Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = odorant-binding proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4076 KB  
Article
Chemical Composition and Antioxidant Activity of the Stembark Essential Oils of Two Cannabis sativa L. Cultivars from Komga, South Africa
by Anwuli E. Odieka, Ayodeji O. Oriola, Gugulethu M. Miya, Pallab Kar, Opeoluwa O. Oyedeji, Mavuto Gondwe, Yiseyon S. Hosu, Thami Madliwa and Adebola O. Oyedeji
Int. J. Mol. Sci. 2025, 26(17), 8552; https://doi.org/10.3390/ijms26178552 - 3 Sep 2025
Viewed by 253
Abstract
Cannabis sativa L. is an aromatic medicinal plant with various biologically active classes of compounds such as cannabinoids, polyphenols, and terpenes. Unlike the widely investigated inflorescence and leaf, the stembark of C. sativa has been overlooked regarding its medicinal potential. This study, therefore, [...] Read more.
Cannabis sativa L. is an aromatic medicinal plant with various biologically active classes of compounds such as cannabinoids, polyphenols, and terpenes. Unlike the widely investigated inflorescence and leaf, the stembark of C. sativa has been overlooked regarding its medicinal potential. This study, therefore, was aimed at determining the chemical composition and antioxidant activity of the essential oils (EOs) obtained from the fresh and dried stembark of two C. sativa cultivars, Lifter and Cherrywine, grown in Komga, South Africa, with a view to ascertaining the more promising cultivar. The chemical profiles of the hydro-distilled EOs were analyzed by gas chromatography-mass spectrometry (GC-MS), while an in vitro antioxidant activity assessment of the EOs was performed using DPPH and H2O2 spectrophotometric methods. The identified constituents from the EOs were molecularly docked against NOX2, a protein implicated in oxidative stress. The afforded EOs were colorless with a mild skunk-like odor. A total of thirty-two constituents were identified in both fresh and dry oils from the Lifter cultivar while the Cherrywine cultivar contained a total of forty-two constituents. The EOs of both cultivars contained twenty compounds, notably Cannabidiol (0.25–85.03%), Caryophyllene oxide (1.27–19.58%), Caryophyllene (0.64–16.61%), Humulene (0.37–8.15%), Octacosane (3.37–6.55%), Humulene-1,2-epoxide (0.45–5.78%), Nerolidol (0.32–4.99%), Palmitic acid (1.45–4.45%), Tetracosane (1.75–2.91%), Dronabinol (0.86–2.86%), Cannabinol (0.54–1.64%), 7-epi-γ-eudesmol (0.53–1.00%), Guaiol (0.37–0.66%), Linoleic acid (0.22–0.60%), γ-Selinene (0.15–0.48%), β-Eudesmol (0.34–0.50%), and Linalool (0.24–0.30%). The dried Lifter stembark oil (DLSO) gave the best antioxidant activity among the four investigated cannabis oils, exhibiting the lowest IC50 values of 21.68 ± 1.71 and 26.20 ± 1.34 µg/mL against DPPH and H2O2 radicals, respectively. The notable antioxidant activity of the DLSO may be attributed to the higher number (30) of constituents compared to the fresh Lifter stembark oil (LSO) with 11 constituents. Additionally, the DLSO showed a unique chemical profile comprising monoterpenes, oxygenated and hydrocarbon sesquiterpenes. Further in silico studies on the putative constituents in the Lifter cultivar revealed Cannabinol, Cannabidiol, and Linalool as the promising constituents based on their higher binding energy scores of −9.7, −8.5, and −6.5 kcal/mol, respectively, compared to L-Ascorbic acid (−5.7 kcal/mol). It can be inferred from this study that the EOs from the stembark of C. sativa contain promising compounds, such as Cannabinol, Cannabidiol, and Linalool, which might be responsible for the displayed antioxidant activity of the oils. Thus, the study findings underscore the biological importance of C. sativa stembark in the management of oxidative stress-related conditions. Full article
Show Figures

Figure 1

15 pages, 3628 KB  
Article
Functional Divergence of Two General Odorant-Binding Proteins to Sex Pheromones and Host Plant Volatiles in Adoxophyes orana (Lepidoptera: Tortricidae)
by Shaoqiu Ren, Yuhan Liu, Xiulin Chen, Kun Luo, Jirong Zhao, Guangwei Li and Boliao Li
Insects 2025, 16(9), 880; https://doi.org/10.3390/insects16090880 - 24 Aug 2025
Viewed by 535
Abstract
Adoxophyes orana (Lepidoptera: Tortricidae) is a significant polyphagous leafroller that damages trees and shrubs in Rosaceae and other families. However, the molecular mechanisms by which this pest recognizes sex pheromones and host plant volatiles remain largely unknown. Tissue expression profiles indicated that two [...] Read more.
Adoxophyes orana (Lepidoptera: Tortricidae) is a significant polyphagous leafroller that damages trees and shrubs in Rosaceae and other families. However, the molecular mechanisms by which this pest recognizes sex pheromones and host plant volatiles remain largely unknown. Tissue expression profiles indicated that two general odorant-binding proteins (AoraGOBP1 and AoraGOBP2) were more abundant in the antennae and wings of both sexes, with AoraGOBP1 being rich in the female head and abdomen. Temporal expression profiles showed that AoraGOBP1 was expressed at the highest level in 5 day-nmated adults, while AoraGOBP2 exhibited high expression in 5 day-unmated, 7 day-unmated, and mated female adults. Fluorescence competitive binding assays of heterologous expressed AoraGOBPs demonstrated that AoraGOBP2 strongly bound to the primary sex pheromone Z9-14:Ac, and two minor sex pheromones Z9-14:OH and Z11-14:OH, whereas AoraGOBP1 only showed a high binding affinity to Z9-14:Ac. What is more, AoraGOBP1 exhibited a broader binding spectrum for host plant volatiles than AoraGOBP2. Molecular dockings, molecular dynamic simulations, and per-residue binding free decompositions indicated that the van der Waals interaction was the predominant contributor to the binding free energy. Electrostatic interactions between aldehydes, or alcohols and AoraGOBPs stabilized the conformational structures. Phe12 from AoraGOBP1, and Phe13 from AoraGOBP2 were identified as the most important residues that contributed to bind free energy. Our findings provide a comprehensive insight into the molecular mechanisms of olfactory recognition in A. orana, facilitating the development of chemical ecology-based approaches for the control. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

21 pages, 13760 KB  
Article
Transcriptome Screening and Identification of Chemosensory Genes in the Goji Berry Psyllid, Bactericera gobica (Hemiptera: Psyllidae)
by Zhanghui Liu, Yang Ge, Zekun Zhang, Jiayi Liang, Chuanzhi Kang, Chengcai Zhang, Kang Chen, Xiufu Wan, Liu Zhang, Wangpeng Shi and Honghao Chen
Biology 2025, 14(8), 1105; https://doi.org/10.3390/biology14081105 - 21 Aug 2025
Viewed by 312
Abstract
Goji berry is widely consumed worldwide and holds substantial market value, yet its cultivation faces significant threats from the goji berry psyllid (Bactericera gobica). Chemosensory-related genes play critical roles in regulating insect behaviors, which makes them key molecular targets for the [...] Read more.
Goji berry is widely consumed worldwide and holds substantial market value, yet its cultivation faces significant threats from the goji berry psyllid (Bactericera gobica). Chemosensory-related genes play critical roles in regulating insect behaviors, which makes them key molecular targets for the development of environmentally friendly pest control strategies. However, chemosensory genes in B. gobica have not been previously identified or characterized. In this study, we sequenced transcriptomes from the antennae and body tissues of male and female B. gobica and annotated genes associated with chemosensory functions. We identified 15 odorant-binding proteins (OBPs), 18 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 26 odorant receptors (ORs), 8 gustatory receptors (GRs), and 32 ionotropic receptors (IRs). Transcriptome data and a quantitative real-time PCR confirmed the tissue-specific expression patterns of these genes, with several genes, including three BgobOBPs, eight BgobCSPs, one BgobOR, two BgobGRs, and two BgobIR, highly expressed in the antennae, suggesting their role in olfactory recognition. BgobGR1 was most highly expressed among GRs, indicating its important role in gustatory perception. We also identified gene BgobGR5 with differential expression patterns between females and males. Our study represents the first characterization of chemosensory genes in a Bactericera species. Full article
(This article belongs to the Special Issue Research on Morphology and Sensorimotor Systems of Insect Antennae)
Show Figures

Figure 1

45 pages, 1602 KB  
Review
Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control
by Yahya Al Naggar, Nedal M. Fahmy, Abeer M. Alkhaibari, Rasha K. Al-Akeel, Hend M. Alharbi, Amr Mohamed, Ioannis Eleftherianos, Hesham R. El-Seedi, John P. Giesy and Hattan A. Alharbi
Toxics 2025, 13(8), 681; https://doi.org/10.3390/toxics13080681 - 16 Aug 2025
Viewed by 1188
Abstract
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations [...] Read more.
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations affecting nicotinic acetylcholine receptors (nAChRs), acetylcholinesterase (AChE), voltage-gated sodium channels (VGSCs), and γ-aminobutyric acid (GABA) receptors, and metabolic detoxification mediated by cytochrome P450 monooxygenases (CYPs), esterases, and glutathione S-transferases (GSTs). Emerging resistance mechanisms are also explored, including protein sequestration by odorant-binding proteins and post-transcriptional regulation via non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Focused case studies on Aedes aegypti and Spodoptera frugiperda illustrate the complex interplay of genetic and biochemical adaptations driving resistance. In Ae. aegypti, voltage-gated sodium channel (VGSCs) mutations (V410L, V1016I, F1534C) combined with metabolic enzyme amplification confer resistance to pyrethroids, accompanied by notable fitness costs and ecological impacts on vector populations. In S. frugiperda, multiple resistance mechanisms, including overexpression of cytochrome P450 genes (e.g., CYP6AE43, CYP321A8), target-site mutations in ryanodine receptors (e.g., I4790K), and behavioral avoidance, have rapidly evolved across global populations, undermining the efficacy of diamide, organophosphate, and pyrethroid insecticides. The review further evaluates integrated pest management (IPM) strategies, emphasizing the role of biopesticides, biological control agents, including entomopathogenic fungi and parasitoids, and molecular diagnostics for resistance management. Taken together, this analysis underscores the urgent need for continuous molecular surveillance, the development of resistance-breaking technologies, and the implementation of sustainable, multifaceted interventions to safeguard the long-term efficacy of insecticides in both agricultural and public health contexts. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

21 pages, 3230 KB  
Article
Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti
by Luis O. Viteri Jumbo, Wellington S. Moura, Richard D. Possel, Osmany M. Herrera, Rodrigo R. Fidelis, Bruno S. Andrade, Guy Smagghe, Gil R. Santos, Eugênio E. Oliveira and Raimundo W. S. Aguiar
Toxins 2025, 17(8), 402; https://doi.org/10.3390/toxins17080402 - 11 Aug 2025
Viewed by 656
Abstract
Aedes aegypti, also known as the yellow fever mosquito, presents a major public health challenge, highlighting the need for effective biorational agents for mosquito control. Here, we investigated the synergistic effects of essential oil mixtures derived from Hypenia irregularis that is a [...] Read more.
Aedes aegypti, also known as the yellow fever mosquito, presents a major public health challenge, highlighting the need for effective biorational agents for mosquito control. Here, we investigated the synergistic effects of essential oil mixtures derived from Hypenia irregularis that is a mint-family shrub native to Brazil’s Cerrado biome, known as “alecrim do Cerrado”, in combination with essential oils from noni (Morinda citrifolia), Brazilian mint (“salva-do-Marajó”, Hyptis crenata), and lemongrass (Cymbopogon citratus) against Ae. aegypti. We conducted phytochemical analyses and assessed larvicidal, repellent, and oviposition deterrent activities. Using in silico methods, we predicted molecular interactions between key essential oil components and physiological targets involved in repellent action (odorant-binding protein AeagOBP1 and olfactory receptor Or31) and larvicidal activity (GABA and octopamine receptors, TRP channels, and acetylcholinesterase [AChE]). Major compounds identified included octanoic acid (23%; Hipe. irregularis × M. citrifolia), 2,5-dimethoxy-p-cymene (21.9%; Hipe. irregularis × Hypt. crenata), and citral (23.0%; Hipe. irregularis × C. citratus). Although individual oils showed strong larvicidal activity (Hipe. irregularis LC50 = 2.35 µL/mL; Hypt. crenata = 2.37 µL/mL; M. citrifolia and C. citratus = 2.71 µL/mL), their mixtures did not display synergistic effects. Similarly, repellency and oviposition deterrence were comparable to DEET for individual oils but were not enhanced in mixtures. Notably, the Hipe. irregularis × C. citratus essential oil blend reduced oviposition deterrence. Molecular docking confirmed strong binding of major oil components to AeagOBP1 and Or31, supporting their role in repellency. For larvicidal effects, AChE showed the highest predicted binding affinity. Overall, our findings suggest that H. irregularis, Hypt. crenata, C. citratus, and M. citrifolia (alone or in 1:1 mixture) are promising, sustainable agents for A. aegypti control. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Graphical abstract

16 pages, 6112 KB  
Article
The Olfactory System of Dolichogenidea gelechiidivoris (Marsh) (Hymenoptera: Braconidae), a Natural Enemy of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
by Shu-Yan Yan, He-Sen Yang, Cong Huang, Gui-Fen Zhang, Judit Arnó, Jana Collatz, Chuan-Ren Li, Fang-Hao Wan, Wan-Xue Liu and Yi-Bo Zhang
Int. J. Mol. Sci. 2025, 26(15), 7312; https://doi.org/10.3390/ijms26157312 - 29 Jul 2025
Viewed by 398
Abstract
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer [...] Read more.
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer antennae (2880.8 ± 20.36 μm) than females (2137.23 ± 43.47 μm), demonstrating pronounced sexual dimorphism. Scanning electron microscopy identified similar sensilla types on both sexes, but differences existed in the length and diameter of specific sensilla. Transcriptomic analysis of adult antennae uncovered molecular differentiation, identifying 11 odorant-binding proteins (OBPs) and 20 odorant receptors (ORs), with 27 chemosensory genes upregulated in females and 4 enriched in males. Integrating morphological and molecular evidence demonstrates complementary sexual specialization in the olfactory apparatus of D. gelechiidivoris. Linking these findings to the potential functions of different sensilla types, as discussed in the context of prior research, provides crucial insights into the sex-specific use of volatile cues. These findings provide critical insights into the use of volatile signals in this highly relevant species for biological control targeting T. absoluta. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 4991 KB  
Article
Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae)
by Qingyu Liu, Liuyang Wang, Panjing Liu, Lingrui Li, Jun Ning and Tao Zhang
Agronomy 2025, 15(7), 1539; https://doi.org/10.3390/agronomy15071539 - 25 Jun 2025
Viewed by 515
Abstract
The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. Its olfactory system plays an important role in locating mating partners and recognizing host plants. Understanding its olfactory recognition mechanism, particularly the function of odorant-binding proteins (OBPs), [...] Read more.
The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. Its olfactory system plays an important role in locating mating partners and recognizing host plants. Understanding its olfactory recognition mechanism, particularly the function of odorant-binding proteins (OBPs), may reveal potential targets for pest management. In this study, we characterized two antenna-specific OBPs, TabsOBP45 and TabsOBP46, which were identified from the T. absoluta genome. Sequence analysis revealed that both TabsOBPs belong to the classic OBP subfamily, which is characterized by the presence of six conserved cysteine residues and an N-terminal signal peptide. Both TabsOBPs showed predominant antennal expression in quantitative real-time PCR (qRT-PCR) assays, suggesting their key roles in olfactory perception. Fluorescence competitive binding assays with a total of 63 tested volatiles revealed that 13 compounds exhibited strong binding affinities (Ki < 22 µM) to TabsOBP45, with the highest binding affinity to β-ionone, β-caryophyllene, terpinolene, and cinnamaldehyde. Nine compounds showed strong binding affinities to TabsOBP46, with the strongest binding to 4-anisaldehyde, 4-methoxybenzaldehyde, cinnamaldehyde, and β-ionone. Molecular docking analysis revealed the key residues involved in β-ionone binding: TabsOBP45 interacted with ILE8, ALA9, PHE12, TRP37, ILE92, PHE94, THR115, and PHE118, while TabsOBP46 interacted with ILE8, PHE12, PHE36, TRP37, ILE92, LEU94, PHE118, and VAL134. These results provide new insights into the olfactory mechanism of T. absoluta and potential molecular targets for the development of olfactory-based pest control strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

23 pages, 6728 KB  
Article
Identification and Expression Analysis of G-Protein-Coupled Receptors Provide Insights into Functional and Mechanistic Responses to Herbivore-Induced Plant Volatiles of Paracarophenax alternatus
by Ruiheng Lin, Xu Chu, Yangming Zhang, Sikai Ke, Yunfeng Zheng, Wei Yu, Feiping Zhang and Songqing Wu
Int. J. Mol. Sci. 2025, 26(12), 5890; https://doi.org/10.3390/ijms26125890 - 19 Jun 2025
Viewed by 460
Abstract
Herbivore-induced plant volatiles (HIPVs) play a pivotal role in mediating tritrophic interactions between plants, herbivores, and their natural enemies. Paracarophenax alternatus, a parasitic mite targeting the egg stage of Monochamus alternatus, has emerged as a promising biocontrol agent. However, its ability [...] Read more.
Herbivore-induced plant volatiles (HIPVs) play a pivotal role in mediating tritrophic interactions between plants, herbivores, and their natural enemies. Paracarophenax alternatus, a parasitic mite targeting the egg stage of Monochamus alternatus, has emerged as a promising biocontrol agent. However, its ability to detect Pinus massoniana-derived HIPVs for host insect localization remains unclear. G-protein-coupled receptors (GPCRs) may play a role in mediating the perception of HIPVs and associated chemosensory signaling pathways in mites. In this study, a total of 85 GPCRs were identified from P. alternatus. All GPCRs exhibited conserved transmembrane domains and stage-specific expression patterns, with 21 receptors significantly upregulated in viviparous mites. Combined with two previously identified odorant receptors (ORs), six candidate chemosensory receptors were selected for molecular dynamics simulations to validate their binding stability with key volatile compounds. The results demonstrate that specific GPCRs likely facilitate HIPV detection in mites, enabling precise host localization within dynamic ecological niches. Our findings provide critical insights into the molecular basis of mite–host interactions and establish a framework for optimizing P. alternatus-based biocontrol strategies against pine wilt disease vectors. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 6031 KB  
Article
Identification and Expression Profiles of Chemosensory Genes in the Antennal Transcriptome of Protaetia brevitarsis (Coleoptera: Scarabaeidae)
by Shi-Hang Zhao, Yang Yue, Qi Gao, Rui-Tao Yu, Zhao-Hui Yang, Nan Zhou and Guo-Liang Xu
Insects 2025, 16(6), 607; https://doi.org/10.3390/insects16060607 - 9 Jun 2025
Viewed by 1557
Abstract
Chemosensory systems play a pivotal role in insect survival and reproduction by mediating the detection of volatile organic compounds in the environment. Protaetia brevitarsis (Coleoptera: Scarabaeidae), a phytophagous pest widely distributed across East Asia, poses a significant threat to agro-horticultural systems through crop [...] Read more.
Chemosensory systems play a pivotal role in insect survival and reproduction by mediating the detection of volatile organic compounds in the environment. Protaetia brevitarsis (Coleoptera: Scarabaeidae), a phytophagous pest widely distributed across East Asia, poses a significant threat to agro-horticultural systems through crop damage. We conducted antennal transcriptome sequencing of adult beetles and identified 117 chemosensory-related genes, including 66 odorant receptors (ORs), 20 ionotropic receptors, 10 gustatory receptors, 13 odorant-binding proteins (OBPs), four chemosensory proteins, and four sensory neuron membrane proteins. Tissue-specific expression profiling revealed the antennal enrichment of five PbreOBP genes and twenty-three ORs. Notably, sexual dimorphism was observed in OR expression patterns. PbreOR1/6/17/18/21/22/30/32 exhibited male-biased antennal expression, whereas PbreOR25/26/29/38/41/44/61 demonstrated female-biased antennal expression, indicating their potential involvement in sex-specific behaviors, such as pheromone detection and oviposition site selection. A comprehensive description of the antenna chemosensory-related genes of P. brevitarsis has deepened our understanding of the olfactory mechanisms in coleopteran insects. This study also provides a basis for understanding the molecular mechanisms underlying olfaction in P. brevitarsis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 3685 KB  
Article
Mechanisms of Impact of Alnus ferdinandi-coburgii Odor Substances on Host Location of Tomicus yunnanensis
by Jingyi Bo, Wen Li, Xiangyi Li, Zongbo Li, Xiangzhong Mao, Bin Yang and Ning Zhao
Insects 2025, 16(6), 553; https://doi.org/10.3390/insects16060553 - 23 May 2025
Cited by 1 | Viewed by 565
Abstract
In the chemosensory system of insects, odorant-binding proteins (OBPs) and odorant-degrading enzymes (ODEs) play a role in the host location process. This study identified and analyzed chemosensory-related genes from the transcriptomes of different tissues of male and female adults of Tomicus yunnanensis. [...] Read more.
In the chemosensory system of insects, odorant-binding proteins (OBPs) and odorant-degrading enzymes (ODEs) play a role in the host location process. This study identified and analyzed chemosensory-related genes from the transcriptomes of different tissues of male and female adults of Tomicus yunnanensis. Subsequently, host odorants from Pinus yunnanensis and non-host odorants from Alnus ferdinandi-coburgii were used to treat the adults of T. yunnanensis to clarify the gene expression changes in the insects and, combined with molecular docking, to explore the mechanism of the non-host odor interfering with the host localisation of T. yunnanensis. A total of 137 chemosensory-related genes were obtained, among which TyunOBP6 was specifically highly expressed in the antennae of T. yunnanensis; TyunCYP4G2 and TyunCYP6DF1 were highly expressed in the remnants of T. yunnanensis, selected as key genes for further research. The odor interference experiment results show that both host and non-host odorants caused up-regulation of TyunOBP6 in antennal expression, and significant changes in the expression of TyunCYP4G2 and TyunCYP6DF1 in the remnants were also observed. The molecular docking results indicate that non-host compounds could compete with host compounds for protein binding sites. The non-host odor of A. ferdinandi-coburgii can interfere with TyunOBPs and TyunCYPs in T. yunnanensis and affect their host localization. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

13 pages, 4301 KB  
Article
Phenethyl Acetate as an Agonist of Insect Odorant Receptor Co-Receptor (Orco): Molecular Mechanisms and Functional Insights
by Myungmi Moon, Jihwon Yun, Minsu Pyeon, Jeongyeon Yun, Jaehui Yang, Hye Duck Yeom, Geonu Lee, Yong-Seok Choi, Jaehyeong Lee and Junho H. Lee
Int. J. Mol. Sci. 2025, 26(11), 4970; https://doi.org/10.3390/ijms26114970 - 22 May 2025
Viewed by 601
Abstract
The insect olfactory system is vital for survival, enabling the recognition and discrimination of a wide range of odorants present in the environment. This process is mediated by odorant receptors (Ors) and the highly conserved co-receptor Orco. Insect Ors are structurally distinct from [...] Read more.
The insect olfactory system is vital for survival, enabling the recognition and discrimination of a wide range of odorants present in the environment. This process is mediated by odorant receptors (Ors) and the highly conserved co-receptor Orco. Insect Ors are structurally distinct from mammalian olfactory receptors, a divergence that presents unique advantages for developing insect-specific pest control strategies. In this study, we explored the molecular-level interactions between insect Ors and volatile organic compounds. Specifically, we investigated the response of Ors/Orco to phenethyl acetate (PA), a volatile compound found in the culture media of acetic acid bacteria. PA elicited activation in a concentration-dependent, reversible, and voltage-independent manner in Or1a, Or24a, and Or35a when combined with Orco, as well as in Orco homomers. Through molecular docking studies, we determined that the PA-binding site is localized to the Orco subunit, a highly conserved protein across diverse insect taxa. To further elucidate the role of key residues in the Orco homotetramer receptor, we performed site-directed mutagenesis. A mutational analysis identified W146 and E153 as critical residues for PA binding and activation. A double-mutant Orco receptor (W146A + E153A) exhibited a significant reduction in PA-induced activation compared to the wild-type receptor. These findings indicate that PA functions as an agonist for the Drosophila melanogaster Orco receptor and highlight its potential applications in chemosensory research and insect pest management strategies. Full article
Show Figures

Figure 1

18 pages, 3421 KB  
Article
Molecular Characterization and Functional Analysis of Odorant-Binding Proteins in Ectropis grisescens
by Fangmei Zhang, Haohan Sun, Shubao Geng, Shibao Guo, Zhou Zhou, Hongzhong Shi, Xuguo Zhou and Xiangrui Li
Int. J. Mol. Sci. 2025, 26(10), 4568; https://doi.org/10.3390/ijms26104568 - 10 May 2025
Viewed by 654
Abstract
Insect odorant-binding proteins (OBPs) are promising molecular targets for developing novel pest management strategies by modulating chemoreception-driven behaviors. The tea gray geometrid Ectropis grisescens (Lepidoptera, Geometridae) is a major pest in tea plantations, causing substantial economic losses in China. In this study, we [...] Read more.
Insect odorant-binding proteins (OBPs) are promising molecular targets for developing novel pest management strategies by modulating chemoreception-driven behaviors. The tea gray geometrid Ectropis grisescens (Lepidoptera, Geometridae) is a major pest in tea plantations, causing substantial economic losses in China. In this study, we identified 18 OBPs from E. grisescens antennal transcriptome. All of the encoded proteins possessed N-terminal signal peptides and conserved cysteine residues, behaviors which are characteristic of insect OBPs. Phylogenetic analysis categorized these proteins into plus-C, minus-C, and classic OBP subfamilies. MEME motif analysis identified conserved sequence features potentially involved in odor detection. Tissue- and sex-specific expression profiling showed that EgriGOBP1-2, OBP3, OBP8, and OBP13 were highly expressed in the antennae of both sexes, suggesting roles in olfactory communication. Among them, EgriGOBP1-2, OBP3, and OBP13 exhibited similar expression levels between males and females, while other EgriOBPs were predominantly expressed in the legs, wings, or other tissues, indicating additional physiological functions beyond chemoreception. To investigate functional specificity, we selected antenna-enriched EgriGOBP2 for ligand-binding analysis. Fluorescence binding assays demonstrated that EgriGOBP2 exhibited broad binding affinity toward 8 of 12 host volatiles and 11 of 12 plant essential oil-derived volatiles. These combined findings lay the foundation for mechanistic studies of chemical recognition in E. grisescens and provide insights into the development of ecologically friendly pest control alternatives. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 14601 KB  
Article
Deciphering the Olfactory Mechanisms of Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae): Insights from Transcriptome Analysis and Molecular Docking
by Hui Li, Sheng Qiao, Xiwen Hong and Yangyang Wei
Insects 2025, 16(5), 461; https://doi.org/10.3390/insects16050461 - 27 Apr 2025
Cited by 1 | Viewed by 997
Abstract
Olfaction is crucial for insect activities such as host seeking, foraging, oviposition, and predator avoidance. While olfactory proteins have been identified across several insect species, their specific functions are largely enigmatic. In this study, we investigated the olfactory proteins of the Angoumois grain [...] Read more.
Olfaction is crucial for insect activities such as host seeking, foraging, oviposition, and predator avoidance. While olfactory proteins have been identified across several insect species, their specific functions are largely enigmatic. In this study, we investigated the olfactory proteins of the Angoumois grain moth, Sitotroga cerealella Olivier. A total of 165 presumptive olfactory genes were identified in the antennal transcriptome of S. cerealella, encompassing 33 odorant-binding proteins (OBPs), 10 chemosensory proteins (CSPs), 58 odorant receptors (ORs), 41 ionotropic receptors (IRs), 21 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). BLASTX and a phylogenetic analysis showed a high similarity of these genes to the orthologs in other model insects. A qRT-PCR analysis demonstrated that ScerOBP15 and ScerOBP23 are specifically and highly expressed in antennae, exhibiting male-biased expression patterns. Moreover, molecular docking revealed their strong binding affinity to the wheat volatiles n-heptadecane and geranyl acetone. Also, the potential active sites within ScerOBP15 and ScerOBP23 that engage with these volatiles have been identified, implying a possible role in host localization. Our findings shed light on the mechanisms underlying the behavioral responses of S. cerealella to wheat odors, enhance our comprehension of their olfactory processes, and pave the way for the development of highly specific and sustainable pest management strategies. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

16 pages, 3695 KB  
Article
Odor-Binding Protein 2 in Apis mellifera ligustica Plays Important Roles in the Response to Floral Volatiles Stimuli from Melon and Tomato Flowers
by Jiangchao Zhang, Weihua Ma, Yue Zhang, Surong Lu, Chaoying Zhang, Huiting Zhao and Yusuo Jiang
Int. J. Mol. Sci. 2025, 26(7), 3176; https://doi.org/10.3390/ijms26073176 - 29 Mar 2025
Viewed by 536
Abstract
Honeybee olfaction can influence foraging behavior and affect crop pollination. Odor-binding proteins play a vital role in honeybee olfactory perception. A previous study based on the antennal transcriptome of Apis mellifera ligustica in melon and tomato greenhouses revealed that AmelOBP2 is highly expressed. [...] Read more.
Honeybee olfaction can influence foraging behavior and affect crop pollination. Odor-binding proteins play a vital role in honeybee olfactory perception. A previous study based on the antennal transcriptome of Apis mellifera ligustica in melon and tomato greenhouses revealed that AmelOBP2 is highly expressed. Therefore, we aimed to further investigate the olfactory recognition mechanism of honeybees by detecting the expression levels and binding ability of AmelOBP2 to floral volatiles of melon and tomato flowers. The results show that AmelOBP2 mRNA was highly expressed in the antennae of honeybees, and its protein expression was highest in the antennae at 20 days of age and was higher in the melon greenhouse. The binding ability of AmelOBP2 to floral volatiles of melon was stronger than that of tomato. AmelOBP2 had a stronger binding ability with aldehydes in melon floral volatiles and with terpenes and benzenes in tomato floral volatiles. After feeding with siRNA, the electroantennogram response of honeybees to E-2-hexenal, E-2-octenal, and 1-nonanal decreased markedly, confirming the role of AmelOBP2 in the recognition of melon and tomato floral volatiles. These results elucidate the molecular mechanisms underlying honeybee flower-visiting behavior and provide a theoretical reference for regulating the behavior of honeybees using plant volatiles. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3110 KB  
Article
Insight into the Relationships Between Chemical, Protein and Functional Variables in the PBP/GOBP Family in Moths Based on Machine Learning
by Xaviera A. López-Cortés, Gabriel Lara, Nicolás Fernández, José M. Manríquez-Troncoso and Herbert Venthur
Int. J. Mol. Sci. 2025, 26(5), 2302; https://doi.org/10.3390/ijms26052302 - 5 Mar 2025
Viewed by 831
Abstract
During their lives, insects must cope with a plethora of chemicals, of which a few will have an impact at the behavioral level. To detect these chemicals, insects use several protein families located in their main olfactory organs, the antennae. Inside the antennae, [...] Read more.
During their lives, insects must cope with a plethora of chemicals, of which a few will have an impact at the behavioral level. To detect these chemicals, insects use several protein families located in their main olfactory organs, the antennae. Inside the antennae, odorant-binding proteins (OBPs), as the most studied protein family, bind volatile chemicals to transport them. Pheromone-binding proteins (PBPs) and general-odorant-binding proteins (GOPBs) are two subclasses of OBPs and have evolved in moths with a putative olfactory role. Predictions for OBP–chemical interactions have remained limited, and functional data collected over the years unused. In this study, chemical, protein and functional data were curated, and related datasets were created with descriptors. Regression algorithms were implemented and their performance evaluated. Our results indicate that XGBoostRegressor exhibits the best performance (R2 of 0.76, RMSE of 0.28 and MAE of 0.20), followed by GradientBoostingRegressor and LightGBMRegressor. To the best of our knowledge, this is the first study showing a correlation among chemical, protein and functional data, particularly in the context of the PBP/GOBP family of proteins in moths. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions)
Show Figures

Figure 1

Back to TopTop