Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration
Abstract
1. Introduction
2. Optical Coherence Elastography for the Visualization of Penetration in Biological Objects—Theoretical Aspects
2.1. Physical Principles of Visualizing Diffusion Using OCE Imaging of Accompanying Strains
2.2. Phase-Resolved Strain Mapping in OCE
3. Results and Discussion
3.1. OCE Monitoring of Penetration in Polyacrylamide Gel Phantoms
3.2. OCE Monitoring of Penetration in Cartilaginous Samples
3.3. OCE Monitoring of Penetration in Porcine Skin Samples
4. Advantages, Limitations, and Future Prospects
4.1. OCE Method Does Not Provide Molecular Specificity
4.2. OCE Method Is Limited to Detecting the Penetration of Osmotically Active Substances Only
4.3. The OCE Method Provides Real-Time Visualization of Penetration Dynamics
4.4. The Imaging Depth of the OCE Method Is Comparable to That of OCT
4.5. The Quantitative Assessment of Penetrating Substances Remains a Significant Challenge
4.6. In Vivo Skin Measurements: Promising but Requiring Reliable Local Long-Term Stabilization
4.7. The OCE Method’s Sensitivity Is Restricted to Detecting Strain
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OCE | Optical Coherence Elastography |
OCT | Optical Coherence Tomography |
References
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The Skin: An Indispensable Barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The Important Role of Stratum Corneum Lipids for the Cutaneous Barrier Function. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Brandner, J.M.; Kief, S.; Grund, C.; Rendl, M.; Houdek, P.; Kuhn, C.; Tschachler, E.; Franke, W.W.; Moll, I. Organization and Formation of the Tight Junction System in Human Epidermis and Cultured Keratinocytes. Eur. J. Cell. Biol. 2002, 81, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Tampucci, S.; Burgalassi, S.; Chetoni, P.; Monti, D. Cutaneous Permeation and Penetration of Sunscreens: Formulation Strategies and In Vitro Methods. Cosmetics 2018, 5, 1. [Google Scholar] [CrossRef]
- Pavlou, P.; Siamidi, A.; Vlachou, M.; Varvaresou, A. UV Filters and Their Distribution on the Skin through Safe, Non-Penetrating Vehicles. J. Cosmet. Sci. 2021, 72, 298–324. [Google Scholar]
- Darvin, M.E. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023, 15, 2272. [Google Scholar] [CrossRef]
- Baesso, M.L.; Snook, R.D.; Andrew, J.J. Fourier Transform Infrared Photoacoustic Spectroscopy to Study the Penetration of Substances through Skin. J. Phys. IV Proc. 1994, 4, C7-449–C7-451. [Google Scholar] [CrossRef]
- Hanh, B.D.; Neubert, R.H.H.; Wartewig, S.; Lasch, J. Penetration of Compounds through Human Stratum Corneum as Studied by Fourier Transform Infrared Photoacoustic Spectroscopy. J. Control. Release 2001, 70, 393–398. [Google Scholar] [CrossRef]
- Wan, B.; Ganier, C.; Du-Harpur, X.; Harun, N.; Watt, F.M.; Patalay, R.; Lynch, M.D. Applications and Future Directions for Optical Coherence Tomography in Dermatology. Br. J. Dermatol. 2021, 184, 1014–1022. [Google Scholar] [CrossRef]
- Liu, S.; Meng, X.; Wang, C.; Ma, J.; Fan, F.; Zhu, J. Handheld Optical Coherence Tomography for Tissue Imaging: Current Design and Medical Applications. Appl. Spectrosc. Rev. 2025, 60, 292–316. [Google Scholar] [CrossRef]
- Lane, M.E. Skin Penetration Enhancers. Int. J. Pharmaceut. 2013, 447, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Tuchin, V.V.; Xu, X.; Wang, R.K. Dynamic Optical Coherence Tomography in Studies of Optical Clearing, Sedimentation, and Aggregation of Immersed Blood. Appl. Opt. 2002, 41, 258–271. [Google Scholar] [CrossRef]
- Guo, X.; Guo, Z.Y.; Wei, H.J.; Yang, H.Q.; He, Y.H.; Xie, S.S.; Wu, G.Y.; Zhong, H.Q.; Li, L.Q.; Zhao, Q.L. In Vivo Quantification of Propylene Glycol, Glucose and Glycerol Diffusion in Human Skin with Optical Coherence Tomography. Laser Phys. 2010, 20, 1849–1855. [Google Scholar] [CrossRef]
- Guo, X.; Guo, Z.; Wei, H.; Yang, H.; He, Y.; Xie, S.; Wu, G.; Deng, X.; Zhao, Q.; Li, L. In Vivo Comparison of the Optical Clearing Efficacy of Optical Clearing Agents in Human Skin by Quantifying Permeability Using Optical Coherence Tomography. Photochem. Photobiol. 2011, 87, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Ghosn, M.G.; Tuchin, V.V.; Larin, K.V. Depth-Resolved Monitoring of Glucose Diffusion in Tissues by Using Optical Coherence Tomography. Opt. Lett. 2006, 31, 2314–2316. [Google Scholar] [CrossRef] [PubMed]
- Liba, O.; SoRelle, E.D.; Sen, D.; de la Zerda, A. Contrast-Enhanced Optical Coherence Tomography with Picomolar Sensitivity for Functional in Vivo Imaging. Sci. Rep. 2016, 6, 23337. [Google Scholar] [CrossRef]
- Feng, X.; Li, G.-Y.; Yun, S.-H. Ultra-Wideband Optical Coherence Elastography from Acoustic to Ultrasonic Frequencies. Nat. Commun. 2023, 14, 4949. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Z.; He, Z.; Xie, S.; Dong, B. Dual-Convolutional Neural Network-Enhanced Strain Estimation Method for Optical Coherence Elastography. Opt. Lett. 2024, 49, 438–441. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, K.; Mo, R.; Ni, Z.; He, Z.; Xie, S.; Dong, B. Bayesian-Neural-Network-Based Strain Estimation Approach for Optical Coherence Elastography. Optica 2024, 11, 1334. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Zhu, Z.; Yu, H.; Xie, H.; Fang, R.; Li, Z. Impact of Multiplicative Noise Removal on Digital Volume Correlation-Based Optical Coherence Elastography. Opt. Lasers Eng. 2025, 193, 109097. [Google Scholar] [CrossRef]
- Lu, C.; Ren, J.; Wei, X.; Shen, K.; Zhou, X.; Huang, Q.; Shen, M.; Zhu, D. Ultra-Fast Line-Field Swept Source Scanning Optical Coherence Elastography. Biomed. Opt. Express 2025, 16, 3105–3115. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Schill, A.W.; Nair, A.; Aglyamov, S.R.; Larina, I.V.; Larin, K.V. Ultra-Fast Dynamic Line-Field Optical Coherence Elastography. Opt. Lett. 2021, 46, 4742–4744. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Zvietcovich, F.; Larin, K.V. Introduction to Optical Coherence Elastography: Tutorial. J. Opt. Soc. Am. A 2022, 39, 418. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Nair, A.; Aglyamov, S.R.; Larin, K.V. Compressional Optical Coherence Elastography of the Cornea. Photonics 2021, 8, 111. [Google Scholar] [CrossRef]
- Kirby, M.A.; Pelivanov, I.; Song, S.; Ambrozinski, Ł.; Yoon, S.J.; Gao, L.; Li, D.; Shen, T.T.; Wang, R.K.; O’Donnell, M. Optical Coherence Elastography in Ophthalmology. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef]
- Sun, M.G.; Son, T.; Crutison, J.; Guaiquil, V.; Lin, S.; Nammari, L.; Klatt, D.; Yao, X.; Rosenblatt, M.I.; Royston, T.J. Optical Coherence Elastography for Assessing the Influence of Intraocular Pressure on Elastic Wave Dispersion in the Cornea. J. Mech. Behav. Biomed. Mater. 2022, 128, 105100. [Google Scholar] [CrossRef]
- Feng, X.; Li, G.-Y.; Jiang, Y.; Shortt-Nguyen, O.; Yun, S.-H. Optical Coherence Elastography Measures Mechanical Tension in the Lens and Capsule. Acta Biomater. 2025, 199, 252–261. [Google Scholar] [CrossRef]
- Li, G.-Y.; Feng, X.; Yun, S.-H. Simultaneous Tensile and Shear Measurement of the Human Cornea in Vivo Using S0- and A0-Wave Optical Coherence Elastography. Acta Biomater. 2024, 175, 114–122. [Google Scholar] [CrossRef]
- Quince, Z.; Westerman, N.; Alonso-Caneiro, D.; Read, S.A.; Collins, M.J. Anterior Segment Applications of Optical Coherence Elastography in Ophthalmic and Vision Science: A Systematic Review of Intrinsic Measurement Techniques and Clinical Relevance. Prog. Biomed. Eng. 2025, 7, 032001. [Google Scholar] [CrossRef]
- Kennedy, B.F.; Kennedy, K.M.; Sampson, D.D. A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 272–288. [Google Scholar] [CrossRef]
- Allen, W.M.; Chin, L.; Wijesinghe, P.; Kirk, R.W.; Latham, B.; Sampson, D.D.; Saunders, C.M.; Kennedy, B.F. Wide-Field Optical Coherence Micro-Elastography for Intraoperative Assessment of Human Breast Cancer Margins. Biomed. Opt. Express 2016, 7, 4139. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.F.; McLaughlin, R.A.; Kennedy, K.M.; Chin, L.; Wijesinghe, P.; Curatolo, A.; Tien, A.; Ronald, M.; Latham, B.; Saunders, C.M.; et al. Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue. Cancer Res. 2015, 75, 3236–3245. [Google Scholar] [CrossRef]
- Sanderson, R.W.; Kennedy, B.F. Imaging the Micro-Scale Mechanical Properties of Cancer Using Optical Coherence Elastography. Curr. Opin. Biomed. Eng. 2025, 35, 100614. [Google Scholar] [CrossRef]
- Huang, P.-C.; Chaney, E.J.; Aksamitiene, E.; Barkalifa, R.; Spillman, D.R.; Bogan, B.J.; Boppart, S.A. Biomechanical Sensing of in Vivo Magnetic Nanoparticle Hyperthermia-Treated Melanoma Using Magnetomotive Optical Coherence Elastography. Theranostics 2021, 11, 5620–5633. [Google Scholar] [CrossRef]
- Burhan, S.; Detrez, N.; Rewerts, K.; Strenge, P.; Buschschlüter, S.; Kren, J.; Hagel, C.; Bonsanto, M.M.; Brinkmann, R.; Huber, R. Phase Unwrapping for MHz Optical Coherence Elastography and Application to Brain Tumor Tissue. Biomed. Opt. Express 2024, 15, 1038–1058. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tang, M.; Xiong, W.; Luo, H.; Li, Z.; Yang, X.; Chen, W.; Hu, X.; He, X.; Yang, J. Quantitative Assessment of Biomechanical Changes in Oral Lesions at Different Cancerous Stages Using Optical Coherence Elastography. Quant. Imaging Med. Surg. 2025, 15, 4592–4607. [Google Scholar] [CrossRef]
- Gubarkova, E.V.; Sovetsky, A.A.; Matveev, L.A.; Matveyev, A.L.; Vorontsov, D.A.; Plekhanov, A.A.; Kuznetsov, S.S.; Gamayunov, S.V.; Vorontsov, A.Y.; Sirotkina, M.A.; et al. Nonlinear Elasticity Assessment with Optical Coherence Elastography for High-Selectivity Differentiation of Breast Cancer Tissues. Materials 2022, 15, 3308. [Google Scholar] [CrossRef]
- Qi, W.; Chen, R.; Chou, L.; Liu, G.; Zhang, J.; Zhou, Q.; Chen, Z. Phase-Resolved Acoustic Radiation Force Optical Coherence Elastography. J. Biomed. Opt. 2012, 17, 110505. [Google Scholar] [CrossRef]
- Rogowska, J.; Patel, N.; Plummer, S.; Brezinski, M.E. Quantitative Optical Coherence Tomographic Elastography: Method for Assessing Arterial Mechanical Properties. Br. J. Radiol. 2006, 79, 707–711. [Google Scholar] [CrossRef]
- Rogowska, J.; Patel, N.A.; Fujimoto, J.G.; Brezinski, M.E. Optical Coherence Tomographic Elastography Technique for Measuring Deformation and Strain of Atherosclerotic Tissues. Heart 2004, 90, 556–562. [Google Scholar] [CrossRef]
- Wang, T.; Pfeiffer, T.; Akyildiz, A.; van Beusekom, H.M.M.; Huber, R.; van der Steen, A.F.W.; van Soest, G. Intravascular Optical Coherence Elastography. Biomed. Opt. Express 2022, 13, 5418–5433. [Google Scholar] [CrossRef]
- Wijesinghe, P.; Johansen, N.J.; Curatolo, A.; Sampson, D.D.; Ganss, R.; Kennedy, B.F. Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta. Biophys. J. 2017, 113, 2540–2551. [Google Scholar] [CrossRef]
- Wang, S.; Singh, M.; Tran, T.T.; Leach, J.; Aglyamov, S.R.; Larina, I.V.; Martin, J.F.; Larin, K.V. Biomechanical Assessment of Myocardial Infarction Using Optical Coherence Elastography. Biomed. Opt. Express 2018, 9, 728–742. [Google Scholar] [CrossRef]
- Kearney, S.P.; Khan, A.; Dai, Z.; Royston, T.J. Dynamic Viscoelastic Models of Human Skin Using Optical Elastography. Phys. Med. Biol. 2015, 60, 6975. [Google Scholar] [CrossRef]
- Bartolini, L.; Feroldi, F.; Slaman, M.; Weda, J.J.A.; de Boer, J.F.; van Zuijlen, P.; Iannuzzi, D. Toward Clinical Elastography of Dermal Tissues: A Medical Device to Probe Skin’s Elasticity through Suction, with Subsurface Imaging via Optical Coherence Tomography. Rev. Sci. Instrum. 2020, 91, 074101. [Google Scholar] [CrossRef]
- Xu, H.; Xia, Q.; Shu, C.; Lan, J.; Wang, X.; Gao, W.; Lv, S.; Lin, R.; Xie, Z.; Xiong, X.; et al. In Vivo Endoscopic Optical Coherence Elastography Based on a Miniature Probe. Biomed. Opt. Express 2024, 15, 4237–4252. [Google Scholar] [CrossRef]
- Neidhardt, M.; Latus, S.; Eixmann, T.; Hüttmann, G.; Schlaefer, A. Deep Learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope. IEEE Trans. Med. Imaging 2025, 44, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Curatolo, A.; Wijesinghe, P.; Yeow, Y.L.; Hamzah, J.; Noble, P.B.; Karnowski, K.; Sampson, D.D.; Ganss, R.; Kim, J.K.; et al. Ultrahigh-Resolution Optical Coherence Elastography through a Micro-Endoscope: Towards in Vivo Imaging of Cellular-Scale Mechanics. Biomed. Opt. Express 2017, 8, 5127. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Boppart, S.A. Biomechanical Properties of In Vivo Human Skin from Dynamic Optical Coherence Elastography. IEEE Trans. Biomed. Eng. 2010, 57, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, G.-Y.; Ramier, A.; Eltony, A.M.; Yun, S.-H. In Vivo Stiffness Measurement of Epidermis, Dermis, and Hypodermis Using Broadband Rayleigh-Wave Optical Coherence Elastography. Acta Biomater. 2022, 146, 295–305. [Google Scholar] [CrossRef]
- Larin, K.V.; Sampson, D.D. Optical Coherence Elastography—OCT at Work in Tissue Biomechanics [Invited]. Biomed. Opt. Express 2017, 8, 1172–1202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Feng, Z.; Li, C.; Huang, Z. Quantitative Assessment of Human Anisotropic Skin Elasticity Using the Dispersion Curve of Surface Acoustic Wave Elastography. J. Biophotonics 2025, e202500299. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yin, S.; Lu, X.; Fu, H.; Gao, H.; Zhang, S. Research on the Correlation Between Skin Elasticity Evaluation Parameters and Age. Cosmetics 2024, 11, 205. [Google Scholar] [CrossRef]
- van Haasterecht, L.; Bartolini, L.; Louter, J.M.I.; González, P.J.; Niessen, F.B.; Iannuzzi, D.; Groot, M.L.; van Zuijlen, P.P.M. Suction-Based Optical Coherence Elastography for the Biomechanical Characterization of Pathological Skin Conditions: A Pilot Study. J. Biophotonics 2024, 17, e202300314. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Feng, Z.; Yang, W.; Perelli, A.; Wang, Z.; Li, C.; Huang, Z. VP-Net: An End-to-End Deep Learning Network for Elastic Wave Velocity Prediction in Human Skin in Vivo Using Optical Coherence Elastography. Front. Bioeng. Biotechnol. 2024, 12, 1465823. [Google Scholar] [CrossRef]
- Liu, H.; Yang, D.; Jia, R.; Wang, W.; Shang, J.; Liu, Q.; Liang, Y. Dynamic Optical Coherence Elastography for Skin Burn Assessment: A Preliminary Study on Mice Model. J. Biophotonics 2024, 17, e202400028. [Google Scholar] [CrossRef]
- Liu, H.; Yang, D.; Jia, R.; Wang, W.; Shao, L.; Liu, Q.; Liang, Y. Severity Assessment of Burned Skin Based on Anisotropy of Optical Coherence Elastography. J. Innov. Opt. Health Sci. 2025, e202500299. [Google Scholar] [CrossRef]
- Du, Y.; Liu, C.-H.; Lei, L.; Singh, M.; Li, J.; Hicks, M.J.; Larin, K.V.; Mohan, C. Rapid, Noninvasive Quantitation of Skin Disease in Systemic Sclerosis Using Optical Coherence Elastography. J. Biomed. Opt. 2016, 21, 1. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.; Ma, J.; Meng, X.; Ma, Z.; Fan, F. Optical Coherence Elastography and Its Applications for the Biomechanical Characterization of Tissues. J. Biophotonics 2023, 16, e202300292. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Hepburn, M.S.; Kennedy, B.F.; Larin, K.V. Optical Coherence Elastography. Nat. Rev. Methods Primers 2025, 5, 39. [Google Scholar] [CrossRef]
- Alexandrovskaya, Y.M.; Sovetsky, A.A.; Kasianenko, E.M.; Matveyev, A.L.; Matveev, L.A.; Baum, O.I.; Zaitsev, V.Y. Visualizing Kinetics of Diffusional Penetration in Tissues Using OCT-Based Strain Imaging. Adv. Drug Deliv. Rev. 2025, 217, 115484. [Google Scholar] [CrossRef] [PubMed]
- Acosta Santamaría, V.A.; García, M.F.; Molimard, J.; Avril, S. Characterization of Chemoelastic Effects in Arteries Using Digital Volume Correlation and Optical Coherence Tomography. Acta Biomater. 2020, 102, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Lawman, S.; Madden, P.W.; Romano, V.; Dong, Y.; Mason, S.; Williams, B.M.; Kaye, S.B.; Willoughby, C.E.; Harding, S.P.; Shen, Y.-C.; et al. Deformation Velocity Imaging Using Optical Coherence Tomography and Its Applications to the Cornea. Biomed. Opt. Express 2017, 8, 5579–5593. [Google Scholar] [CrossRef]
- Liu, C.H.; Singh, M.; Li, J.; Han, Z.; Wu, C.; Wang, S.; Idugboe, R.; Raghunathan, R.; Sobol, E.N.; Tuchin, V.V.; et al. Quantitative Assessment of Hyaline Cartilage Elasticity during Optical Clearing Using Optical Coherence Elastography. Sovrem. Tehnol. Med. 2015, 7, 44–51. [Google Scholar] [CrossRef]
- Bernardo, R.; Domingues, J.P.; Bernardes, R.; Morgado, A.M.; Batista, A. Evaluation of Skin Care Products Using Optical Coherence Elastography. In Proceedings of the Optical Elastography and Tissue Biomechanics X, San Francisco, CA, USA, 28–29 January 2023; Larin, K.V., Scarcelli, G., Vanholsbeeck, F., Eds.; SPIE: San Francisco, CA, USA, 2023; p. 35. [Google Scholar]
- Wang, S.; Larin, K.V. Optical Coherence Elastography for Tissue Characterization: A Review. J. Biophotonics 2015, 8, 279–302. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Hepburn, M.S.; Mowla, A.; Kennedy, B.F. Strain and Elasticity Imaging in Compression Optical Coherence Elastography: The Two-Decade Perspective and Recent Advances. J. Biophotonics 2021, 14, e202000257. [Google Scholar] [CrossRef]
- Baum, O.I.; Zaitsev, V.Y.; Yuzhakov, A.V.; Sviridov, A.P.; Novikova, M.L.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Sobol, E.N. Interplay of Temperature, Thermal-Stresses and Strains in Laser-Assisted Modification of Collagenous Tissues: Speckle-Contrast and OCT-Based Studies. J. Biophotonics 2020, 13, e201900199. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Matveev, L.A.; Matveyev, A.L.; Sovetsky, A.A.; Shabanov, D.V.; Ksenofontov, S.Y.; Gelikonov, G.V.; Baum, O.I.; Omelchenko, A.I.; Yuzhakov, A.V.; et al. Optimization of Phase-Resolved Optical Coherence Elastography for Highly-Sensitive Monitoring of Slow-Rate Strains. Laser Phys. Lett. 2019, 16, 065601. [Google Scholar] [CrossRef]
- Alexandrovskaya, Y.M.; Baum, O.I.; Sovetsky, A.A.; Matveyev, A.L.; Matveev, L.A.; Sobol, E.N.; Zaitsev, V.Y. Observation of Internal Stress Relaxation in Laser-Reshaped Cartilaginous Implants Using OCT-Based Strain Mapping. Laser Phys. Lett. 2020, 17, 085603. [Google Scholar] [CrossRef]
- Alexandrovskaya, Y.M.; Kasianenko, E.M.; Sovetsky, A.A.; Matveyev, A.L.; Atyakshin, D.A.; Patsap, O.I.; Ignatiuk, M.A.; Volodkin, A.V.; Zaitsev, V.Y. Optical Coherence Elastography with Osmotically Induced Strains: Preliminary Demonstration for Express Detection of Cartilage Degradation. J. Biophotonics 2024, 17, e202400016. [Google Scholar] [CrossRef] [PubMed]
- Sdobnov, A.Y.; Darvin, M.E.; Schleusener, J.; Lademann, J.; Tuchin, V.V. Hydrogen Bound Water Profiles in the Skin Influenced by Optical Clearing Molecular Agents-Quantitative Analysis Using Confocal Raman Microscopy. J. Biophotonics 2019, 12, e201800283. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Dover Books on Physics; Dover Publications: Minniora, NY, USA, 2013; ISBN 978-0-486-17336-8. [Google Scholar]
- Kennedy, B.F.; Koh, S.H.; McLaughlin, R.A.; Kennedy, K.M.; Munro, P.R.T.; Sampson, D.D. Strain Estimation in Phase-Sensitive Optical Coherence Elastography. Biomed. Opt. Express 2012, 3, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Gelikonov, G.V.; Moiseev, A.A.; Zaitsev, V.Y. Vector Method for Strain Estimation in Phase-Sensitive Optical Coherence Elastography. Laser Phys. Lett. 2018, 15, 065603. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Ksenofontov, S.Y.; Sovetsky, A.A.; Matveyev, A.L.; Matveev, L.A.; Zykov, A.A.; Gelikonov, G.V. Real-Time Strain and Elasticity Imaging in Phase-Sensitive Optical Coherence Elastography Using a Computationally Efficient Realization of the Vector Method. Photonics 2021, 8, 527. [Google Scholar] [CrossRef]
- Zykov, A.A.; Matveyev, A.L.; Matveev, L.A.; Assaad, M.; Zaitsev, V.Y. Computationally Efficient Adaptive Optimization of Vector-Method Parameters for Phase-Sensitive Strain Estimation in Optical Coherence Elastography. Laser Phys. Lett. 2024, 21, 085601. [Google Scholar] [CrossRef]
- Sovetsky, A.A.; Matveyev, A.L.; Matveev, L.A.; Gelikonov, G.V.; Zaitsev, V.Y. Mapping Large Strains in Phase-Sensitive OCT: Key Role of Supra-Pixel Displacement Tracking in Incremental Strain Evaluation. J. Biomed. Photonics Eng. 2022, 8, 030304. [Google Scholar] [CrossRef]
- De Luca, F.; Maraviglia, B.; Mercurio, A. Biological Tissue Simulation and Standard Testing Material for MRI. Magn. Reson. Med. 1987, 4, 189–192. [Google Scholar] [CrossRef]
- Choi, M.J.; Guntur, S.R.; Lee, K.I.; Paeng, D.G.; Coleman, A. A Tissue Mimicking Polyacrylamide Hydrogel Phantom for Visualizing Thermal Lesions Generated by High Intensity Focused Ultrasound. Ultrasound Med. Biol. 2013, 39, 439–448. [Google Scholar] [CrossRef]
- Datla, N.V.; Konh, B.; Koo, J.J.Y.; Choi, D.J.W.; Yu, Y.; Dicker, A.P.; Podder, T.K.; Darvish, K.; Hutapea, P. Polyacrylamide Phantom for Self-Actuating Needle-Tissue Interaction Studies. Med. Eng. Phys. 2014, 36, 140–145. [Google Scholar] [CrossRef]
- Zhong, X.; Cao, Y.; Zhou, P. Thermochromic Tissue-Mimicking Phantoms for Thermal Ablation Based on Polyacrylamide Gel. Ultrasound Med. Biol. 2022, 48, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Alexandrovskaya, Y.M.; Kasianenko, E.M.; Sovetsky, A.A.; Matveyev, A.L.; Zaitsev, V.Y. Spatio-Temporal Dynamics of Diffusion-Associated Deformations of Biological Tissues and Polyacrylamide Gels Observed with Optical Coherence Elastography. Materials 2023, 16, 2036. [Google Scholar] [CrossRef]
- Tuchin, V.V.; Zhu, D.; Genina, E.A. (Eds.) Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-302525-2. [Google Scholar]
- Alexandrovskaya, Y.; Baum, O.; Sovetsky, A.; Matveyev, A.; Matveev, L.; Sobol, E.; Zaitsev, V. Optical Coherence Elastography as a Tool for Studying Deformations in Biomaterials: Spatially-Resolved Osmotic Strain Dynamics in Cartilaginous Samples. Materials 2022, 15, 904. [Google Scholar] [CrossRef]
- Szarko, M.; Muldrew, K.; Bertram, J.E. Freeze-Thaw Treatment Effects on the Dynamic Mechanical Properties of Articular Cartilage. BMC Musculoskelet. Disord. 2010, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Changoor, A.; Fereydoonzad, L.; Yaroshinsky, A.; Buschmann, M.D. Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage. J. Biomech. Eng. 2010, 132, 064502. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Hirviniemi, M.; Tiitu, V.; Jurvelin, J.S.; Töyräs, J.; Lammi, M.J. Effects of Freeze-Thaw Cycle with and without Proteolysis Inhibitors and Cryopreservant on the Biochemical and Biomechanical Properties of Articular Cartilage. Cartilage 2014, 5, 97–106. [Google Scholar] [CrossRef]
- Wen, L.; Grad, S.; Creemers, L.B.; Stoddart, M.J. Establishment of an Ex Vivo Cartilage Damage Model by Combined Collagenase Treatment and Mechanical Loading. Arthritis Res. Ther. 2025, 27, 30. [Google Scholar] [CrossRef] [PubMed]
- Wardale, J.; Mullen, L.; Howard, D.; Ghose, S.; Rushton, N. An Ex Vivo Model Using Human Osteoarthritic Cartilage Demonstrates the Release of Bioactive Insulin-like Growth Factor-1 from a Collagen-Glycosaminoglycan Scaffold. Cell Biochem. Funct. 2015, 33, 277–284. [Google Scholar] [CrossRef]
- Anderson, J.R.; Phelan, M.M.; Foddy, L.; Clegg, P.D.; Peffers, M.J. Ex Vivo Equine Cartilage Explant Osteoarthritis Model: A Metabolomics and Proteomics Study. J. Proteome Res. 2020, 19, 3652–3667. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Matveyev, A.L.; Matveev, L.A.; Gelikonov, G.V.; Baum, O.I.; Omelchenko, A.I.; Shabanov, D.V.; Sovetsky, A.A.; Yuzhakov, A.V.; Fedorov, A.A.; et al. Revealing Structural Modifications in Thermomechanical Reshaping of Collagenous Tissues Using Optical Coherence Elastography. J. Biophotonics 2019, 12, e201800250. [Google Scholar] [CrossRef]
- Sobol, E.N.; Baum, O.I.; Shekhter, A.B.; Guller, A.; Baskov, A.V. Laser-Induced Regeneration of Cartilage. J. Biomed. Opt. 2011, 16, 080902. [Google Scholar] [CrossRef]
- Sobol, E.N.; Milner, T.E.; Shekhter, A.B.; Baum, O.I.; Guller, A.E.; Ignatieva, N.Y.; Omelchenko, A.I.; Zakharkina, O.L. Laser Reshaping and Regeneration of Cartilage. Laser Phys. Lett. 2007, 4, 488. [Google Scholar] [CrossRef]
- Genina, E.A.; Bashkatov, A.N.; Korobko, A.A.; Zubkova, E.A.; Tuchin, V.V.; Yaroslavsky, I.; Altshuler, G.B. Optical Clearing of Human Skin: Comparative Study of Permeability and Dehydration of Intact and Photothermally Perforated Skin. J. Biomed. Opt. 2008, 13, 021102. [Google Scholar] [CrossRef]
- Sarri, B.; Chen, X.; Canonge, R.; Grégoire, S.; Formanek, F.; Galey, J.-B.; Potter, A.; Bornschlögl, T.; Rigneault, H. In Vivo Quantitative Molecular Absorption of Glycerol in Human Skin Using Coherent Anti-Stokes Raman Scattering (CARS) and Two-Photon Auto-Fluorescence. J. Control. Release 2019, 308, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.R.; Pinheiro, M.R.; Tuchina, D.K.; Timoshina, P.A.; Carvalho, M.I.; Oliveira, L.M. Light in Evaluation of Molecular Diffusion in Tissues: Discrimination of Pathologies. Adv. Drug Deliv. Rev. 2024, 212, 115420. [Google Scholar] [CrossRef]
- Choe, C.; Lademann, J.; Darvin, M.E. Analysis of Human and Porcine Skin in Vivo/Ex Vivo for Penetration of Selected Oils by Confocal Raman Microscopy. Ski. Pharmacol. Physiol. 2015, 28, 318–330. [Google Scholar] [CrossRef]
- Lademann, J.; Meinke, M.C.; Schanzer, S.; Richter, H.; Darvin, M.E.; Haag, S.F.; Fluhr, J.W.; Weigmann, H.J.; Sterry, W.; Patzelt, A. In Vivo Methods for the Analysis of the Penetration of Topically Applied Substances in and through the Skin Barrier. Int. J. Cosmet. Sci. 2012, 34, 551–559. [Google Scholar] [CrossRef]
- Petry, T.; Bury, D.; Fautz, R.; Hauser, M.; Huber, B.; Markowetz, A.; Mishra, S.; Rettinger, K.; Schuh, W.; Teichert, T. Review of Data on the Dermal Penetration of Mineral Oils and Waxes Used in Cosmetic Applications. Toxicol. Lett. 2017, 280, 70–78. [Google Scholar] [CrossRef] [PubMed]
- van Logtestijn, M.D.; Dominguez-Huttinger, E.; Stamatas, G.N.; Tanaka, R.J. Resistance to Water Diffusion in the Stratum Corneum Is Depth-Dependent. PLoS ONE 2015, 10, e0117292. [Google Scholar] [CrossRef]
- Stamatas, G.N.; de Sterke, J.; Hauser, M.; von Stetten, O.; van der Pol, A. Lipid Uptake and Skin Occlusion Following Topical Application of Oils on Adult and Infant Skin. J. Dermatol. Sci. 2008, 50, 135–142. [Google Scholar] [CrossRef]
- Gruber, J.V.; Terpak, N.; Massard, S.; Schwartz, A.; Bojanowski, K. Passive Enhancement of Retinol Skin Penetration by Jojoba Oil Measured Using the Skin Parallel Artificial Membrane Permeation Assay (Skin-PAMPA): A Pilot Study. Clin. Cosmet. Investig. Dermatol. 2023, 16, 317–324. [Google Scholar] [CrossRef]
- Alhasso, B.; Ghori, M.U.; Conway, B.R. Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations. Sci. Pharm. 2022, 90, 14. [Google Scholar] [CrossRef]
- Ryabkov, M.; Sizov, M.; Bederina, E.; Zarubenko, P.; Peretyagin, P.; Moiseev, A.; Vorobiev, A.; Gladkova, N.; Zaitsev, V.; Kiseleva, E. Optical Coherence Tomography Angiography of the Intestine: How to Prevent Motion Artifacts in Open and Laparoscopic Surgery? Life 2023, 13, 705. [Google Scholar] [CrossRef]
- König, K.; König, A. Multiphoton Tomography in Cosmetic Research. Cosmetics 2025, 12, 44. [Google Scholar] [CrossRef]
- Zöller, N.N.; Kippenberger, S.; Thaçi, D.; Mewes, K.; Spiegel, M.; Sättler, A.; Schultz, M.; Bereiter-Hahn, J.; Kaufmann, R.; Bernd, A. Evaluation of Beneficial and Adverse Effects of Glucocorticoids on a Newly Developed Full-Thickness Skin Model. Toxicol. Vitr. 2008, 22, 747–759. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaitsev, V.Y.; Alexandrovskaya, Y.M.; Sovetsky, A.A.; Kasianenko, E.M.; Matveyev, A.L.; Shabanov, D.V.; Darvin, M.E. Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration. Cosmetics 2025, 12, 183. https://doi.org/10.3390/cosmetics12050183
Zaitsev VY, Alexandrovskaya YM, Sovetsky AA, Kasianenko EM, Matveyev AL, Shabanov DV, Darvin ME. Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration. Cosmetics. 2025; 12(5):183. https://doi.org/10.3390/cosmetics12050183
Chicago/Turabian StyleZaitsev, Vladimir Y., Yulia M. Alexandrovskaya, Alexander A. Sovetsky, Ekaterina M. Kasianenko, Alexander L. Matveyev, Dmitry V. Shabanov, and Maxim E. Darvin. 2025. "Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration" Cosmetics 12, no. 5: 183. https://doi.org/10.3390/cosmetics12050183
APA StyleZaitsev, V. Y., Alexandrovskaya, Y. M., Sovetsky, A. A., Kasianenko, E. M., Matveyev, A. L., Shabanov, D. V., & Darvin, M. E. (2025). Optical Coherence Elastography—A Novel Non-Invasive Optical Method for Real-Time Determination of Substances Penetration and Associated Skin Dehydration. Cosmetics, 12(5), 183. https://doi.org/10.3390/cosmetics12050183