear Industry: A Review
by Clovis Poulin-Ponnelle, Denis Boudreau and Dominic Larivière
Sensors 2025, 25(18), 5835; https://doi.org/10.3390/s25185835 - 18 Sep 2025
Viewed by 696
Abstract
With nuclear power playing an increasing role in efforts to reduce carbon emissions, the development of effective and sensitive monitoring tools for (radio)toxic elements in the environment has become essential. This review highlights recent advances in fluorescent probes developed for the detection of [...] Read more.
With nuclear power playing an increasing role in efforts to reduce carbon emissions, the development of effective and sensitive monitoring tools for (radio)toxic elements in the environment has become essential. This review highlights recent advances in fluorescent probes developed for the detection of key elements associated with the nuclear industry, including uranium, cesium, strontium, technetium, zirconium, and beryllium. Various sensor platforms, ranging from organic ligands and DNAzymes to metal–organic frameworks and quantum dots, offer promising features, such as high sensitivity, selectivity, and suitability for environmental matrices. Several recent designs now achieve detection limits in the nanomolar to picomolar range, revealing new perspectives for environmental and biological applications. Full article
Show Figures

Figure 1

11 pages, 351 KB  
Article
Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems
by Gregory S. Adkins and Ulrich D. Jentschura
Atoms 2025, 13(9), 81; https://doi.org/10.3390/atoms13090081 - 11 Sep 2025
Viewed by 456
Abstract
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. [...] Read more.
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. Recently, high-angular-momentum Rydberg states of exotic atomic systems with hadronic constituents have been identified as promising candidates in the search for new physics in the low-energy sector of the Standard Model. We thus derive a generalized Deser–Trueman formula for the induced energy shift for a general hydrogenic bound state with principal quantum number n and orbital angular momentum quantum number , and we find that the energy shift is given by the formula δE=2αn,β(ah/a0)2+1Eh/n3, where αn,0=1, αn,=s=1(s2n2), β=(2+1)/[(2+1)!!]2, Eh is the Hartree energy, ah is the hadronic radius and a0 is the generalized Bohr radius. The square of the double factorial, [(2+1)!!]2, in the denominator implies a drastic suppression of the effect for higher angular momenta. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

36 pages, 6171 KB  
Review
Atomistic Modeling of Microstructural Defect Evolution in Alloys Under Irradiation: A Comprehensive Review
by Yue Fan
Appl. Sci. 2025, 15(16), 9110; https://doi.org/10.3390/app15169110 - 19 Aug 2025
Cited by 1 | Viewed by 1192
Abstract
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates [...] Read more.
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates recent advancements in atomistic modeling, emphasizing its transformative potential to decipher fundamental mechanisms driving microstructural evolution in irradiated alloys. Atomistic simulations, such as molecular dynamics (MD), have successfully unveiled initial defect formation processes at picosecond scales. However, the inherent temporal limitations of conventional MD necessitate advanced methodologies capable of exploring slower, thermally activated defect kinetics. We specifically traced the development of powerful potential energy landscape (PEL) exploration algorithms, which enable the simulation of high-barrier, rare events of defect evolution processes that govern long-term material degradation. The review systematically examines point defect behaviors in various crystal structures—BCC, FCC, and HCP metals—and elucidates their characteristic defect dynamics, respectively. Additionally, it highlights the pronounced effects of chemical complexity in concentrated solid-solution alloys and high-entropy alloys, notably their sluggish diffusion and enhanced defect recombination, underpinning their superior radiation tolerance. Further, the interaction of extended defects with mechanical stresses and their mechanistic implications for material properties are discussed, highlighting the critical interplay between thermal activation and strain rate in defect evolution. Special attention is dedicated to the diverse mechanisms of dislocation–obstacle interactions, as well as the behaviors of metastable grain boundaries under far-from-equilibrium environments. The integration of data-driven methods and machine learning with atomistic modeling is also explored, showcasing their roles in developing quantum-accurate potentials, automating defect analysis, and enabling efficient surrogate models for predictive design. This comprehensive review also outlines future research directions and fundamental questions, paving the way toward autonomous materials’ discovery in extreme environments. Full article
Show Figures

Figure 1

10 pages, 395 KB  
Article
Effect of the Coulomb Interaction on Nuclear Deformation and Drip Lines
by Kenta Hagihara, Takashi Nakatsukasa and Nobuo Hinohara
Particles 2025, 8(3), 72; https://doi.org/10.3390/particles8030072 - 24 Jul 2025
Viewed by 786
Abstract
Nuclei are self-bound systems in which the strong interaction (nuclear force) plays a dominant role, and the isospin is approximately a good quantum number. The isospin symmetry is primarily violated by electromagnetic interactions, namely Coulomb interactions among protons, the effects of which need [...] Read more.
Nuclei are self-bound systems in which the strong interaction (nuclear force) plays a dominant role, and the isospin is approximately a good quantum number. The isospin symmetry is primarily violated by electromagnetic interactions, namely Coulomb interactions among protons, the effects of which need be studied to understand the importance of the isospin symmetry. We investigate the effect of the Coulomb interaction on nuclear properties, especially quadrupole deformation and neutron drip line, utilizing the density functional method, which provides a universal description of nuclear systems in the entire nuclear chart. We carry out calculations of even–even nuclei with a proton number of 2Z60. The results show that the Coulomb interaction plays a significant role in enhancing quadrupole deformation across a wide range of nuclei. We also find that, after including the Coulomb interaction, some nuclei near the neutron drip line become stable against two-neutron emissions, resulting in a shift in the drip line towards larger neutron numbers. Full article
(This article belongs to the Section Nuclear and Hadronic Theory)
Show Figures

Figure 1

15 pages, 3754 KB  
Article
Green Regenerative Bamboo Lignin-Based Epoxy Resin: Preparation, Curing Behavior, and Performance Characterization
by Jiayao Yang, Jie Fei and Xingxing Wang
Sustainability 2025, 17(13), 6201; https://doi.org/10.3390/su17136201 - 6 Jul 2025
Viewed by 883
Abstract
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used [...] Read more.
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used as an alternative to fossil fuels. This study effectively resolved this challenge by utilizing a sustainable one-step epoxidation process to transform lignin into a bio-based epoxy resin. The results verified the successful synthesis of epoxidized bamboo lignin through systematic characterization employing Fourier transform infrared spectroscopy, hydrogen spectroscopy/two-dimensional heteronuclear single-quantum coherent nuclear magnetic resonance, quantitative phosphorus spectroscopy, and gel permeation chromatography. Lignin-based epoxy resins had an epoxy equivalent value of 350–400 g/mol and a weight-average molecular weight of 4853 g/mol. Studies on the curing kinetics revealed that polyetheramine (PEA-230) demonstrated the lowest apparent activation energy (46.2 kJ/mol), signifying its enhanced curing efficiency and potential for energy conservation. Mechanical testing indicated that the PEA-230 cured network demonstrated the maximum tensile strength (>25 MPa), whereas high-molecular-weight polyetheramine (PEA-2000) imparted enhanced elongation to the material. Lignin-based epoxy resins demonstrated superior heat stability. This study demonstrates the conversion of bamboo lignin into bio-based epoxy resins using a simple, environmentally friendly synthesis process, demonstrating the potential to reduce fossil resource use, efficiently use waste, develop sustainable thermosetting materials, and promote a circular bioeconomy. Full article
Show Figures

Figure 1

12 pages, 532 KB  
Article
g-Factor Isotopic Shifts: Theoretical Limits on New Physics Search
by Dmitry S. Akulov, Rinat R. Abdullin, Dmitry V. Chubukov, Dmitry A. Glazov and Andrey V. Volotka
Atoms 2025, 13(6), 52; https://doi.org/10.3390/atoms13060052 - 13 Jun 2025
Cited by 1 | Viewed by 1047
Abstract
The isotopic shift of the bound-electron g factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method [...] Read more.
The isotopic shift of the bound-electron g factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method within the Higgs portal framework, focusing on the uncertainties introduced by quantum electrodynamics corrections, including finite nuclear size, nuclear recoil, and nuclear polarization effects. All calculations are performed for the ground-state 1s configuration of hydrogen-like HCI, where theoretical predictions are most accurate. Using selected isotope pairs (e.g., He4/6, Ne20/22, Ca40/48, Sn120/132, Th230/232), we demonstrate that the dominant source of uncertainty arises from finite nuclear size corrections, which currently limit the precision of new physics searches. Our results indicate that the sensitivity of this method decreases with increasing atomic number. These findings highlight the necessity of improved nuclear radius measurements and the development of alternative approaches, such as the special differences method, to enable virtually the detection of fifth-force interactions. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

20 pages, 351 KB  
Article
Vacuum Self-Dressing of an Atom and Its Physical Effects
by Roberto Passante and Lucia Rizzuto
Physics 2025, 7(2), 20; https://doi.org/10.3390/physics7020020 - 6 Jun 2025
Viewed by 1737
Abstract
We consider a multilevel atom, such as a hydrogen atom, interacting with the quantum electromagnetic field in the dressed ground state of the interacting system. Using perturbation theory within the dipole approximation, we evaluate the dressed ground state and investigate the effect of [...] Read more.
We consider a multilevel atom, such as a hydrogen atom, interacting with the quantum electromagnetic field in the dressed ground state of the interacting system. Using perturbation theory within the dipole approximation, we evaluate the dressed ground state and investigate the effect of atomic self-dressing on several field and atomic observables. Specifically, we obtain general expressions of the renormalized electric and magnetic field fluctuations and energy densities around the atom, and analyze their scaling with the distance from the atom, obtaining approximated expressions in the so-called near and far zones. We also investigate nonlocal spatial field correlations around the atom. We stress how the quantities we evaluate can be probed through two- and three-body nonadditive Casimir–Polder dispersion interactions. We also investigate the effect of self-dressing—namely, the virtual transitions occurring in the dressed ground state—on atomic observables, such as the average potential energy of the electron in the nuclear field. This also allows us to obtain a more fundamental quantum basis for the Welton interpretation of the Lamb shift of a ground-state hydrogen atom, in terms of the atomic self-dressing processes. Full article
15 pages, 10319 KB  
Article
Residual Stresses of Small-Bore Butt-Welded Piping Measured by Quantum Beam Hybrid Method
by Kenji Suzuki, Yasufumi Miura, Hidenori Toyokawa, Ayumi Shiro, Takahisa Shobu, Satoshi Morooka and Yuki Shibayama
Quantum Beam Sci. 2025, 9(2), 15; https://doi.org/10.3390/qubs9020015 - 2 May 2025
Viewed by 1412
Abstract
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of [...] Read more.
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of small-bore welded piping, post-welding stress improvement measures are often not possible due to dimensional restrictions, etc. Therefore, knowing the actual welding residual stresses of small-bore welded piping regardless of reactor type is essential for the safe and stable operation of nuclear power stations, but there are only a limited number of examples of measuring the residual stresses. In this study, austenitic stainless steel pipes with an outer diameter of 100 mm and a wall thickness of 11.1 mm were butt-welded. The residual stresses were measured by the strain scanning method using neutrons. Furthermore, to obtain detailed residual stresses near the penetration bead where the maximum stress is generated, the residual stresses near the inner surface of the weld were measured using the double-exposure method (DEM) with hard X-rays of synchrotron radiation. A method using a cross-correlation algorithm was proposed to determine the accurate diffraction angle from the complex diffraction patterns from the coarse grains, dendritic structures, and plastic zones. A quantum beam hybrid method (QBHM) was proposed that uses the circumferential residual stresses obtained by neutrons and the residual stresses obtained by the double-exposure method in a complementary use. The residual stress map of welded piping measured using the QBHM showed an area where the axial tensile residual stress exists from the neighborhood of the penetration bead toward the inside of the welded metal. This result could explain the occurrence of stress corrosion cracking in the butt-welded piping. A finite element analysis of the same butt-welded piping was performed and its results were compared. There is also a difference between the simulation results of residual stress using the finite element method and the measurement results using the QBHM. This difference is because the measured residual stress map also includes the effect of the stress of each crystal grain based on elastic anisotropy, that is, residual micro-stress. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

15 pages, 2647 KB  
Article
Laser Pulses for Studying Photoactive Spin Centers with EPR
by George Mamin, Ekaterina Dmitrieva, Fadis Murzakhanov, Margarita Sadovnikova, Sergey Nagalyuk and Marat Gafurov
Micromachines 2025, 16(4), 396; https://doi.org/10.3390/mi16040396 - 28 Mar 2025
Cited by 1 | Viewed by 643
Abstract
Quantum technologies are currently being explored for various applications, including computing, secure communication, and sensor technology. A critical aspect of achieving high-fidelity spin manipulations in quantum devices is the controlled optical initialization of electron spins. This paper introduces a low-cost programming scheme based [...] Read more.
Quantum technologies are currently being explored for various applications, including computing, secure communication, and sensor technology. A critical aspect of achieving high-fidelity spin manipulations in quantum devices is the controlled optical initialization of electron spins. This paper introduces a low-cost programming scheme based on a 32-bit STM32F373 microcontroller, aimed at facilitating high-precision measurements of optically active solid-state spin centers within semiconductor crystals (SiC, hBN, and diamond) utilizing a multi-pulse sequence. The effective shaping of short optical pulses across semiconductor and solid-state lasers, covering the visible to near-infrared range (405–1064 nm), has been validated through photoinduced electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies. The application of pulsed laser irradiation influences the EPR relaxation parameters associated with spin centers, which are crucial for advancements in quantum computing. The presented experimental approach facilitates the investigation of weak electron–nuclear interactions in crystals, a key factor in the development of quantum memory utilizing nuclear qubits. Full article
Show Figures

Figure 1

19 pages, 861 KB  
Article
Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals
by Yihao Zhang, Haonan Tang and Wenli Zou
Int. J. Mol. Sci. 2025, 26(6), 2821; https://doi.org/10.3390/ijms26062821 - 20 Mar 2025
Viewed by 1418
Abstract
As a crucial parameter in Mössbauer spectroscopy, nuclear quadrupole splitting (NQS) exhibits a strong dependence on quantum chemistry methods, which makes accurate theoretical predictions challenging. Meanwhile, the continuous emergence of new density functionals presents opportunities to advance current NQS research. In this study, [...] Read more.
As a crucial parameter in Mössbauer spectroscopy, nuclear quadrupole splitting (NQS) exhibits a strong dependence on quantum chemistry methods, which makes accurate theoretical predictions challenging. Meanwhile, the continuous emergence of new density functionals presents opportunities to advance current NQS research. In this study, we evaluate the performance of eleven hybrid density functionals and twelve double-hybrid density functionals, selected from widely used functionals and newly developed functionals, in predicting the NQS values of the 57Fe nuclide for 32 iron-containing molecules within about 70 atoms. The calculations have incorporated scalar relativistic effects using the exact two-component (X2C) Hamiltonian. In general, the double-hybrid functional PBE-0DH demonstrates superior performance compared to the experimental values, achieving a mean absolute error (MAE) of 0.20 mm/s. Meanwhile, rSCAN38 is the best hybrid functional for our database with an MAE = 0.25 mm/s, and it offers a significant advantage in computational efficiency over PBE-0DH. The +/ sign of NQS has also been considered in our error statistics when it has a clear physical meaning; if neglected, the errors of many functionals decrease, but PBE-0DH and rSCAN38 remain unaffected. Notably, when calculating ferrocene [Fe(C5H5)2], which involves strong static correlations, all hybrid functionals that incorporate more than 10% exact exchange fail, while several double-hybrid functionals continue to deliver reliable results. In addition, we encountered two particularly challenging species characterized by strong static correlations: [Fe(H2O)5NO]2+ and FeO2-porphyrin. Unfortunately, none of the density functionals tested in our study yielded satisfactory results for the two cases since the density functional theory (DFT) is a single-determinant approach, and it is imperative to explore large-scale multi-configurational methods for these species. This research offers valuable guidance for selecting density functionals in Mössbauer NQS calculations and serves as a reference point for the future development of new density functionals. Full article
Show Figures

Figure 1

27 pages, 1056 KB  
Article
Quantum Mechanical Numerical Model for Interaction of Dark Atom with Atomic Nucleus of Matter
by Timur Bikbaev, Maxim Khlopov and Andrey Mayorov
Physics 2025, 7(1), 8; https://doi.org/10.3390/physics7010008 - 7 Mar 2025
Viewed by 1428
Abstract
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with [...] Read more.
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with sodium nuclei. Since this effect is not observed in other underground WIMP (weakly interacting massive particle) search experiments, it is necessary to explain these results by investigating the possibility of the existence of low-energy bound states between dark atoms and the nuclei of matter. Numerical modeling is used to solve this problem, since the study of the XHe–nucleus system is a three-body problem and leaves no possibility of an analytical solution. To understand the key properties and patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we develop the quantum mechanical description of such an interaction. In the numerical quantum mechanical model presented, takes into account the effects of quantum physics, self-consistent electromagnetic interaction, and nuclear attraction. This approach allows us to obtain a numerical model of the interaction between the dark atom and the nucleus of matter and interpret the results of direct experiments on the underground search for dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for the first time, steps are taken towards a consistent quantum mechanical description of the interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms of matter. The total effective interaction potential of the OHe–Na system has therefore been restored, the shape of which allows for the preservation of the integrity and stability of the dark atom, which is an essential requirement for confirming the validity of the OHe hypothesis. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

34 pages, 173826 KB  
Article
Application of the Hill-Wheeler Formula in Statistical Models of Nuclear Fission: A Statistical–Mechanical Approach Based on Similarities with Semiconductor Physics
by Hirokazu Maruyama
Entropy 2025, 27(3), 227; https://doi.org/10.3390/e27030227 - 22 Feb 2025
Cited by 1 | Viewed by 1873
Abstract
This study proposes a novel theoretical approach to understanding the statistical–mechanical similarities between nuclear fission phenomena and semiconductor physics. Using the Hill–Wheeler formula as a quantum mechanical distribution function and establishing its correspondence with the Fermi–Dirac distribution function, we analyzed nuclear fission processes [...] Read more.
This study proposes a novel theoretical approach to understanding the statistical–mechanical similarities between nuclear fission phenomena and semiconductor physics. Using the Hill–Wheeler formula as a quantum mechanical distribution function and establishing its correspondence with the Fermi–Dirac distribution function, we analyzed nuclear fission processes for nine nuclides (232Th, 233U, 235U, 238U, 237Np, 239Pu, 240Pu, 242Pu, 241Am) using JENDL-5.0 data. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

Back to TopTop