Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = ontogenetic transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6995 KB  
Article
Molecular Cloning, Expression and Transport Activity of SaNPF6.3/SaNRT1.1, a Novel Protein of the Low-Affinity Nitrate Transporter Family from the Euhalophyte Suaeda altissima (L.) Pall.
by Olga I. Nedelyaeva, Dmitrii E. Khramov, Lyudmila A. Khalilova, Alena O. Konoshenkova, Anastasia V. Ryabova, Larissa G. Popova, Vadim S. Volkov and Yurii V. Balnokin
Membranes 2023, 13(10), 845; https://doi.org/10.3390/membranes13100845 - 22 Oct 2023
Cited by 5 | Viewed by 3132
Abstract
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of [...] Read more.
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of the gene in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the original nitrate transporter. Expression of SaNPF6.3 in Δynt1 cells rescued their ability to grow on the selective medium in the presence of nitrate and absorb nitrate from this medium. Confocal laser microscopy of the yeast cells expressing the fused protein GFP-SaNPF6.3 revealed GFP (green fluorescent protein) fluorescence localized predominantly in the cytoplasm and/or vacuoles. Apparently, in the heterologous expression system used, only a relatively small fraction of the GFP-SaNPF6.3 reached the plasma membrane of yeast cells. In S. altissima plants grown in media with either low (0.5 mM) or high (15 mM) NO3; concentrations, SaNPF6.3 was expressed at various ontogenetic stages in different organs, with the highest expression levels in roots, pointing to an important role of SaNPF6.3 in nitrate uptake. SaNPF6.3 expression was induced in roots of nitrate-deprived plants in response to raising the nitrate concentration in the medium and was suppressed when the plants were transferred from sufficient nitrate to the lower concentration. When NaCl concentration in the nutrient solution was elevated, the SaNPF6.3 transcript abundance in the roots increased at the low nitrate concentration and decreased at the high one. We also determined nitrate and chloride concentrations in the xylem sap excreted by detached S. altissima roots as a function of their concentrations in the root medium. Based on a linear increase in Cl concentrations in the xylem exudate as the external Cl concentration increased and the results of SaNPF6.3 expression experiments, we hypothesize that SaNPF6.3 is involved in chloride transport along with nitrate transport in S. altissima plants. Full article
(This article belongs to the Special Issue Function and Malfunction of Ion Channels in Biological Cell Membrane)
Show Figures

Graphical abstract

28 pages, 5545 KB  
Article
Time-Scale Analysis of Prey Preferences and Ontogenetic Shift in the Diet of European Hake Merluccius merluccius (Linnaeus, 1758) in Southern and Central Tyrrhenian Sea
by Claudio D’Iglio, Sergio Famulari, Marco Albano, Daniela Giordano, Paola Rinelli, Gioele Capillo, Nunziacarla Spanò and Serena Savoca
Fishes 2022, 7(4), 167; https://doi.org/10.3390/fishes7040167 - 14 Jul 2022
Cited by 18 | Viewed by 3355
Abstract
Merluccius merluccius is one of the most important Mediterranean benthopelagic predators. It represents a key species for the ecosystem’s functioning due to its fundamental role in the energy transferal between different domains and depth strata. The aim of this study was to explore [...] Read more.
Merluccius merluccius is one of the most important Mediterranean benthopelagic predators. It represents a key species for the ecosystem’s functioning due to its fundamental role in the energy transferal between different domains and depth strata. The aim of this study was to explore the feeding habits of European hakes in the southern and central Mediterranean Sea, and also to analyze timescale variations and ontogenetic shift in five size length classes. A total of 411 stomachs collected from 2018 to 2020 were analyzed to assess diet and feeding habits. Results confirmed hakes’ role as a generalist benthopelagic predator, preying both in the suprabenthic layer and in the entire water column. Concerning the ontogenetic diet shift, juvenile hakes prefer zooplanktonic prey, while larger hakes have a diet mainly based on teleosts and decapods. The variations in diet composition between years, characterized by a fluctuation of cephalopods, bioluminescent teleost species and mesopelagic crustaceans, have highlighted the ability of European hake to model its diet to the geographical and prey availability. These features make analysis of the diet of M. merluccius essential to understanding the trophic dynamic existing in bentho-meso-pelagic environments, to improve ecosystem conservation in accordance with ecosystem-based fishery management. Full article
Show Figures

Graphical abstract

10 pages, 1374 KB  
Article
Ontogenetic Transfer of Microplastics in Bloodsucking Mosquitoes Aedes aegypti L. (Diptera: Culicidae) Is a Potential Pathway for Particle Distribution in the Environment
by Anastasia Simakova, Anna Varenitsina, Irina Babkina, Yulia Andreeva, Ruslan Bagirov, Vadim Yartsev and Yulia Frank
Water 2022, 14(12), 1852; https://doi.org/10.3390/w14121852 - 9 Jun 2022
Cited by 30 | Viewed by 4435
Abstract
The uptake and accumulation of microplastics (MPs) by bloodsucking mosquitoes Aedes aegypti L., carriers of vector-borne diseases, were investigated in the laboratory. In the experimental group, polystyrene (PS) particles were registered in insects of all life stages from larvae to pupae and adults. [...] Read more.
The uptake and accumulation of microplastics (MPs) by bloodsucking mosquitoes Aedes aegypti L., carriers of vector-borne diseases, were investigated in the laboratory. In the experimental group, polystyrene (PS) particles were registered in insects of all life stages from larvae to pupae and adults. Ae. aegypti larvae readily ingested MPs with food, accumulating on average 7.3 × 106 items per larva in three days. The content of PS microspheres significantly decreased in mosquitoes from the larval stage to the pupal stage and was passed to the adult stage from the pupal without significant loss. On average, 15.8 items were detected per pupa and 10.9 items per adult individual. The uptake of MPs by Ae. aegypti did not affect their survival, while the average body weight of mosquitoes of all life stages that consumed PS microspheres was higher than that of mosquitoes in the control groups. Our data confirmed that in insects with metamorphosis, MPs can pass from feeding larvae to nonfeeding pupae in aquatic ecosystems and, subsequently, to adults flying to land. Bloodsucking mosquitoes can participate in MP circulation in the environment. Full article
(This article belongs to the Special Issue Microplastics and Their Impacts on Organisms and Trophic Chains)
Show Figures

Figure 1

13 pages, 686 KB  
Perspective
Perspective: Chicken Models for Studying the Ontogenetic Origin of Neuropsychiatric Disorders
by Xiaohong Huang and Heng-wei Cheng
Biomedicines 2022, 10(5), 1155; https://doi.org/10.3390/biomedicines10051155 - 17 May 2022
Cited by 3 | Viewed by 3407
Abstract
Nutrients and xenobiotics cross the blood–placenta barrier, potentially depositing in the fetal brain. The prenatal exposure affects the neuroendocrine and microbial development. The mechanism underlying maternal risk factors reprograming the microbiota–gut–brain axis with long-term effects on psychosocial behaviors in offspring is not clear. [...] Read more.
Nutrients and xenobiotics cross the blood–placenta barrier, potentially depositing in the fetal brain. The prenatal exposure affects the neuroendocrine and microbial development. The mechanism underlying maternal risk factors reprograming the microbiota–gut–brain axis with long-term effects on psychosocial behaviors in offspring is not clear. In humans, it is not possible to assess the nutrient or xenobiotic deposition in the fetal brain and gastrointestinal system for ethical reasons. Moreover, the maternal–fetal microbe transfer during gestation, natural labor, and breast-feeding constitutes the initial gut microbiome in the progeny, which is inevitable in the most widely utilized rodent models. The social predisposition in precocial birds, including chickens, provides the possibility to test behavioral responses shortly after being hatched. Hence, chickens are advantageous in investigating the ontogenetic origin of behaviors. Chicken embryos are suitable for deposition assessment and mechanistic study due to the accessibility, self-contained development, uniform genetic background, robust microbiota, and easy in vivo experimental manipulation compared to humans and rodents. Therefore, chicken embryos can be used as an alternative to the rodent models in assessing the fetal exposure effect on neurogenesis and investigating the mechanism underlying the ontogenetic origin of neuropsychiatric disorders. Full article
(This article belongs to the Special Issue Birds as Model in Biomedical Research)
Show Figures

Graphical abstract

12 pages, 4084 KB  
Article
Adnate Leaf-Base and the Origin of Ribs in Succulent Stems of Euphorbia L.
by Gustavo Arévalo-Rodrigues, Fernanda Hurbath, Erika Prado, Isabella Galvão, Inês Cordeiro and Diego Demarco
Plants 2022, 11(8), 1076; https://doi.org/10.3390/plants11081076 - 15 Apr 2022
Cited by 3 | Viewed by 3870
Abstract
Stem succulence evolved independently in many plant lineages as an adaptation to arid environments. One of the most interesting cases is the convergence between Cactaceae and Euphorbia, which have anatomical adaptations mostly to increase photosynthetic capability and water storage. Our goal was [...] Read more.
Stem succulence evolved independently in many plant lineages as an adaptation to arid environments. One of the most interesting cases is the convergence between Cactaceae and Euphorbia, which have anatomical adaptations mostly to increase photosynthetic capability and water storage. Our goal was to describe the shoot development in two succulent species of Euphorbia using light microscopy coupled with high-resolution X-ray-computed tomography. Collateral cortical bundles were observed associated with the stem ribs in both species. The analysis of vasculature demonstrated that these bundles are, in fact, leaf traces that run axially along a portion of the internode. That structural pattern is due to an ontogenetic alteration. During shoot development, the leaf-bases remain adnate to the stem near the SAM, forming an axial component. When the internode elongates, the leaf bundles stretch as cortical bundles. The meristematic activity associated with the bundles forms the stem ribs, as leaf veins near the node, and induce rib formation along the entire internode even in the portion where the leaf traces join the stele. In addition, heterochronic shifts are also involved in the evolution of the shoot system in these Euphorbia, being related to early deciduous reduced leaves and the transference of the main photosynthetic function to the stem. This study demonstrates for the first time the influence of leaf developmental shifts and stem rib formation in Euphorbia and sheds new light on the evolution of stem succulence. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

10 pages, 1360 KB  
Article
Uptake and Transfer of Polyamide Microplastics in a Freshwater Mesocosm Study
by Diana Noemi Michler-Kozma, Lukas Kruckenfellner, Anna Heitkamp, Klaus Peter Ebke and Friederike Gabel
Water 2022, 14(6), 887; https://doi.org/10.3390/w14060887 - 11 Mar 2022
Cited by 11 | Viewed by 4270
Abstract
Steadily increasing inputs of microplastics pose a growing threat to aquatic fauna, but laboratory studies potentially lack realism to properly investigate its effects on populations and ecosystems. Our study investigates the trophic and ontogenetic transfer of microplastics in a near-natural exposure scenario. The [...] Read more.
Steadily increasing inputs of microplastics pose a growing threat to aquatic fauna, but laboratory studies potentially lack realism to properly investigate its effects on populations and ecosystems. Our study investigates the trophic and ontogenetic transfer of microplastics in a near-natural exposure scenario. The controlled outdoor freshwater mesocosms were exposed to polyamide (PA) 5–50 µm in size in concentrations of 15 and 150 mg L−1 and a control without microplastic addition. To verify the uptake of particles via the food chain, larvae and imagines of the midges Chaoborus crystallinus and C. obscuripes were examined, which feed on zooplankton during their larval stage. Larvae were captured after 117 days and imagines were caught in emergence traps that were emptied weekly. To detect the microparticles within the organisms, 200 larvae and 100 imagines per application were macerated and treated with fluorescent dye before investigation under a fluorescent microscope. We could detect up to 12 PA particles per individual larvae, while nearly no plastic was found in the imagines. This shows that, while Chaoborus sp. takes up microplastics via predation, most of the pollutant is egested through regurgitation and remains in the water, where it can further accumulate and potentially harm other organisms. Full article
(This article belongs to the Special Issue Microplastics and Their Impacts on Organisms and Trophic Chains)
Show Figures

Figure 1

17 pages, 2883 KB  
Article
Ontogenetic Migration of Juvenile Grunts (Haemulon) across a Coral Reef Seascape: Pathways and Potential Mechanisms
by Richard S. Appeldoorn and Björn L. K. Bouwmeester
Diversity 2022, 14(3), 168; https://doi.org/10.3390/d14030168 - 26 Feb 2022
Cited by 6 | Viewed by 3178
Abstract
Many coral reef fishes undergo ontogenetic migrations from inshore nurseries to offshore reefs. Quantifying cross-habitat connectivity is important for understanding reef fish spatio-temporal dynamics, essential habitat and spatial planning. Past studies show connectivity is mediated by distance and habitat arrangement. Few studies have [...] Read more.
Many coral reef fishes undergo ontogenetic migrations from inshore nurseries to offshore reefs. Quantifying cross-habitat connectivity is important for understanding reef fish spatio-temporal dynamics, essential habitat and spatial planning. Past studies show connectivity is mediated by distance and habitat arrangement. Few studies have documented the pathways linking juveniles and adults, nor suggested underlying orientation/navigation processes important for a more generalized understanding of ontogenetic habitat use. Ontogenetic movements of juvenile grunts, primarily Haemulon flavolineatum, in Puerto Rico were studied using mark-recapture. Small juveniles were tagged at a back-reef site designed to determine their potential movement through a series of size-specific daytime resting schools and posing a choice of direction in migration. Larger juveniles were tagged at mid-shelf reefs to capture off-reef migration to adult locations, including a proposed marine reserve. Small juveniles moved toward more exposed areas, accomplished by progressively shifting locations through existing resting schools. Movement was size-related and alongshore, but direction was primarily parallel to the coast, leading fish away from adjacent areas more directly offshore. Direction may have resulted from the potential mechanism of fish transfer between resting schools rather than by orientation cues. Larger juveniles were tracked from back-reef to fore-reef sites, but no fish were recaptured off-reef. Slower growth than predicted may have contributed to the perceived lack of movement. Localized behavior and habitat distribution appear important in determining the initial pathways of ontogenetic migration, and these may fix later directional movements to unexpected areas. Full article
(This article belongs to the Special Issue Ecological Connectivity among Tropical Coastal Ecosystems)
Show Figures

Figure 1

15 pages, 472 KB  
Article
Scaling the Feeding Mechanism of Captive Alligator mississippiensis from Hatchling to Juvenile
by James R. Kerfoot, Micah P. Fern and Ruth M. Elsey
Biology 2014, 3(4), 724-738; https://doi.org/10.3390/biology3040724 - 10 Nov 2014
Cited by 5 | Viewed by 7472
Abstract
Small changes in size can lead to potential performance consequences and may influence an organism’s ability to utilize resources in its environment. As the American alligator (Alligator mississippiensis) transitions between neonate, juvenile and adult habitats (ontogenetic niche shifts), there are inevitably [...] Read more.
Small changes in size can lead to potential performance consequences and may influence an organism’s ability to utilize resources in its environment. As the American alligator (Alligator mississippiensis) transitions between neonate, juvenile and adult habitats (ontogenetic niche shifts), there are inevitably dynamic changes in their feeding performance. This study sought to investigate the scaling of the feeding mechanism and its performance from hatchling to juvenile size classes in A. mississippiensis. Feeding events were recorded during March 2011 at Rockefeller Wildlife Refuge (Grand Chenier, Louisiana). Thirty-six captive individuals were randomly sampled, ranging from 30.5 cm to 91.5 cm total length, and feeding events were recorded using a high speed camera at a rate of 300 fps. Results indicated that many linear, angular and timing kinematic variables scale allometrically with cranium length; whereas maximum gape velocity and duration of feeding bout do not scale with cranium length and remain constant between these size classes. Although it has been shown that there is an isometric relationship between cranial elements and body size in A. mississippiensis, this relationship is not transferred to linear and timing variables of prey-capture events. These allometric relationships echo other investigations of scaling relationships such as bite-force production and terrestrial locomotion. Full article
Show Figures

Figure 1

Back to TopTop