Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (525)

Search Parameters:
Keywords = optical and thermal images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3170 KB  
Article
Assessment of Attenuation Coefficient and Blood Flow at Depth in Pediatric Thermal Hand Injuries Using Optical Coherence Tomography: A Clinical Study
by Beke Sophie Larsen, Tina Straube, Kathrin Kelly, Robert Huber, Madita Göb, Julia Siebert, Lutz Wünsch and Judith Lindert
Eur. Burn J. 2025, 6(4), 54; https://doi.org/10.3390/ebj6040054 - 1 Oct 2025
Viewed by 172
Abstract
Background: Optical Coherence Tomography (OCT) is a high-resolution imaging technique capable of quantifying Blood Flow at Depth (BD) and the Attenuation Coefficient (AC). However, the clinical relevance of these parameters in burn assessment remains unclear. This study investigated whether OCT-derived metrics can differentiate [...] Read more.
Background: Optical Coherence Tomography (OCT) is a high-resolution imaging technique capable of quantifying Blood Flow at Depth (BD) and the Attenuation Coefficient (AC). However, the clinical relevance of these parameters in burn assessment remains unclear. This study investigated whether OCT-derived metrics can differentiate between superficial and deep pediatric hand burns. Method: This prospective, single-center study analyzed 73 OCT scans from 37 children with thermal hand injuries. A structured algorithm was used to evaluate AC and BD. Results: The mean AC was 1.61 mm−1 (SD ± 0.48), with significantly higher values in deep burns (2.11 mm−1 ± 0.53) compared to superficial burns (1.49 mm−1 ± 0.38; p < 0.001), reflecting increased optical density in more severe burns. BD did not differ significantly between burn depths, although superficial burns more often showed visible capillary networks. Conclusions: This is the first study to assess both AC and BD using OCT in pediatric hand burns. AC demonstrated potential as a diagnostic marker for burn depth, whereas BD had limited utility. Image quality limitations highlight the need for technical improvements to enhance OCT’s clinical application. Full article
Show Figures

Figure 1

15 pages, 2783 KB  
Article
Investigating the Structural, Optical, and Thermal Properties of PVC/Cr1.4Ca0.6O4 Films for Potential Optoelectronic Application
by Alhulw H. Alshammari
Polymers 2025, 17(19), 2646; https://doi.org/10.3390/polym17192646 - 30 Sep 2025
Viewed by 279
Abstract
This study demonstrates the successful preparation of pristine and modified PVC polymer films with (0.7, 1.0, 2.0, and 3.0 wt%) Cr1.4Ca0.6O4 by the solution casting method. These films were characterized using XRD, FTIR, XPS, SEM, TGA, and a [...] Read more.
This study demonstrates the successful preparation of pristine and modified PVC polymer films with (0.7, 1.0, 2.0, and 3.0 wt%) Cr1.4Ca0.6O4 by the solution casting method. These films were characterized using XRD, FTIR, XPS, SEM, TGA, and a UV–vis spectrophotometer. The XRD confirmed the amorphous nature of PVC films and a tetragonal zircon-type structure of Cr1.4Ca0.6O4 as a dopant in the PVC polymer. The XPS survey spectra of pristine Cr1.4Ca0.6O4 and its composites with PVC reveal essential insights into the materials’ surface composition and chemical states. The spectra clearly show peaks corresponding to O1s, Ca2p, and Cr2p, with the Cr2p signals being notably weaker than the other peaks. SEM images showed a uniform distribution of Cr1.4Ca0.6O4 within the PVC polymer films despite the presence of some minor agglomerations. The TGA analysis revealed that incorporating Cr1.4Ca0.6O4 enhanced the thermal stability of PVC films, particularly at a 0.7 wt% concentration of Cr1.4Ca0.6O4. Moreover, incorporation of Cr1.4Ca0.6O4 improved the optical parameters of PVC films, i.e., linear refractive index, nonlinear refractive index, and optical susceptibility. These findings proposed the modified PVC with Cr1.4Ca0.6O4 for optoelectronic applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

42 pages, 1679 KB  
Review
Analysis of the Current Situation and Trends of Optical Sensing Technology Application for Facility Vegetable Life Information Detection
by Xiaodong Zhang, Zonghua Leng, Xinchen Wang, Shijie Tian, Yixue Zhang, Xiangyu Han and Zhaowei Li
Agronomy 2025, 15(9), 2229; https://doi.org/10.3390/agronomy15092229 - 21 Sep 2025
Viewed by 697
Abstract
The production of facility vegetables is of great significance but there are still limitations to this production in terms of yield and quality. Optical sensing technology offers a rapid and non-destructive solution for phenotypic analysis, which is superior to traditional destructive methods. This [...] Read more.
The production of facility vegetables is of great significance but there are still limitations to this production in terms of yield and quality. Optical sensing technology offers a rapid and non-destructive solution for phenotypic analysis, which is superior to traditional destructive methods. This article reviews and analyzes nine optical sensing technologies, including RGB imaging, and introduces the application of various algorithms in combination with detection principles throughout the entire growth cycle as well as key phenotypic characteristics of facility vegetables. Each technology has its advantages. For example, RGB and multi/high-spectrum technologies are the most frequently used while thermal imaging is particularly suitable for early detection of non-biological and biological stress responses, and these technologies can effectively obtain physiological, biochemical, yield, and quality information about crops. However, current research mainly focuses on laboratory verification and there is still a significant gap when it comes to practical production. Future progress will depend on the integration of multiple sensing technologies, data analysis based on artificial intelligence, and improvements in model interpretability. These developments will be crucial for ultimately achieving precise breeding and intelligent greenhouse management systems, and will gradually transition from basic phenotypic analysis to comprehensive decision support systems. Full article
(This article belongs to the Special Issue Crop Nutrition Diagnosis and Efficient Production)
Show Figures

Figure 1

14 pages, 7832 KB  
Article
Self-Adaptive Polymer Fabry–Pérot Thermometer for High-Sensitivity and Wide-Linear-Range Sensing
by Yifan Cheng, Maolin Yu, Junjie Liu, Yingling Tan and Jinhui Chen
Biosensors 2025, 15(9), 602; https://doi.org/10.3390/bios15090602 - 12 Sep 2025
Viewed by 439
Abstract
Fiber-optic temperature sensors with advantages such as simplicity, low cost, and high sensitivity have attracted increasing attention. In this work, we propose a self-adaptive polymer Fabry–Pérot interferometer (PFPI) sensor for ultrasensitive and wide-linear-range thermal sensing. This design achieves a temperature sensitivity of 0.95 [...] Read more.
Fiber-optic temperature sensors with advantages such as simplicity, low cost, and high sensitivity have attracted increasing attention. In this work, we propose a self-adaptive polymer Fabry–Pérot interferometer (PFPI) sensor for ultrasensitive and wide-linear-range thermal sensing. This design achieves a temperature sensitivity of 0.95 nm/°C, representing an enhancement of two orders of magnitude compared to conventional fiber Bragg gratings. To address the challenge of spectral shifts exceeding the free spectral range due to the high sensitivity, a local cross-correlation algorithm is introduced for accurate wavelength tracking. We demonstrate ultrahigh-resolution (0.025 °C) scanning thermal field imaging and sensitive human physiological monitoring, including precise body temperature and respiratory rate detection. These results highlight the dual capability of our PFPI sensor for both microscopic thermal mapping and non-invasive healthcare applications. Full article
Show Figures

Figure 1

24 pages, 5795 KB  
Article
Conductive Chitosan–Graphene Oxide Scaffold with Applications in Peripheral Nerve Tissue Engineering
by Andreea-Isabela Lazăr, Aida Șelaru, Alexa-Maria Croitoru, Ludmila Motelica, Ovidiu-Cristian Oprea, Roxana-Doina Trușcă, Denisa Ficai, Dănuț-Ionel Văireanu, Anton Ficai and Sorina Dinescu
Polymers 2025, 17(17), 2398; https://doi.org/10.3390/polym17172398 - 2 Sep 2025
Viewed by 852
Abstract
This study aimed to develop a novel biomaterial for neural tissue regeneration by combining chitosan (CS), a natural polymer, with graphene oxide (GO) at concentrations of 3%, 6%, and 9%. The homogeneity, conductivity, three-dimensional characteristics, and ability to support cell viability of the [...] Read more.
This study aimed to develop a novel biomaterial for neural tissue regeneration by combining chitosan (CS), a natural polymer, with graphene oxide (GO) at concentrations of 3%, 6%, and 9%. The homogeneity, conductivity, three-dimensional characteristics, and ability to support cell viability of the composite materials were systematically evaluated. Fourier-Transform Infrared (FTIR) spectroscopy confirmed the successful incorporation of GO into the CS matrix, while UV-Vis and photoluminescence (PL) spectrometry revealed modifications in the optical properties with increasing GO content. Thermogravimetric analysis (TG-DSC) demonstrated improved thermal stability of the composites, and swelling tests indicated enhanced water absorption capacity. Although some agglomerates were observed, the homogeneity was reasonable at both macroscopic and microscopic level (optical visualization–FTIR and electron microscopy). The composite films exhibited promising physical and electrochemical properties, highlighting their potential for neural tissue engineering applications. Their biological activity was assessed by culturing neuronal cells on the CS-GO scaffolds. Results from MTT, LDH, and LIVE/DEAD assays demonstrated excellent cell viability, moderate-to-good cell attachment, and the promotion of intercellular network formation. Among the tested formulations, the CS-GO 6% scaffold showed the most favorable biological response, with a significant increase in SH-SY5Y cell viability after 7 days (p < 0.05) compared to the CS control. LIVE/DEAD imaging confirmed enhanced cell attachment and elongated morphology, while the LDH assay indicated minimal cytotoxicity. Notably, a critical threshold was identified between 6% and 9% GO, where conductivity increased by approximately 52-fold. Future studies should focus on optimizing the composite parameters, loading them with specific biologically active agents and thus targeting specific neuronal applications. Full article
Show Figures

Figure 1

24 pages, 8777 KB  
Article
Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras
by Hongxin Liu, Xuedi Chen, Chunyu Liu, Fei Xing, Peng Xie, Shuai Liu, Xun Wang, Yuxin Zhang, Weiyang Song and Yanfang Zhao
Remote Sens. 2025, 17(17), 2978; https://doi.org/10.3390/rs17172978 - 27 Aug 2025
Viewed by 634
Abstract
The on-orbit geometric calibration accuracy of high-resolution space cameras directly affects the application value of Earth observation data. Conventional on-orbit geometric calibration methods primarily rely on ground calibration fields, making it difficult to simultaneously achieve high precision and real-time monitoring. To address this [...] Read more.
The on-orbit geometric calibration accuracy of high-resolution space cameras directly affects the application value of Earth observation data. Conventional on-orbit geometric calibration methods primarily rely on ground calibration fields, making it difficult to simultaneously achieve high precision and real-time monitoring. To address this limitation, we, in collaboration with Tsinghua University, propose a high-precision, real-time, on-orbit geometric calibration system based on active optical monitoring. The proposed system employs reference lasers to integrate the space camera and the star tracker into a unified optical system, enabling real-time monitoring and correction of the camera’s exterior orientation parameters. However, during on-orbit operation, the space camera is subjected to a complex thermal environment, which induces thermal deformation of optical elements and their supporting structures, thereby degrading the measurement accuracy of the geometric calibration system. To address this issue, this article analyzes the impact of temperature fluctuations on the focal plane, the reference laser unit, and the laser relay folding unit and proposes athermalization design optimization schemes. Through the implementation of a thermal-compensated design for the collimation optical system, the pointing stability and divergence angle control of the reference laser are effectively enhanced. To address the thermal sensitivity of the laser relay folding unit, a right-angle cone mirror scheme is proposed, and its structural materials are optimized through thermo–mechanical–optical coupling analysis. Finite element analysis is conducted to evaluate the thermal stability of the on-orbit geometric calibration system, and the impact of temperature variations on measurement accuracy is quantified using an optical error assessment method. The results show that, under temperature fluctuations of 5 °C for the focal plane and the reference laser unit, 1 °C for the laser relay folding unit, and 2 °C for the star tracker, the maximum deviation of the system’s measurement reference does not exceed 0.57″ (3σ). This enables long-term, stable, high-precision monitoring of exterior orientation parameter variations and improves image positioning accuracy. Full article
Show Figures

Figure 1

25 pages, 4568 KB  
Review
Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration
by Vladimir Y. Zaitsev, Yulia M. Alexandrovskaya, Alexander A. Sovetsky, Ekaterina M. Kasianenko, Alexander L. Matveyev, Dmitry V. Shabanov and Maxim E. Darvin
Cosmetics 2025, 12(5), 183; https://doi.org/10.3390/cosmetics12050183 - 26 Aug 2025
Viewed by 1315
Abstract
Non-invasive, in vivo assessment of target substances penetration into the skin remains a significant challenge in dermatology and cosmetology. While various optical methods have been employed for this purpose, each has inherent limitations. Here, we present a novel non-invasive imaging approach using optical [...] Read more.
Non-invasive, in vivo assessment of target substances penetration into the skin remains a significant challenge in dermatology and cosmetology. While various optical methods have been employed for this purpose, each has inherent limitations. Here, we present a novel non-invasive imaging approach using optical coherence elastography (OCE) to simultaneously determine the penetration depth of topically applied osmotically active substances in biological objects and associated water content changes with high sensitivity. Most substances are osmotically active and generate osmotic pressure proportional to their concentration, inducing deformations in biological objects. These osmotic strains can be visualized similarly to mechanical or thermal strains. Using OCE, we evaluated penetration and dehydration depth profiles in polyacrylamide gel phantoms, ex vivo cartilage, and porcine ear skin samples treated with aqueous glycerol solutions of varying concentrations. Additionally, the penetration and effect of jojoba oil were assessed in treated skin samples. The results are consistent with those obtained by other established methods, confirming the reliability and applicability of OCE. This technique offers unique capabilities not achievable with other optical methods, making it a valuable complementary tool for non-invasive studies. It holds significant promise for advancing both research and clinical applications in dermatology and cosmetology, including its potential translation to in vivo assessments. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

18 pages, 10978 KB  
Article
A Lightweight Infrared and Visible Light Multimodal Fusion Method for Object Detection in Power Inspection
by Linghao Zhang, Junwei Kuang, Yufei Teng, Siyu Xiang, Lin Li and Yingjie Zhou
Processes 2025, 13(9), 2720; https://doi.org/10.3390/pr13092720 - 26 Aug 2025
Viewed by 834
Abstract
Visible and infrared thermal imaging are crucial techniques for detecting structural and temperature anomalies in electrical power system equipment. To meet the demand for multimodal infrared/visible light monitoring of target devices, this paper introduces CBAM-YOLOv4, an improved lightweight object detection model, which leverages [...] Read more.
Visible and infrared thermal imaging are crucial techniques for detecting structural and temperature anomalies in electrical power system equipment. To meet the demand for multimodal infrared/visible light monitoring of target devices, this paper introduces CBAM-YOLOv4, an improved lightweight object detection model, which leverages a novel synergistic integration of the Convolutional Block Attention Module (CBAM) with YOLOv4. The model employs MobileNet-v3 as the backbone to reduce parameter count, applies depthwise separable convolution to decrease computational complexity, and incorporates the CBAM module to enhance the extraction of critical optical features under complex backgrounds. Furthermore, a feature-level fusion strategy is adopted to integrate visible and infrared image information effectively. Validation on public datasets demonstrates that the proposed model achieves an 18.05 frames per second increase in detection speed over the baseline, a 1.61% improvement in mean average precision (mAP), and a 2 MB reduction in model size, substantially improving both detection accuracy and efficiency through this optimized integration in anomaly inspection of electrical equipment. Validation on a representative edge device, the NVIDIA Jetson Nano, confirms the model’s practical applicability. After INT8 quantization, the model achieves a real-time inference speed of 40.8 FPS with a high mAP of 80.91%, while consuming only 5.2 W of power. Compared to the standard YOLOv4, our model demonstrates a significant improvement in both processing efficiency and detection accuracy, offering a uniquely balanced and deployable solution for mobile inspection platforms. Full article
(This article belongs to the Special Issue Hybrid Artificial Intelligence for Smart Process Control)
Show Figures

Figure 1

17 pages, 2310 KB  
Article
High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu
by Yanshuo Han, Yucheng Li, Xue Yang, Yibo Hu, Yuandong Ning, Meng Gu, Guibin Zhai, Sihan Yang, Jingkun Chen, Naixin Li, Kuan Ren, Jingtai Zhao and Qianli Li
Molecules 2025, 30(17), 3495; https://doi.org/10.3390/molecules30173495 - 26 Aug 2025
Viewed by 876
Abstract
Lanthanide-doped inorganic luminescent materials have been extensively studied and applied in X-ray detection and imaging, anti-counterfeiting, and optical information storage. However, many reported rare-earth-based luminescent materials show only single-mode optical responses, which limits their applications in complex scenarios. Here, we report a novel [...] Read more.
Lanthanide-doped inorganic luminescent materials have been extensively studied and applied in X-ray detection and imaging, anti-counterfeiting, and optical information storage. However, many reported rare-earth-based luminescent materials show only single-mode optical responses, which limits their applications in complex scenarios. Here, we report a novel Na3KMg7(PO4)6:Eu phosphor synthesized by a simple high-temperature solid-state method. The multi-color luminescence of Eu2+ and Eu3+ ions in a single matrix of Na3KMg7(PO4)6:Eu, known as radio-photoluminescence, is achieved through X-ray-induced ion reduction. It demonstrated a good linear response (R2 = 0.9897) and stable signal storage (storage days > 50 days) over a wide range of X-ray doses (maximum dose > 200 Gy). In addition, after X-ray irradiation, this material exhibits photochromic properties ranging from white to brown in a bright field and shows remarkable bleaching and recovery capabilities under 254 nm ultraviolet light or thermal stimulation. This dual-modal luminescent phosphor Na3KMg7(PO4)6:Eu, which combines photochromism and radio-photoluminescence, presents a dual-mode X-ray detection and imaging strategy and offers a comprehensive and novel solution for applications in anti-counterfeiting and optical information encryption. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 2635 KB  
Article
Structure and Nonlinear Optical Characterization of a New Acentric Crystal of a 4-Hydroxybenzohydrazide Derivative
by Emanuela Santagata, Yovan de Coene, Stijn Van Cleuvenbergen, Koen Clays, Emmanuele Parisi, Fabio Borbone and Roberto Centore
Crystals 2025, 15(8), 739; https://doi.org/10.3390/cryst15080739 - 20 Aug 2025
Viewed by 586
Abstract
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of [...] Read more.
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of the novel crystal structure are strongly related to the role of the water molecule that stabilized columns of o-FHH through strong hydrogen bonding interactions. This structural feature is reflected in the high thermal stability of the compound, which is evidenced by its ability to withstand temperatures in excess of 100 °C without losing the water molecule. Second-harmonic generation (SHG) imaging confirms bulk nonlinearity throughout the entire volume of the crystal, consistent with the acentric class of the novel compound. The combination of a dense hydrogen-bonding network, structural robustness, and the ability to grow millimeter-sized single crystals makes o-FHH a good candidate for further development as an organic NLO material. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

21 pages, 7064 KB  
Article
Challenges in Temperature Measurement in Hot Forging Processes: Impact of Measurement Method Selection on Accuracy and Errors in the Context of Tool Life and Forging Quality
by Marek Hawryluk, Łukasz Dudkiewicz, Jakub Krawczyk, Marta Janik, Marzena Lachowicz and Mateusz Skwarski
Materials 2025, 18(16), 3850; https://doi.org/10.3390/ma18163850 - 17 Aug 2025
Viewed by 527
Abstract
This study investigates the influence of temperature measurement accuracy on tool failure mechanisms in industrial hot forging processes. Challenges related to extreme operational conditions, including high temperatures, limited access to measurement surfaces, and optical interferences, significantly hinder reliable data acquisition. Thermal imaging, pyrometry, [...] Read more.
This study investigates the influence of temperature measurement accuracy on tool failure mechanisms in industrial hot forging processes. Challenges related to extreme operational conditions, including high temperatures, limited access to measurement surfaces, and optical interferences, significantly hinder reliable data acquisition. Thermal imaging, pyrometry, thermocouples, and finite element modeling were employed to characterize temperature distributions in forging tools and billets. Analysis of multi-stage forging of stainless steel valve forgings revealed significant discrepancies between induction heater settings and actual billet surface temperatures, measured by thermal imaging. This thermal non-uniformity led to localized underheating and insufficient dissolution of hard inclusions, confirmed by dilatometric tests, resulting in billet jamming and premature tool failure. In slender bolt-type forgings, excessive or improperly controlled billet temperatures increased adhesion between the forging and tool surface, causing process resistance, billet sticking, and accelerated tool degradation. Additional challenges were noted in tool preheating, where non-uniform heating and inaccurate temperature assessment compromised early tool performance. Measurement errors associated with thermal imaging, particularly due to thermal reflections in robotic gripper monitoring, led to overestimated temperatures and overheating of gripping elements, impairing forging manipulation accuracy. The results emphasize that effective temperature measurement management, including cross-validation of methods, is crucial for assessing tool condition, enhancing process reliability, and preventing premature failures in hot forging operations. Full article
Show Figures

Figure 1

33 pages, 6610 KB  
Article
Characterization of the Physical, Mechanical, and Thermal Properties of Cement and Compressed Earth Stabilized Blocks, Incorporating Closed-Loop Materials for Use in Hot and Humid Climates
by Catalina Reyna-Ruiz, José Manuel Gómez-Soberón and María Neftalí Rojas-Valencia
Buildings 2025, 15(16), 2891; https://doi.org/10.3390/buildings15162891 - 15 Aug 2025
Viewed by 713
Abstract
The United States of America could build 20,000 bases for the Statue of Liberty every year using its construction and demolition waste, and 456 bases using waste glass from jars and bottles. However, some sectors of the population still face a shortage of [...] Read more.
The United States of America could build 20,000 bases for the Statue of Liberty every year using its construction and demolition waste, and 456 bases using waste glass from jars and bottles. However, some sectors of the population still face a shortage of affordable housing. The challenges of disposing of such large amounts of waste and solving the housing shortage could be addressed together if these materials, considered part of a closed-loop system, were integrated into new building blocks. This research studies compressed earth blocks that incorporate soils and gravels excavated in situ, river sand, crushed concrete from demolition waste, and recycled glass sand. To stabilize the blocks, cement is used at 5, 10, and 15% (by weight). The properties studied include the following: density, apparent porosity, initial water absorption, simple compression, modulus of elasticity, and thermal conductivity. Optical image analysis proved to be a tool for predicting the values of these properties as the stabilizer changed. To assist in decision making regarding the best overall performance of the total 12 mix designs, a ranking system is proposed. The best blocks, which incorporate the otherwise waste materials, exhibited simple compression values up to 7.3 MPa, initial water absorption of 8 g/(cm2 × min0.5) and thermal conductivity of 0.684 W/m·K. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 3483 KB  
Article
Thiophosphoryl-PMMH Dendrimers for Potential Detection and Remediation of CBRN Contamination: Selected Studies and General Guidelines and Procedures
by Sebastian Lalik, Agnieszka Gonciarz, Robert Pich, Krzysztof A. Bogdanowicz, Witalis Pellowski, Jacek Miedziak, Marcin Szczepaniak, Monika Marzec and Agnieszka Iwan
Materials 2025, 18(16), 3805; https://doi.org/10.3390/ma18163805 - 13 Aug 2025
Cited by 1 | Viewed by 386
Abstract
The main idea of this work is to implement organic nanomaterials, such as thiophosphoryl-PMMH dendrimers, for the potential detection and remediation of chemical, biological, radiological, and nuclear (CBRN) contamination. An IR–thermal technique for determining the material specific surface morphology and defects of a [...] Read more.
The main idea of this work is to implement organic nanomaterials, such as thiophosphoryl-PMMH dendrimers, for the potential detection and remediation of chemical, biological, radiological, and nuclear (CBRN) contamination. An IR–thermal technique for determining the material specific surface morphology and defects of a thiophosphoryl-PMMH dendrimers is presented. Optical (UV-Vis), thermal (DSC), and electrical (dielectric spectroscopy and thermal imaging) characterizations show that the generation and number of surface groups influence the properties of the investigated dendrimers. Finally, general guidelines and procedures of thiophosphoryl-PMMH dendrimers with various generations are proposed for both civilian and military users. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

45 pages, 5794 KB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Viewed by 2302
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

13 pages, 3882 KB  
Article
Thermal Damage Characterization of Detector Induced by Nanosecond Pulsed Laser Irradiation
by Zhilong Jian, Weijing Zhou, Hao Chang, Yingjie Ma, Xiaoyuan Quan and Zikang Wang
Photonics 2025, 12(8), 790; https://doi.org/10.3390/photonics12080790 - 5 Aug 2025
Viewed by 1255
Abstract
Experimental and simulation analysis was conducted on the effects of 532 nm nanosecond laser-induced thermal damage on the front-side illuminated CMOS detector. The study examined CMOS detector output images at different stages of damage, including point damage, line damage, and complete failure, and [...] Read more.
Experimental and simulation analysis was conducted on the effects of 532 nm nanosecond laser-induced thermal damage on the front-side illuminated CMOS detector. The study examined CMOS detector output images at different stages of damage, including point damage, line damage, and complete failure, and correlated these with microscopic structural changes observed through optical and scanning electron microscopy. A finite element model was used to study the thermal–mechanical coupling effect during laser irradiation. The results indicated that at a laser energy density of 78.9 mJ/cm2, localized melting occurs within photosensitive units in the epitaxial layer, manifesting as an irreversible white bright spot appearing in the detector output image (point damage). When the energy density is further increased to 241.9 mJ/cm2, metal routings across multiple pixel units melt, resulting in horizontal and vertical black lines in the output image (line damage). Upon reaching 2005.4 mJ/cm2, the entire sensor area failed to output any valid image due to thermal stress-induced delamination of the silicon dioxide insulation layer, with cracks propagating to the metal routing and epitaxial layers, ultimately causing structural deformation and device failure (complete failure). Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop