Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = optical damage threshold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7939 KB  
Article
Femtosecond Laser Single-Spot Welding of Sapphire/Invar Alloy
by Yuyang Chen, Yinzhi Fu, Xianshi Jia, Kai Li and Cong Wang
Materials 2025, 18(16), 3839; https://doi.org/10.3390/ma18163839 - 15 Aug 2025
Viewed by 349
Abstract
Ultrafast laser welding of glass/metal heterostructures has found extensive applications in sensors, medical devices, and optical systems. However, achieving high-stability, high-quality welds under non-optical contact conditions remains challenging due to severe internal damage within glass materials. This study addresses thermal management through synergistic [...] Read more.
Ultrafast laser welding of glass/metal heterostructures has found extensive applications in sensors, medical devices, and optical systems. However, achieving high-stability, high-quality welds under non-optical contact conditions remains challenging due to severe internal damage within glass materials. This study addresses thermal management through synergistic control of thermal accumulation effects and material ablation thresholds. Using the sapphire/Invar alloy system as a model for glass/metal welding, we investigated thermal accumulation effects during ultrafast laser ablation of Invar alloy through theoretical simulations. Under a repetition rate of 1 MHz, the femtosecond laser raised the lattice equilibrium temperature by 700 K within 10 microseconds, demonstrating that high repetition rate femtosecond lasers can induce effective heat accumulation in Invar alloy. Furthermore, ablation thresholds for both materials were determined across varying repetition rates via the D2 method, with corresponding threshold curves systematically constructed. Finally, based on the simulation and ablation threshold calculation results, laser parameters were selected for ultrafast laser single point welding of sapphire and Invar alloy. The experimental results demonstrate effective thermal effect mitigation, achieving a maximum shear strength of 63.37 MPa. Comparative analysis against traditional scan welding further validates the superiority of our approach in thermal management. This work provides foundational theoretical and methodological guidance for ultrafast laser welding of glass/metal heterostructures. Full article
Show Figures

Figure 1

10 pages, 2113 KB  
Article
Generation of 27 nm Spectral Bandwidth, Two-Port Output Pulses Directly from a Yb-Doped Fiber Laser
by Junyu Chen, Mengyun Hu, Jianing Chen, Chixuan Zou, Zichen Zhao, Gantong Zhong and Shuai Yuan
Photonics 2025, 12(8), 812; https://doi.org/10.3390/photonics12080812 - 14 Aug 2025
Viewed by 476
Abstract
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced [...] Read more.
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced to achieve broad spectral bandwidth and strong output power. The dual wavelengths were emitted from the clockwise and counterclockwise ports, respectively, and self-started mode-locking was achieved. The bidirectional output laser generates stable pulses with up to 223.5 mW average power at a 46.04 MHz repetition rate, corresponding to a pulse energy of 5 nJ. The bidirectional ultrashort outputs of the laser provide potential applications in supercontinuum generation and medical and biological applications. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

15 pages, 2272 KB  
Article
Improving the Detection Accuracy of Subsurface Damage in Optical Materials by Exploiting the Fluorescence Polarization Properties of Quantum Dots
by Yana Cui, Xuelian Liu, Bo Xiao, Yajie Wu and Chunyang Wang
Nanomaterials 2025, 15(15), 1182; https://doi.org/10.3390/nano15151182 - 31 Jul 2025
Viewed by 292
Abstract
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. [...] Read more.
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. The large surface roughness of the lapped optical materials further increases the difficulty of the nondestructive detection of SSD. Quantum dots (QDs) show great development potential in the nondestructive detection of SSD in lapped materials. However, existing QD-based SSD detection methods ignore the polarization sensitivity of QDs to excitation light, which affects the detection accuracy of SSD. To address this problem, this paper explores the fluorescence polarization properties of QDs in the SSD of optical materials. First, the detection principle of SSD based on the fluorescence polarization of QDs is investigated. Subsequently, a fluorescence polarization detection system is developed to analyze the fluorescence polarization properties of QDs in SSD. Finally, the SSD is detected based on the studied polarization properties. The results show that the proposed method effectively improves the detection rate of SSD by 10.8% and thus provides guidance for evaluating the quality of optical material and optimizing optical material processing technologies. The research paradigm is equally applicable to biomedicine, energy, optoelectronics, and the environment, where QDs have a wide range of applications. Full article
Show Figures

Figure 1

13 pages, 3812 KB  
Article
Generation of Four-Beam Output in a Bonded Nd:YAG/Cr4+:YAG Laser via Fiber Splitter Pumping
by Qixiu Zhong, Dongdong Meng, Zhanduo Qiao, Wenqi Ge, Tieliang Zhang, Zihang Zhou, Hong Xiao and Zhongwei Fan
Photonics 2025, 12(8), 760; https://doi.org/10.3390/photonics12080760 - 29 Jul 2025
Viewed by 453
Abstract
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and [...] Read more.
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and a 100 Hz repetition rate, the system achieves four linearly polarized output beams with an average pulse energy of 0.964 mJ, a repetition rate of 100 Hz, and an optical-to-optical conversion efficiency of 23.98%. The energy distribution ratios for the upper-left, lower-left, upper-right, and lower-right beams are 22.61%, 24.46%, 25.50%, and 27.43%, with pulse widths of 2.184 ns, 2.193 ns, 2.205 ns, and 2.211 ns, respectively. As the optical axis distance increases, the far-field spot pattern transitions from a single circular profile to four fully separated spots, where the lower-right beam exhibits beam quality factors of Mx2 = 1.181 and My2 = 1.289. Simulations at a 293.15 K coolant temperature and a 4.02 mJ pump energy reveal that split pumping reduces the volume-averaged temperature rise in Nd:YAG by 28.81% compared to single-beam pumping (2.57 K vs. 3.61 K), decreases the peak temperature rise by 66.15% (6.97 K vs. 20.59 K), and suppresses peak-to-peak temperature variation by 78.6% (1.34 K vs. 6.26 K). Compared with existing multi-beam generation methods, the fiber splitter approach offers integrated advantages—including compact size, low cost, high energy utilization, superior beam quality, and elevated damage thresholds—and thus shows promising potential for automotive multi-point ignition, multi-beam single-photon counting LiDAR, and laser-induced breakdown spectroscopy (LIBS) online analysis. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

13 pages, 2390 KB  
Article
Enhancing Laser Damage Resistance in TiO2 Films: Dual-Additive Strategy Using High Thermal Conductivity Agents and Long-Chain Organic Compounds
by Yan Zhang, Ming Ma, Zirun Peng, Na Liu, Hanzhuo Zhang, Peizhong Feng and Cheng Xu
Photonics 2025, 12(8), 742; https://doi.org/10.3390/photonics12080742 - 22 Jul 2025
Viewed by 390
Abstract
The laser damage resistance of optical films holds significant practical importance, as it largely determines both the maximum power output of laser systems and the overall stability of the entire optical assembly. A comprehensive investigation was conducted to examine the influence of both [...] Read more.
The laser damage resistance of optical films holds significant practical importance, as it largely determines both the maximum power output of laser systems and the overall stability of the entire optical assembly. A comprehensive investigation was conducted to examine the influence of both single additives—acetylacetone (ACAC) and diethanolamine (DEA)—and dual-additive systems, specifically ACAC combined with polyethylene glycol 200 (PEG 200) and DEA combined with PEG 200, on TiO2 film properties and their laser-induced damage behavior under 1064 nm irradiation. It demonstrated that the films fabricated using ACAC exhibited smoother surfaces. Nevertheless, the sol prepared with DEA was more stable, resulting in films with superior optical properties and an enhanced laser-induced damage threshold (LIDT). The incorporation of dual additives further improved the films’ LIDT. Specifically, the film with DEA and PEG 200 achieved the highest LIDT, reaching 21.5 J/cm2. Moreover, all films exhibited defect-induced damage, yet distinct damage morphologies were observed across different samples. The single-additive films predominantly displayed stress-type damage patterns, whereas the dual-additive films manifested melting-type damage characteristics. Furthermore, through a combination of experiments and calculations, it was revealed that the reasons why the film with DEA and PEG 200 achieved the highest LIDT were twofold: first, the high thermal conductivity of DEA reduced the maximum temperature at the defect center within the film; second, the long molecular chains of PEG 200 created a looser film structure that better mitigated damage caused by stress and expansion during laser irradiation. This study presents a promising approach to enhancing the LIDT through the strategic selection of additives with high thermal conductivity while simultaneously incorporating organic compounds with long molecular chains to develop effective dual-additive films. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

10 pages, 3701 KB  
Article
Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation
by Ping Han, Dapeng Jiang, Huamin Kou, Rongrong Liu, Qinghui Wu, Zhonghan Zhang, Zhen Zhang, Chong Shan, Chongyun Shao, Yafei Lian, Yuanan Zhao, Xing Peng and Liangbi Su
Photonics 2025, 12(6), 579; https://doi.org/10.3390/photonics12060579 - 6 Jun 2025
Viewed by 529
Abstract
Calcium fluoride (CaF2) crystals are widely utilized in deep-ultraviolet (DUV) lithography due to their excellent optical properties. The laser-induced degradation and damage of CaF2 crystals is a critical concern that restricts its extended application. Impurities of CaF2 crystal are [...] Read more.
Calcium fluoride (CaF2) crystals are widely utilized in deep-ultraviolet (DUV) lithography due to their excellent optical properties. The laser-induced degradation and damage of CaF2 crystals is a critical concern that restricts its extended application. Impurities of CaF2 crystal are considered a key factor affecting its laser resistance. Establishing the quantitative relationship and mechanism of impurity content impacting the degradation and damage characteristics of CaF2 crystal is essential. This study investigated the characteristics of different impurity contents affecting the degradation and laser-induced damage thresholds (LIDTs) of CaF2 crystals under X-ray and 193 nm pulsed laser irradiations, and quantitatively analyzed the degradation process and mechanism. Our findings demonstrate that impurities at ppm levels significantly diminish the transmittance of CaF2 crystals across various wavelengths following X-ray irradiation. In contrast, these impurities have a negligible effect on the LIDT test results, suggesting distinct damage mechanisms between X-ray and laser irradiation. This study provides valuable insights for optimizing the CaF2 crystal fabrication process and enhancing irradiation resistance. Full article
(This article belongs to the Special Issue Innovative Optical Technologies in Advanced Manufacturing)
Show Figures

Figure 1

10 pages, 1167 KB  
Article
Investigation of UV Picosecond Laser Damage Threshold of Anti-Reflection Coated Windows
by Priyadarshani Narayanasamy, Martin Mydlář, Hana Turčičová, Mihai George Mureșan, Ondřej Novák, Jan Vanda and Jan Brajer
J. Manuf. Mater. Process. 2025, 9(6), 180; https://doi.org/10.3390/jmmp9060180 - 29 May 2025
Viewed by 932
Abstract
Long-term stability and laser-induced damage resistance of optical components in the UV region are critical for enhancing their performance in UV high-power laser applications. This study evaluates the laser-induced damage threshold (LIDT) of commercially available UV optical windows with anti-reflective (AR) coating, produced [...] Read more.
Long-term stability and laser-induced damage resistance of optical components in the UV region are critical for enhancing their performance in UV high-power laser applications. This study evaluates the laser-induced damage threshold (LIDT) of commercially available UV optical windows with anti-reflective (AR) coating, produced through various coating techniques and designed for high-power lasers. A third-harmonic (343 nm) wavelength with good beam quality was generated in the picosecond regime to investigate the LIDT of optical components. The LIDT for each sample was measured under controlled conditions and compared based on their coating techniques. The sample coated with Al2O3/SiO2 through ion beam sputtering has the best LIDT value, of 0.6 J/cm2, among the tested samples, based on the hundred-thousand-pulses methodology. The damage threshold curve and the corresponding damage morphology are discussed in detail, and these findings provide insights into the durability and susceptibility of UV optics for advanced laser systems available in the market. Full article
Show Figures

Figure 1

23 pages, 6966 KB  
Article
Structural Vibration Detection Using the Optimized Optical Flow Technique and UAV After Removing UAV’s Motions
by Xin Bai, Rongliang Xie, Ning Liu and Zi Zhang
Appl. Sci. 2025, 15(11), 5821; https://doi.org/10.3390/app15115821 - 22 May 2025
Viewed by 821
Abstract
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration [...] Read more.
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration analysis and damage identification. In this study, an optimized Lucas–Kanade optical flow algorithm is proposed, and it integrates feature point trajectory analysis with an adaptive thresholding mechanism, and improves the accuracy of the measurements through an innovative error vector filtering strategy. Comprehensive experimental validation demonstrates the performance of the algorithm in a variety of test scenarios. The method tracked MTS vibrations with 97% accuracy in a laboratory environment, and the robustness of the environment was confirmed by successful noise reduction using a dedicated noise-suppression algorithm under camera-induced interference conditions. UAV field tests show that it effectively compensates for UAV-induced motion artifacts and maintains over 90% measurement accuracy in both indoor and outdoor environments. Comparative analyses show that the proposed UAV-based method has significantly improved accuracy compared to the traditional optical flow method, providing a highly robust visual monitoring solution for structural durability assessment in complex environments. Full article
Show Figures

Figure 1

9 pages, 4438 KB  
Article
Nonlinear Optical Response of Tungsten Carbide Thin Film as Saturable Absorber at 1 μm and Its Application for Passively Q-Switched Nd:YAG Lasers
by Zhonglin Zhang, Liang Xie, Zhengwu Liu, Xu Wang, Jiang Wang, Guodong Zhang, Xinwei Zhang, Zongcheng Miao and Guanghua Cheng
Nanomaterials 2025, 15(8), 605; https://doi.org/10.3390/nano15080605 - 15 Apr 2025
Viewed by 575
Abstract
Pulsed lasers have a wide range of applications in scientific and industrial fields, and the saturable absorber (SA) is the core device of pulsed lasers. Tungsten carbide (WC) has garnered significant attention due to its exceptional physicochemical properties, making it a promising candidate [...] Read more.
Pulsed lasers have a wide range of applications in scientific and industrial fields, and the saturable absorber (SA) is the core device of pulsed lasers. Tungsten carbide (WC) has garnered significant attention due to its exceptional physicochemical properties, making it a promising candidate for optoelectronic applications, particularly as an SA in pulse lasers. This study is the first to report the nonlinear optical properties of WC thin film at a 1064 nm wavelength and its use as an SA device to generate pulsed lasers. A high damage threshold of 472.4 mJ/cm2 was achieved, which is a critical parameter for high-power laser applications. The constructed laser demonstrated pulsed output with a central wavelength of 1064.12 nm, an average output power of 185 mW, and a narrow pulse width of 684 ns. Our research has provided a strong candidate for the development of future economically stable high-power laser systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

16 pages, 9709 KB  
Article
Al Doping Effect on Enhancement of Nonlinear Optical Absorption in Amorphous Bi2Te3 Thin Films
by Tengfei Zhang, Shenjin Wei, Shubo Zhang, Menghan Li, Jiawei Wang, Jingze Liu, Junhua Wang, Ertao Hu and Jing Li
Materials 2025, 18(6), 1372; https://doi.org/10.3390/ma18061372 - 20 Mar 2025
Viewed by 553
Abstract
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al [...] Read more.
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al doping on the structure, linear optical properties, and nonlinear optical absorption behavior of Bi2Te3 thin films. The amorphous Al-doped Bi2Te3 thin films with varying Al doping concentrations were prepared using magnetron co-sputtering. The structure and linear optical properties were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/Vis/NIR spectrophotometry. The third-order nonlinear optical absorption properties of Al: Bi2Te3 thin films were investigated using the open-aperture Z-scan system with a 100 fs laser pulse width at a wavelength of 800 nm and a repetition rate of 1 kHz. The results indicate that Al dopant reduces both the refractive index and extinction coefficient and induces a redshift in the optical bandgap. The optical properties of the films can be effectively modulated by varying the Al doping concentration. Compared with undoped Bi2Te3 thin films, Al-doped Bi2Te3 thin films exhibit larger nonlinear optical absorption coefficients and higher damage thresholds and maintaining high transmittance. These findings provide experimental evidence and a reliable approach for the further optimization and design of ultrafast nonlinear optical devices. Full article
Show Figures

Figure 1

18 pages, 3381 KB  
Article
Improved Variational Mode Decomposition in Pipeline Leakage Detection at the Oil Gas Chemical Terminals Based on Distributed Optical Fiber Acoustic Sensing System
by Hongxuan Xu, Jiancun Zuo and Teng Wang
J. Mar. Sci. Eng. 2025, 13(3), 531; https://doi.org/10.3390/jmse13030531 - 10 Mar 2025
Viewed by 983
Abstract
Leakage in oil and gas transportation pipelines is a critical issue that often leads to severe hazardous accidents at oil and gas chemical terminals, resulting in devastating consequences such as ocean environmental pollution, significant property damage, and personal injuries. To mitigate these risks, [...] Read more.
Leakage in oil and gas transportation pipelines is a critical issue that often leads to severe hazardous accidents at oil and gas chemical terminals, resulting in devastating consequences such as ocean environmental pollution, significant property damage, and personal injuries. To mitigate these risks, timely detection and precise localization of pipeline leaks are of paramount importance. This paper employs a distributed fiber optic sensing system to collect pipeline leakage signals and processes these signals using the traditional variational mode decomposition (VMD) algorithm. While traditional VMD methods require manual parameter setting, which can lead to suboptimal decomposition results if parameters are incorrectly chosen, our proposed method introduces an improved particle swarm optimization algorithm to automatically determine the optimal parameters. Furthermore, we integrate VMD with fuzzy dispersion entropy to effectively select and reconstruct intrinsic mode functions, significantly enhancing the denoising performance. Our results demonstrate that this approach can achieve a signal-to-noise ratio of up to 24.15 dB and reduce the mean square error to as low as 0.0027, showcasing its superior capability in noise reduction. Additionally, this paper proposes a novel threshold setting technique that addresses the limitations of traditional methods, which often rely on instantaneous values and are prone to false alarms. This innovative approach significantly reduces the false alarm rate in gas pipeline leakage detection, ensuring higher detection accuracy and reliability. The proposed method not only advances the technical capabilities of pipeline leakage monitoring but also offers strong practical applicability, making it a valuable tool for enhancing the safety and efficiency of oil and gas transportation systems. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 7520 KB  
Review
AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties
by Guansheng Xing and Bing Chen
Nanomaterials 2025, 15(2), 147; https://doi.org/10.3390/nano15020147 - 20 Jan 2025
Cited by 1 | Viewed by 1631
Abstract
Silver gallium sulfide (AgGaS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS2 has gained considerable attention as a highly promising material for nonlinear optical [...] Read more.
Silver gallium sulfide (AgGaS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS2 has gained considerable attention as a highly promising material for nonlinear optical applications such as second harmonic generation and optical parametric oscillation. In attempts to expand the research scope, on the one hand, AgGaS2-derived bulk materials with similar diamond-like configurations have been investigated for the enhancement of nonlinear optics performance, especially the improvement of laser-induced damage thresholds and/or nonlinear coefficients; on the other hand, nanoscale AgGaS2 and its derivatives have been synthesized with sizes as low as the exciton Bohr radius for the realization of potential applications in the fields of optoelectronics and lighting. This review article focuses on recent advancements and future opportunities in the design of both bulk and nanocrystalline AgGaS2 and its derivatives, covering structural, electronic, and chemical aspects. By delving into the properties of AgGaS2 in bulk and nanocrystalline states, this review aims to deepen the understanding of chalcopyrite materials and maximize their utilization in photon conversion and beyond. Full article
(This article belongs to the Special Issue Nonlinear Optics and Ultrafast Lasers in Nanosystems)
Show Figures

Figure 1

10 pages, 1375 KB  
Article
Quantifying Uncertainty in Laser-Induced Damage Threshold for Cylindrical Gratings
by Yuan Li, Junqi Xu, Guoliang Yang, Lihong Yang and Junhong Su
Micromachines 2025, 16(1), 45; https://doi.org/10.3390/mi16010045 - 30 Dec 2024
Viewed by 1027
Abstract
The laser-induced damage threshold (LIDT) is a key measure of an optical component’s resistance to laser damage, making its accurate determination crucial. Following the ISO 21254 standards, we studied the measurement strategy and uncertainty fitting method for laser damage, establishing a calculation model [...] Read more.
The laser-induced damage threshold (LIDT) is a key measure of an optical component’s resistance to laser damage, making its accurate determination crucial. Following the ISO 21254 standards, we studied the measurement strategy and uncertainty fitting method for laser damage, establishing a calculation model for uncertainty. Research indicates that precise LIDT measurement can be achieved by using a small energy level difference and conducting multiple measurements. The LIDT values for the cylindrical grating are 15.34 ± 0.00052 J/cm2 (95% confidence) and 15.34 ± 0.00078 J/cm2 (99% confidence), demonstrating low uncertainty and reliable results. This strategy effectively measures the LIDT and uncertainty of various grating surface shapes, offering reliable data for assessing their anti-laser-damage performance. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

9 pages, 1827 KB  
Article
Efficient Second-Harmonic Generation in Thin-Film Lithium Tantalate Through Modal Phase-Matching
by Jiacheng Liu, Gongyu Xia, Pingyu Zhu, Kaikai Zhang, Ping Xu and Zhihong Zhu
Photonics 2024, 11(12), 1150; https://doi.org/10.3390/photonics11121150 - 6 Dec 2024
Cited by 4 | Viewed by 1606
Abstract
Lithium tantalate (LT) exhibits nonlinear optical properties that are comparable to those of lithium niobate (LN), yet the former surpasses the latter in several respects. These include an enhanced optical damage threshold, a wider transparency range, and lower birefringence. Consequently, LT is an [...] Read more.
Lithium tantalate (LT) exhibits nonlinear optical properties that are comparable to those of lithium niobate (LN), yet the former surpasses the latter in several respects. These include an enhanced optical damage threshold, a wider transparency range, and lower birefringence. Consequently, LT is an excellent material for optical frequency conversion applications. In this study, we have devised a novel device based on thin-film lithium tantalate (TFLT) for the efficient generation of second-harmonic waves. The design employs modal phase-matching (MPM), which circumvents the intricacies of conventional poling techniques, and attains a normalised conversion efficiency of 120% W−1cm−2. In order to address the challenges presented by higher-order modes, a mode converter with an insertion loss of less than 0.1 dB has been developed, thereby ensuring the efficient utilisation of the second harmonic. This study not only demonstrates the potential of TFLT for high-performance SHG, but also promotes the development of integrated nonlinear TFLT platforms. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

29 pages, 65789 KB  
Article
Near Real-Time Flood Monitoring Using Multi-Sensor Optical Imagery and Machine Learning by GEE: An Automatic Feature-Based Multi-Class Classification Approach
by Hadi Farhadi, Hamid Ebadi, Abbas Kiani and Ali Asgary
Remote Sens. 2024, 16(23), 4454; https://doi.org/10.3390/rs16234454 - 27 Nov 2024
Cited by 11 | Viewed by 3395
Abstract
Flooding is one of the most severe natural hazards, causing widespread environmental, economic, and social disruption. If not managed properly, it can lead to human losses, property damage, and the destruction of livelihoods. The ability to rapidly assess such damages is crucial for [...] Read more.
Flooding is one of the most severe natural hazards, causing widespread environmental, economic, and social disruption. If not managed properly, it can lead to human losses, property damage, and the destruction of livelihoods. The ability to rapidly assess such damages is crucial for emergency management. Near Real-Time (NRT) spatial information on flood-affected areas, obtained via remote sensing, is essential for disaster response, relief, urban and industrial reconstruction, insurance services, and damage assessment. Numerous flood mapping methods have been proposed, each with distinct strengths and limitations. Among the most widely used are machine learning algorithms and spectral indices, though these methods often face challenges, particularly in threshold selection for spectral indices and the sampling process for supervised classification. This study aims to develop an NRT flood mapping approach using supervised classification based on spectral features. The method automatically generates training samples through masks derived from spectral indices. More specifically, this study uses FWEI, NDVI, NDBI, and BSI indices to extract training samples for water/flood, vegetation, built-up areas, and soil, respectively. The Otsu thresholding technique is applied to create the spectral masks. Land cover classification is then performed using the Random Forest algorithm with the automatically generated training samples. The final flood map is obtained by subtracting the pre-flood water class from the post-flood image. The proposed method is implemented using optical satellite images from Sentinel-2, Landsat-8, and Landsat-9. The proposed method’s accuracy is rigorously evaluated and compared with those obtained from spectral indices and machine learning techniques. The suggested approach achieves the highest overall accuracy (OA) of 90.57% and a Kappa Coefficient (KC) of 0.89, surpassing SVM (OA: 90.04%, KC: 0.88), Decision Trees (OA: 88.64%, KC: 0.87), and spectral indices like AWEI (OA: 84.12%, KC: 0.82), FWEI (OA: 88.23%, KC: 0.86), NDWI (OA: 85.78%, KC: 0.84), and MNDWI (OA: 87.67%, KC: 0.85). These results underscore the superior accuracy and effectiveness of the proposed approach for NRT flood detection and monitoring using multi-sensor optical imagery. Full article
Show Figures

Figure 1

Back to TopTop