Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,333)

Search Parameters:
Keywords = nutrient requirements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 424 KB  
Review
Nutritional Plasticity, Waste Bioconversion, and Insect Detoxification in the Anthropocene
by Anelise Christ-Ribeiro, Janaína Barreto Alves Zacheski, Andressa Jantzen da Silva Lucas and Larine Kupski
Insects 2025, 16(9), 915; https://doi.org/10.3390/insects16090915 (registering DOI) - 1 Sep 2025
Abstract
The Anthropocene, marked by rapid and extensive environmental changes, poses distinct evolutionary pressures and opportunities for species adaptation. Insects, among the most diverse and resilient taxa, exhibit notable dietary plasticity and the ability to convert low-value biomass—such as agro-industrial and urban waste—into usable [...] Read more.
The Anthropocene, marked by rapid and extensive environmental changes, poses distinct evolutionary pressures and opportunities for species adaptation. Insects, among the most diverse and resilient taxa, exhibit notable dietary plasticity and the ability to convert low-value biomass—such as agro-industrial and urban waste—into usable nutrients. This review explores how these traits serve as adaptive strategies, enabling insects to thrive and expand into novel, human-altered habitats. We examine the evolution of insect nutritional requirements and how alternative diets influence physiological, behavioral, and reproductive traits, ultimately enhancing resilience to anthropogenic stressors. The capacity of insects to metabolize diverse substrates not only supports their role in food security and circular economy initiatives but also provides valuable insights into detoxification pathways and metabolic flexibility in environments rich in xenobiotics. By synthesizing key studies, we highlight the pivotal role insects play in redefining ecosystem functions under human influence. This review underscores the intersection of nutritional and evolutionary biology in understanding insect success in the Anthropocene, emphasizing the importance of nutritional knowledge for both ecological research and applied insect farming systems. Full article
Show Figures

Graphical abstract

16 pages, 2144 KB  
Article
Influence of Fertilizer Application Rates on Hydrologic Fluxes and Soil Health in Maize Cultivation in Southern Texas, United States
by Bhagya Deegala, Sanjita Gurau and Ram L. Ray
Nitrogen 2025, 6(3), 75; https://doi.org/10.3390/nitrogen6030075 (registering DOI) - 1 Sep 2025
Abstract
Optimal application of nitrogen fertilizer is critical for soil characteristics and soil health. This study examined the effects of three rates of nitrogen fertilizer applications, which are lower rate (Treatment 1 (T1)-241 kg/ha), recommended rate (Treatment 2 (T2)-269 kg/ha), and higher rate (Treatment [...] Read more.
Optimal application of nitrogen fertilizer is critical for soil characteristics and soil health. This study examined the effects of three rates of nitrogen fertilizer applications, which are lower rate (Treatment 1 (T1)-241 kg/ha), recommended rate (Treatment 2 (T2)-269 kg/ha), and higher rate (Treatment 3 (T3)-297 kg/ha), and their impacts on soil temperature, soil moisture and soil electrical conductivity at two different depths (0–30 cm and 30–60 cm) in maize cultivation at the Prairie View A & M university research farm in Texas. Soil moisture, soil temperature, and electrical conductivity (EC) sensors were installed in 27 plots to collect these data. Results showed that EC is lower at surface depth with all fertilizer application rates than at root zone soil depths. In the meantime, EC is increasing in the root zone soil depth with the increase in fertilizer rate. This study indicated that the moderate application (269 kg/ha, T2) which is also recommended rate, showed better soil health parameters and efficiency in comparison to other application rates maintaining stable and moderate electrical conductivity values (0.2 mS/cm at depth 2) and the highest median moisture content at the significant root zone depth (about 0.135 m3/m3), reducing nutrient leaching and salt accumulation. Also, a humid, warm climate in southern Texas specifically affects increasing nitrogen losses via leaching, denitrification, and volatilization compared to cooler regions, which requires higher application rates. Plant growth and yield results further confirmed that the recommended rate achieved the greatest plant height (157.48 cm) compared to T1 (153.07 cm). Ear diameters were also higher at the recommended rate, reaching 4.65 cm ears than in Treatment 3. However, grain productivity was highest under the lower fertilizer rate T1, with wet and dry yields of 11,567 kg/ha and 5959 kg/ha, respectively, compared to 10,033 kg/ha (wet) and 5047 kg/ha (dry) at T2, and 7446 kg/ha (wet) and 4304 kg/ha (dry) at T3. These findings suggest that while the moderate fertilizer rate (269 kg/ha) enhances soil health and crop growth consistency, the lower rate (241 kg/ha) can maximize productivity under the humid, warm conditions of southern Texas. This research highlights the need for precise nitrogen management strategies that balance soil health with crop yield. Full article
(This article belongs to the Special Issue Soil Nitrogen Cycling—a Keystone in Ecological Sustainability)
Show Figures

Figure 1

25 pages, 1928 KB  
Article
Hibiscus moscheutos L. Flower Petals Extract Phenolic Profile and In Vitro Antimicrobial, Biofilm Formation, Autoaggregation, Prebiotic, Genotoxicity, and Anti-Inflammatory Properties
by Patryk Kowalczyk, Elżbieta Klewicka, Joanna Milala, Lidia Piekarska-Radzik, Elżbieta Karlińska, Michał Sójka and Robert Klewicki
Molecules 2025, 30(17), 3569; https://doi.org/10.3390/molecules30173569 (registering DOI) - 31 Aug 2025
Abstract
The flowers of Hibiscus moscheutos L. are among the largest within the genus, and the plant contains numerous nutrients and phytochemicals that perform various structural and regulatory functions in the human body upon consumption. However, these properties remain insufficiently explored. In this study, [...] Read more.
The flowers of Hibiscus moscheutos L. are among the largest within the genus, and the plant contains numerous nutrients and phytochemicals that perform various structural and regulatory functions in the human body upon consumption. However, these properties remain insufficiently explored. In this study, the phenolic composition and in vitro biological activity of an ethanolic extract from H. moscheutos petals were investigated. The total phenolic content was 219.52 mg/g (HPLC method), including phenolic acids (5.17 mg/g), flavanols (59.18 mg/g), flavonols (93.09 mg/g), and anthocyanins (62.08 mg/g). Many species of the genus Staphylococcus, as well as two probiotic strains of Lacticaseibacillus spp., were sensitive to the extract’s effects (100 mg/mL), which appeared to be strain-dependent. The MIC values for Staphylococcus spp. ranged from 6.25 to 100.00 mg/mL, while for the two probiotic strains, they were 12.50 and 100.00 mg/mL, respectively. The extract did not show prebiotic activity. Nevertheless, it enhanced the biofilm-forming ability of both probiotic and pathogenic microbiota on abiotic (polystyrene) and biotic (mucin and gelatin) surfaces. The stimulation of Staphylococcus spp. biofilms is considered undesirable and may justify limiting the use of the extract, for example, in pharmaceutical or medical applications. At concentrations above 25 mg/mL, the extract reduced bacterial autoaggregation. It also exhibited low genotoxicity in the Ames test and demonstrated anti-inflammatory activity comparable to sodium diclofenac. Hibiscus petal extracts might represent a promising source of bioactive compounds for novel pharmaceutical, nutraceutical, and food applications; however, their potential requires further in-depth investigation. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Graphical abstract

26 pages, 4380 KB  
Review
Novel Fermentation Techniques for Improving Food Functionality: An Overview
by Precious O. Ajanaku, Ayoyinka O. Olojede, Christiana O. Ajanaku, Godshelp O. Egharevba, Faith O. Agaja, Chikaodi B. Joseph and Remilekun M. Thomas
Fermentation 2025, 11(9), 509; https://doi.org/10.3390/fermentation11090509 (registering DOI) - 31 Aug 2025
Abstract
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of [...] Read more.
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of the ever-increasing global population as well as the sustainability goals. This review aims to evaluate how the application of advanced fermentation techniques can transform the food production system to be more effective, nutritious, and environmentally friendly. The techniques discussed include metabolic engineering, synthetic biology, AI-driven fermentation, quorum sensing regulation, and high-pressure processing, with an emphasis on their ability to enhance microbial activity with a view to enhancing product output. Authentic, wide-coverage scientific research search engines were used such as Google Scholar, Research Gate, Science Direct, PubMed, and Frontiers. The literature search was carried out for reports, articles, as well as papers in peer-reviewed journals from 2010 to 2024. A statistical analysis with a graphical representation of publication trends on the main topics was conducted using PubMed data from 2010 to 2024. In this present review, 112 references were used to investigate novel fermentation technologies that fortify the end food products with nutritional and functional value. Images that illustrate the processes involved in novel fermentation technologies were designed using Adobe Photoshop. The findings indicate that, although there are issues regarding costs, the scalability of the process, and the acceptability of the products by the consumers, the technologies provide a way of developing healthy foods and products produced using sustainable systems. This paper thus calls for more research and development as well as for the establishment of a legal frameworks to allow for the integration of these technologies into the food production system and make the food industry future-proof. Full article
(This article belongs to the Special Issue Feature Review Papers in Fermentation for Food and Beverages 2024)
Show Figures

Graphical abstract

17 pages, 348 KB  
Article
Rotation Length and Defoliation Intensity Effects on Dry Matter Production and Botanical Composition in Perennial ryegrass–White clover and Multispecies Pastures
by Luis F. Piña, Verónica M. Merino, María Jesús Navarro, Claudia Mella F., Cristian Lucero, Gabriel Seguel, Alejandro Acuña and Tomás Schwenke
Agronomy 2025, 15(9), 2097; https://doi.org/10.3390/agronomy15092097 - 30 Aug 2025
Viewed by 38
Abstract
Temperate grazing systems require advanced management strategies to simultaneously enhance both productivity and resilience. Multispecies pasture (MSS) mixtures offer a promising alternative to conventional Lolium perenne-Trifolium repens (LP-TR) systems by leveraging niche complementarity through diverse and deeper rooting profiles that enhance [...] Read more.
Temperate grazing systems require advanced management strategies to simultaneously enhance both productivity and resilience. Multispecies pasture (MSS) mixtures offer a promising alternative to conventional Lolium perenne-Trifolium repens (LP-TR) systems by leveraging niche complementarity through diverse and deeper rooting profiles that enhance drought tolerance and optimize nutrient acquisition from heterogeneous soil layers. In a field study, we compared LP-TR pastures with three functionally distinct MSS pastures subjected to varying rotation lengths (RL) and defoliation intensities (DIs). Seasonal and annual dry matter (DM) yield and botanical composition were assessed. MSS consistently outperformed LP-TR in total DM production, especially under shorter RL, which had a more pronounced effect on annual and spring biomass than DI. An 8 cm defoliation height generally enhances DM accumulation across systems. Species interactions significantly influenced botanical composition, with Plantago lanceolata contributing to greater pasture stability under environmental stress, accounting for 24–61% of total herbage DM. Furthermore, RL and DI interactions affected species prevalence, underscoring the need for adaptive, species-specific management strategies. These findings demonstrate that integrating strategic species selection with tailored defoliation practices in MSS mixtures can substantially enhance pasture productivity, compositional stability, and long-term sustainability of temperate grazing systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

16 pages, 1875 KB  
Article
Evaluation of Biomass, Lipid and Chlorophyll Production of a Microalgal Consortium Cultured in Dairy Wastewater
by Christian Ariel Cabrera-Capetillo, Omar Surisadai Castillo-Baltazar, Vicente Peña-Caballero, Moisés Abraham Petriz-Prieto, Adriana Guzmán-López, Esveidi Montserrat Valdovinos-García and Micael Gerardo Bravo-Sánchez
Fermentation 2025, 11(9), 506; https://doi.org/10.3390/fermentation11090506 - 29 Aug 2025
Viewed by 184
Abstract
Currently, microalgae cultivation requires strategies to improve yield and reduce production costs for biotechnological purposes. Dual-purpose systems are one of the most widely used strategies for these purposes, using culture media supplemented with wastewater. This study evaluated the growth of a microalgal consortium [...] Read more.
Currently, microalgae cultivation requires strategies to improve yield and reduce production costs for biotechnological purposes. Dual-purpose systems are one of the most widely used strategies for these purposes, using culture media supplemented with wastewater. This study evaluated the growth of a microalgal consortium in three treatments with different proportions of dairy wastewater (WWDI) and synthetic BBM-3N medium (Bold Basal Medium), with the aim of optimizing biomass, chlorophyll, and lipid production. The treatment with 60% BBM-3N medium and 40% WWDI (Case 3) showed the best performance under experimental conditions, reaching a biomass concentration of 0.7543 g/L, a chlorophyll production of 10.6890 µg/mL, and a lipid content of 14.63%. These results exceeded those obtained in the cases with 100% BBM-3N or 100% WWDI. In addition, a techno-economic evaluation was carried out via SuperPro Designer simulation, which allowed the annual operating costs for each treatment to be estimated. Case 3 stood out as the most viable option, combining good biological performance with lower operating costs compared to the raw material, demonstrating the potential of using wastewater as a partial source of nutrients in microalgal cultures intended for the production of value-added products. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae (2nd Edition))
Show Figures

Figure 1

33 pages, 5830 KB  
Article
Changes in the Fatty Acid Composition and Antioxidant Properties in Mono-Protein Commercial Dry Dog Foods During Storage
by Jagoda Kępińska-Pacelik, Wioletta Biel, Robert Witkowicz, Piotr Micek, Ewa Piątkowska and Aleksandra Patla
Molecules 2025, 30(17), 3524; https://doi.org/10.3390/molecules30173524 - 28 Aug 2025
Viewed by 282
Abstract
Dogs are the most popular companion animals in Europe, with an estimated population of 106 million in households. Commercial dry dog foods are formulated to meet specific nutritional requirements and ensure safety during storage, often through the addition of preservatives to extend shelf [...] Read more.
Dogs are the most popular companion animals in Europe, with an estimated population of 106 million in households. Commercial dry dog foods are formulated to meet specific nutritional requirements and ensure safety during storage, often through the addition of preservatives to extend shelf life. This pilot study investigated the antioxidant properties and changes in the fatty acid composition during storage in six mono-protein (containing only one source of animal protein) dry dog foods. These findings might contribute to a better understanding of the long-term nutritional stability of commercial dry dog foods and their potential implications for canine health. Changes in chemical composition, fatty acid profile, and antioxidant properties were analyzed immediately after opening the packages and after 3 and 6 months of storage. Significant alterations (p ≤ 0.05) were observed in nutrient content, particularly crude fat level (decrease from 18.37 g/100 g DM to 16.87 g/100 g DM after 6 months), as well as saturated and unsaturated fatty acids. Antioxidant properties, assessed via DPPH, FRAP, and ABTS, fluctuated over the storage period. Principal component analysis identified distinct patterns in nutrient and antioxidant profiles, highlighting the impact of storage duration and initial food composition on the stability of nutritional and antioxidant properties. The research demonstrates that the quality of commercial dry dog foods, particularly regarding oxidative stability and antioxidant properties, is subject to change over time after opening. The chemical composition of the foods was influenced by storage duration, with significant decreases in crude fat and variations in fatty acid profiles. Full article
(This article belongs to the Special Issue Exploring the Natural Antioxidants in Foods)
Show Figures

Figure 1

28 pages, 2204 KB  
Review
Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture
by Salini Chandrasekharan Nair, Vineetha John, Renu Geetha Bai and Timo Kikas
Sustainability 2025, 17(17), 7738; https://doi.org/10.3390/su17177738 - 28 Aug 2025
Viewed by 404
Abstract
Torrefaction, a mild thermochemical pretreatment process, is widely acknowledged as an effective strategy for enhancing the energy potential of lignocellulosic biomass. This review systematically evaluates the technological, environmental, and economic dimensions of lignocellulosic biomass torrefaction with the objective of clarifying its critical role [...] Read more.
Torrefaction, a mild thermochemical pretreatment process, is widely acknowledged as an effective strategy for enhancing the energy potential of lignocellulosic biomass. This review systematically evaluates the technological, environmental, and economic dimensions of lignocellulosic biomass torrefaction with the objective of clarifying its critical role in sustainable energy production and circular economy frameworks. Drawing from recent literature, the review covers process fundamentals, feedstock characteristics and operational parameters—typically 200–300 °C, heating rates below 50 °C per minute, ~1 h residence time, and oxygen-deficient conditions. The impacts of torrefaction on fuel properties, such as increased energy density, improved grindability and pelletability, enhanced storage stability, and reduced microbial degradation are critically assessed along with its contribution to waste valorization and renewable energy conversion. Particular emphasis is placed on the application of torrefied biomass (biochar) in sustainable agriculture, where it can enhance nutrient retention, improve soil quality and promote long-term carbon sequestration. This review identifies an unresolved research gap in aligning large-scale techno-economic feasibility with environmental impacts, specifically concerning the high process energy requirements, emission mitigation and regulatory integration. Process optimization, reactor design and supportive policy frameworks are identified as key strategies that could significantly improve the economic viability and sustainability outcomes. Overall, torrefaction demonstrates substantial potential as a scalable pathway for converting waste agricultural and forest residues into carbon-neutral biofuels. By effectively linking biomass waste valorization with renewable energy production and sustainable agricultural practices, this review offers a practical route to reducing environmental impacts while supporting the broader objectives of the global circular economy. Full article
Show Figures

Figure 1

16 pages, 386 KB  
Article
Iodine Deficiency and Excess in Brazilian Pregnant Women: A Multicenter Cross-Sectional Study (EMDI-Brazil)
by Aline Carare Candido, Francilene Maria Azevedo, Sarah Aparecida Vieira Ribeiro, Anderson Marliere Navarro, Mariana de Souza Macedo, Edimar Aparecida Filomeno Fontes, Sandra Patricia Crispim, Carolina Abreu de Carvalho, Nathalia Pizato, Danielle Góes da Silva, Franciane Rocha de Faria, Jorge Gustavo Velásquez Meléndez, Barbosa Míriam Carmo Rodrigues, Naiara Sperandio, Renata Junqueira Pereira, Silvia Eloiza Priore and Sylvia do Carmo Castro Franceschini
Nutrients 2025, 17(17), 2753; https://doi.org/10.3390/nu17172753 - 26 Aug 2025
Viewed by 459
Abstract
Background/Objectives: Iodine is an important nutrient for the human body, used in the production of thyroid hormones. During pregnancy, a deficiency can cause miscarriage and hypothyroidism, while an excess can cause thyroid dysfunction. Therefore, the objective of this study was to evaluate the [...] Read more.
Background/Objectives: Iodine is an important nutrient for the human body, used in the production of thyroid hormones. During pregnancy, a deficiency can cause miscarriage and hypothyroidism, while an excess can cause thyroid dysfunction. Therefore, the objective of this study was to evaluate the factors associated with the iodine nutritional status of pregnant Brazilian women. Methods: This was a cross-sectional, multicenter study conducted with pregnant women over 18 years of age, users of the Unified Health System (SUS). A semi-structured questionnaire was used to obtain sociodemographic information. Iodine status was assessed by urinary iodine concentration (UIC). The iodine content of salt and homemade and industrial seasonings was determined by the titrimetric method. Dietary intake was estimated through a 24-hour dietary recall. The chi-square test and hierarchical multinomial logistic regression were used for statistical analysis. The significance level was set at p ≤ 0.05. Results: Among Brazilian pregnant women, the median UIC was 186.7 µg/L (P25: 118.05 µg/L-P75: 280.93 µg/L). Regarding iodine nutritional status, the prevalence of deficiency was 36.7% (n = 694), above the requirement was 28.7% (n = 543), and excess iodine intake was 3.6% (n = 68). We observed that non-white pregnant women were more likely (OR = 1.83; 95% CI: 1.27–2.64) to have iodine deficiency, and those who did not work were less likely (OR = 0.71; 95% CI: 0.52–0.98). Pregnant women in the last trimester of pregnancy were less likely to have iodine intake above the requirements (OR = 0.52; 95% CI: 0.31–0.88). Conclusions: A substantial proportion of pregnant women had iodine deficiency or intake above the required level. Iodine deficiency is more chance among non-white pregnant women and less chance among those not employed during pregnancy. On the other hand, pregnant women who were in their third trimester of pregnancy were less likely to have iodine intake above the required level. Full article
(This article belongs to the Special Issue Selenium and Iodine in Human Health and Disease)
Show Figures

Graphical abstract

14 pages, 927 KB  
Article
A Comparative Study on Various Pretreatment Methods of Anaerobic Digestion Piggery Effluent for Microalgae Cultivation
by Tao He, Qi Peng, Jun Qian, Liang Wei, Pei Han and Qian Lou
Processes 2025, 13(9), 2703; https://doi.org/10.3390/pr13092703 - 25 Aug 2025
Viewed by 272
Abstract
Anaerobic digestion piggery effluent (ADPE), dark brown with high turbidity and ammonium, inhibits algal growth and requires pretreatment for cultivation. This study compared various physical/biological pretreatment methods for microalgae cultivation. The results showed that the strategy of 10%ADPE fungal cultivation (10%AF) pretreatment and [...] Read more.
Anaerobic digestion piggery effluent (ADPE), dark brown with high turbidity and ammonium, inhibits algal growth and requires pretreatment for cultivation. This study compared various physical/biological pretreatment methods for microalgae cultivation. The results showed that the strategy of 10%ADPE fungal cultivation (10%AF) pretreatment and subsequent microalgae cultivation achieved maximum specific growth rate (0.094 d−1) with productivity (0.014 g L−1 d−1) and significant nutrient removal: 100% ammonium nitrogen, 99% total nitrogen, 63% total phosphorus, 91% chemical oxygen demand. However, the pathogenic fungus used poses safety risks, requiring future screening of eco-friendly alternatives. This study demonstrated that the strategy could be a promising approach to algal biomass production and nutrient removal from ADPE. Full article
Show Figures

Figure 1

23 pages, 2605 KB  
Review
Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research
by Md. Muzammal Hoque, Valeria Iannelli, Francesca Padula, Rosa Paola Radice, Biplob Kumar Saha, Giuseppe Martelli, Antonio Scopa and Marios Drosos
Bioengineering 2025, 12(9), 909; https://doi.org/10.3390/bioengineering12090909 - 25 Aug 2025
Viewed by 607
Abstract
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to [...] Read more.
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to support regenerative agriculture and mitigate climate change. Functioning as biofertilizers, biostimulants, and bioremediators, microalgae accelerate nutrient cycling, improve soil aggregation through extracellular polymeric substances (EPSs), and stimulate rhizospheric microbial diversity. Empirical studies demonstrate their ability to increase crop yields by 5–25%, reduce chemical nitrogen inputs by up to 50%, and boost both organic carbon content and enzymatic activity in soils. Their application in saline and degraded lands further promotes resilience and ecological regeneration. Microalgal cultivation platforms offer scalable in situ carbon sequestration, converting atmospheric carbon dioxide (CO2) into biomass with potential downstream vaporization into biofuels, bioplastics, and biochar, aligning with circular economy principles. While the commercial viability of microalgae is challenged by high production costs, technical complexities, and regulatory gaps, recent breakthroughs in cultivation systems, biorefinery integration, and strain optimization highlight promising pathways forward. This review highlights the strategic importance of microalgae in enhancing climate resilience, promoting agricultural sustainability, restoring soil health, and driving global bioeconomic transformation. Full article
(This article belongs to the Special Issue Engineering Microalgal Systems for a Greener Future)
Show Figures

Graphical abstract

13 pages, 1260 KB  
Article
Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis)
by Elena Baldi, Maurizio Quartieri, Giovambattista Sorrenti, Marco Mastroleo, Evangelos Xylogiannis and Moreno Toselli
Horticulturae 2025, 11(9), 1003; https://doi.org/10.3390/horticulturae11091003 - 23 Aug 2025
Viewed by 543
Abstract
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial [...] Read more.
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial was conducted, for three years, in northern Italy, on a six-year-old kiwifruit orchard of the variety Zespri Zesy002. During the experiment organs were periodically sampled and analyzed for macro- and micronutrient concentration. A yearly nutrient uptake of 175 g N plant−1, 16 g P plant−1, 138 g K plant−1, 235 g Ca plant−1, 48 g Mg plant−1, 17 g S plant−1, 247 mg B plant−1, 673 mg Cu plant−1, 5.20 g Fe plant−1, 473 mg Mn plant−1, and 263 mg Zn plant−1 was calculated, confirming that kiwifruit is a high-nutrient-demanding species. The nutrients found in the tree organs were divided in two factions: removed (not returned into the soil) and recycled (returned into the soil during and at the end of the growing cycle). The two fractions were similar for N, P, K, S, and Mn. The fraction recycled of Ca, Mg, Cu, and Zn was higher than the fraction removed, and the reverse was observed for Fe. These data created the basis for the determination of the correct nutritional plans that take into consideration not only nutrient requirements but also the dynamics of uptake during the season. Full article
(This article belongs to the Special Issue Mineral Nutrition of Plants)
Show Figures

Figure 1

22 pages, 1152 KB  
Review
Dietary Supplementation of Methionine, Tryptophan, and Threonine for Pigs Under Sanitary Challenges: Current Knowledge and Future Directions
by Graziela da Cunha Valini, Alícia Zem Fraga, Ismael França, Danilo Alves Marçal, Pedro Righetti Arnaut, Alini Mari Veira, Marllon José Karpeggiane de Oliveira, Ines Andretta and Luciano Hauschild
Vet. Sci. 2025, 12(9), 794; https://doi.org/10.3390/vetsci12090794 - 23 Aug 2025
Viewed by 302
Abstract
Sanitary challenges (SCs) may alter the health status, growth performance, and pigs’ welfare. Changes in amino acid (AA) plasma concentrations have been observed in inflammatory-challenged pigs which may be associated with key factors, such as: (1) the synthesis of immune components to support [...] Read more.
Sanitary challenges (SCs) may alter the health status, growth performance, and pigs’ welfare. Changes in amino acid (AA) plasma concentrations have been observed in inflammatory-challenged pigs which may be associated with key factors, such as: (1) the synthesis of immune components to support innate and/or adaptive immune responses, (2) the redistribution of nutrients from growth and production functions toward cells and tissues involved in inflammatory and immune responses, and (3) decreased anabolism and/or increased catabolism of skeletal muscle to increase the availability of nutrients, often as a consequence of reduced feed intake. Due to their health-promoting effects, nutritional strategies involving AA may help mitigate the negative impacts of SC. Methionine, tryptophan, and threonine, beyond serving as protein building blocks, are considered functional AA because they support immune system function, enhance intestinal barrier integrity, modulate inflammatory responses, and limit oxidative stress. Additionally, the review highlights the influence of individual variability, such as differences in body weight, on nutritional requirements and responses to AA supplementation for pigs under SC. The integration of nutritional strategies tailored to immune-challenged pigs offers promising avenues to improve productivity and animal welfare in commercial swine production systems with increasing restrictions on antibiotic use. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

34 pages, 865 KB  
Review
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
by Igor Carvalho Fontes Sampaio, Isabela Viana Lopes de Moura, Josilene Borges Torres Lima Matos, Cleveland Maximino Jones and Paulo Fernando de Almeida
Fermentation 2025, 11(9), 490; https://doi.org/10.3390/fermentation11090490 - 23 Aug 2025
Viewed by 363
Abstract
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) [...] Read more.
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) and native H2 producing microbiota, can be repurposed as bioreactors for hydrogen production. This process, often referred to as “Gold Hydrogen”, involves the in situ microbial conversion of RH into H2, typically via dark fermentation, and is distinct from green, blue, or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium, Petrotoga, Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits, such as integrated CO2 sequestration and minimized surface disturbance, it also presents risks, namely the production of CO2 and H2S, and fracturing, which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures, achieving economic viability depends on overcoming significant technical, operational, and biotechnological challenges. If widely applied, this model could help decarbonize the energy sector, repurpose legacy infrastructure, and support the global transition toward low-carbon technologies. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Figure 1

26 pages, 625 KB  
Article
Statistical Optimization in the Fermentation Stage for Organic Ethanol: A Sustainable Approach
by Eliani Sosa-Gómez, Irenia Gallardo Aguilar, Ana Celia de Armas Mártínez and Guillermo Sosa-Gómez
Processes 2025, 13(9), 2675; https://doi.org/10.3390/pr13092675 - 22 Aug 2025
Viewed by 294
Abstract
The growing demand for organic products is having a transformative effect on the alcoholic beverage industry. This work investigates the possibility of producing organic ethanol only from sugarcane final molasses as a nutrient vector and Saccharomyces cerevisiae in the absence of inorganic nitrogen [...] Read more.
The growing demand for organic products is having a transformative effect on the alcoholic beverage industry. This work investigates the possibility of producing organic ethanol only from sugarcane final molasses as a nutrient vector and Saccharomyces cerevisiae in the absence of inorganic nitrogen or phosphorus compounds. The Plackett–Bürman design included the pseudo-factors (X4–X6) due to the experimental design requirements. These factors represent the possible influence of uncontrolled variables, such as pH or nutrient interactions. Subsequently, a predictive quadratic model using Box–Behnken design with the real variables (sugar concentration, yeast dose, and incubation time) was developed and validated (R2=0.977) with internal validation; given the lack of replications and the sample size, this value should be interpreted with caution and not as generalizable predictive evidence. Further experiments with replications and cross-validation will be required to confirm its predictive capacity. Through statistical optimization, the maximum cell proliferation of 432×106 cells/mL was achieved under optimal conditions of 8°Brix sugar concentration, 20 g/L dry yeast, and 3 h incubation time. The optimized fermentation process produced 7.8% v/v ethanol with a theoretical fermentation efficiency of 78.52%, an alcohol-to-substrate yield of 62.15%, and a productivity of 1.86 g/L·h, representing significant improvements of 21.9%, 24.6%, 31.0%, and 10.1%, respectively, compared with non-optimized conditions. The fermentation time was reduced from 48 to 42 h while maintaining superior performance. These results demonstrate the technical feasibility of producing organic ethanol using certified organic molasses and no chemical additives. Overall, these findings should be regarded as proof of concept. All experiments were single-run without biological or technical replicates; consequently, the optimization and models are preliminary and require confirmation with replicated experiments and external validation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop