Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,396)

Search Parameters:
Keywords = optimum model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5035 KB  
Article
Effectiveness of Dynamic Vibration Absorber on Ground-Borne Vibration Induced by Metro
by Javad Sadeghi, Alireza Toloukian and Sogand Mehravar
Vibration 2025, 8(4), 62; https://doi.org/10.3390/vibration8040062 (registering DOI) - 5 Oct 2025
Abstract
The application of dynamic vibration absorbers (DVAs) is a countermeasure to suppress vibrations induced by railway traffic. A key advantage of the DVA application is that it does not require any changes to the path of vibration propagation or the receiver of vibration. [...] Read more.
The application of dynamic vibration absorbers (DVAs) is a countermeasure to suppress vibrations induced by railway traffic. A key advantage of the DVA application is that it does not require any changes to the path of vibration propagation or the receiver of vibration. A review of the literature reveals the necessity of deriving the optimum properties of DVA to mitigate railway vibrations. To this end, the optimum DVA properties were investigated through the development of a two-dimensional finite element model of the track-tunnel-soil system. The model was validated using the results of a field test. A parametric study was made to obtain the optimum properties of DVA for different soils surrounding the tunnel. The results of the model analysis indicate that the DVA has better vibration reduction for metro tunnels built in soft soils as compared to those surrounded by medium and stiff soils. Also, the results disclose that the DVA reduces vibration radiated on the ground surface when the DVA natural frequency is tuned to a low frequency. Using the results of the parametric study, graphs are suggested to select the optimum properties of the DVA as a function of the soil around the tunnel. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
24 pages, 5544 KB  
Article
Novel Model Predictive Control Strategies for PMSM Drives: Reducing Computational Burden and Enhancing Real-Time Implementation
by Mohamed Salah, Kotb B. Tawfiq, Arafa S. Mansour and Ahmed Farhan
Machines 2025, 13(10), 908; https://doi.org/10.3390/machines13100908 - 2 Oct 2025
Abstract
Model predictive control (MPC) has emerged as a favorable control approach for PMSM drives, though its practical deployment is frequently hindered by superior computational complexity and execution burden. This paper presents four finite control set MPC (FCS-MPC) techniques applied to a two-level inverter-fed [...] Read more.
Model predictive control (MPC) has emerged as a favorable control approach for PMSM drives, though its practical deployment is frequently hindered by superior computational complexity and execution burden. This paper presents four finite control set MPC (FCS-MPC) techniques applied to a two-level inverter-fed PMSM drive. Two of the approaches are conventional methods, while the other two are novel developed strategies proposed in this paper. The novel techniques focus on significantly decreasing computational burdens by employing an efficient space-vector selection mechanism that quickly selects the optimum switching vector without exhaustive evaluation. A comprehensive comparative assessment of all four control methods is conducted under various operating conditions, evaluating their dynamic and steady-state performance, computational requirements, and real-time feasibility. Simulation results demonstrate that the proposed techniques achieve a significant reduction in computational effort and faster processing, up to 39.65% faster than conventional full-state evaluation, while maintaining control performances comparable to conventional techniques. These results highlight the potential of the proposed MPC approaches to bridge the gap between advanced control theory and practical implementation in real-time PMSM drive systems, providing effective solutions for installing high-performance PMSM drives on hardware with limited resources. Full article
Show Figures

Figure 1

15 pages, 1468 KB  
Article
Performance Comparison of Hybrid and Standalone Piezoelectric Energy Harvesters Under Vortex-Induced Vibrations
by Issam Bahadur, Hassen Ouakad, El Manaa Barhoumi, Asan Muthalif, Muhammad Hafizh, Jamil Renno and Mohammad Paurobally
Modelling 2025, 6(4), 120; https://doi.org/10.3390/modelling6040120 - 2 Oct 2025
Abstract
This study investigates the effect of incorporating an electromagnetic harvester inside the bluff body of a 2-DoF hybrid harvester in comparison to a standalone piezoelectric harvester for various external loads. The harvester is excited through a vortex-induced vibration owing to the resultant wake [...] Read more.
This study investigates the effect of incorporating an electromagnetic harvester inside the bluff body of a 2-DoF hybrid harvester in comparison to a standalone piezoelectric harvester for various external loads. The harvester is excited through a vortex-induced vibration owing to the resultant wake vortices created behind the bluff body. The coupled dynamics of the two harvester components are modeled, and numerical simulations are conducted to evaluate the system’s performance under varying electrical loads. Numerical results show that at high, optimum electrical load, the standalone piezoelectric harvester outperforms the hybrid harvester. Nevertheless, for small electrical loads, the results show that the hybrid harvester outperforms the standalone PZT harvester by up to 18% in peak power output, while reducing the bandwidth by approximately 10% compared to the standalone piezoelectric harvester. Optimal spring stiffness values were identified, with the hybrid harvester achieving its maximum output power at a spring stiffness of 83.56 N/m. These findings underscore the need for careful design considerations, as the hybrid harvester may not achieve enhanced power output and bandwidth under higher electrical loads. Full article
Show Figures

Figure 1

21 pages, 4606 KB  
Article
Targeting a Tau Kinase Cdk5, Cyclin-Dependent Kinase: A Blood-Based Diagnostic Marker and Therapeutic Earmark for Alzheimer’s Disease
by Sakshi Kumari, Abhinay Kumar Singh, Mukesh Kumar, Rashmita Pradhan, Abhijith R. Rao, Yudhishthir Yadav, Pramod Kumar, Partha Haldar, Punit Kaur and Sharmistha Dey
Biomolecules 2025, 15(10), 1365; https://doi.org/10.3390/biom15101365 - 26 Sep 2025
Abstract
Protein kinases are important molecules of Alzheimer’s Disease (AD), driving neuronal demise and the emergence of the disease’s destructive hallmarks. Cdk5 has recently been highlighted as a key therapeutic target for AD. This study evaluated the expression levels of Cdk5 and Mcl1 (Cdk5’s [...] Read more.
Protein kinases are important molecules of Alzheimer’s Disease (AD), driving neuronal demise and the emergence of the disease’s destructive hallmarks. Cdk5 has recently been highlighted as a key therapeutic target for AD. This study evaluated the expression levels of Cdk5 and Mcl1 (Cdk5’s substrate) in blood samples of 61 AD, 55 Mild Cognitive Impairment (MCI), and 57 Geriatric Controls (GC), and explored the in vitro inhibition of Cdk5. The serum levels of Cdk5 and Mcl1 were measured by Surface Plasmon Resonance (SPR) and verified by Western blot and RT-PCR. Molecular modeling and simulation studies were used to identify a potent hit targeting Cdk5 and validated by binding studies using SPR. The peptide rescue effect was analyzed by MTT assay in the AD cellular model. SPR analysis revealed a significant change in Cdk5 and Mcl1 levels in the serum samples of AD and MCI compared to GC. Results were validated by Western blot and RT-PCR. Binary logistic regression analysis revealed that the concentration of both Cdk5 and Mcl1 was independently associated with disease after adjusting for certain parameters. ROC analysis established an optimum diagnostic cutoff value for Cdk5 [24.97 ng/µL (AUC-0.90)] and Mcl1 [23.08 ng/µL (AUC-0.94)] with high sensitivity and specificity. The peptide YCWS strongly binds to Cdk5′s ATP binding site, confirmed by molecular modeling and SPR. In the AD cellular model, peptide YCWS rescued neurotoxicity, increased Mcl1 levels, and reduced destructive hallmarks by inhibiting Cdk5. It can be concluded that Cdk5 is a promising molecule as a circulatory biomarker for the diagnosis of the early stages of AD, and its peptide inhibitor YCWS is a potential therapeutic agent. Full article
Show Figures

Figure 1

18 pages, 2855 KB  
Article
Disruption of Early Streptococcus mutans Biofilm Development on Orthodontic Aligner Materials
by Matea Badnjević, Mirna Petković Didović, Ivana Jelovica Badovinac, Sanja Lučić Blagojević, Marko Perčić, Stjepan Špalj and Ivana Gobin
Processes 2025, 13(10), 3069; https://doi.org/10.3390/pr13103069 - 25 Sep 2025
Abstract
(1) Background: This study aimed to determine the optimum parameters for the treatment of Streptococcus mutans biofilm on clear dental aligners. (2) Methods: A 24-h-old S. mutans biofilm was grown on polyurethane (PU) and poly(ethylene terephthalate glycol) (PETG) aligners. These samples were treated [...] Read more.
(1) Background: This study aimed to determine the optimum parameters for the treatment of Streptococcus mutans biofilm on clear dental aligners. (2) Methods: A 24-h-old S. mutans biofilm was grown on polyurethane (PU) and poly(ethylene terephthalate glycol) (PETG) aligners. These samples were treated with three chlorhexidine digluconate (CHX)-based antiseptic solutions, manual brushing, and a combination of both, with varying exposure times. The number of adhered bacteria was determined in both untreated and treated samples after sonication. Materials were analyzed with atomic force and scanning electron microscopy, and surface free energy (SFE) values were determined using three different models. (3) Results: Our findings indicated that control strategies do not depend on the type of material. PU and PETG surfaces exhibited similar SFE values (41–45 mJ/m2). Differences in surface roughness were insufficient to cause significant changes in S. mutans behavior. The highest efficacy of all three tested antiseptics was established for the exposure time of 1 min, with efficacy deteriorating just after 3 min. (4) Conclusions: The efficacy of CHX against S. mutans early biofilm is material-independent and time-dependent. The optimal exposure time of 1 min should be combined with brushing, with a general recommendation of the antiseptic-first approach. Full article
(This article belongs to the Special Issue Microbial Biofilms: Latest Advances and Prospects)
Show Figures

Graphical abstract

20 pages, 1835 KB  
Article
Regression Modeling and Optimization of CNC Milling Parameters for FDM-Printed TPU 95A Components
by Kaan Emre Engin and Zihni Alp Cevik
Micromachines 2025, 16(10), 1078; https://doi.org/10.3390/mi16101078 - 24 Sep 2025
Viewed by 87
Abstract
Additively manufactured thermoplastic polyurethane (TPU 95A) is widely used in engineering, yet its machining behavior remains insufficiently explored. This study investigates the post-processing machinability of FDM-fabricated TPU 95A using CNC milling, with a particular focus on material removal rate (MRR) and surface roughness [...] Read more.
Additively manufactured thermoplastic polyurethane (TPU 95A) is widely used in engineering, yet its machining behavior remains insufficiently explored. This study investigates the post-processing machinability of FDM-fabricated TPU 95A using CNC milling, with a particular focus on material removal rate (MRR) and surface roughness (Ra). A full factorial design of experiments (81 runs) is conducted, considering four input parameters such as spindle speed (N; 2000, 4000, 6000 rpm) and feed rate (F; 100, 200, 300 mm/min) on the CNC vertical machining center, together with infill density (ϕ; 33%, 66%, 100%) and layer thickness (LT; 1.0, 1.5, 2.0 mm). MRR is modeled and optimized across all densities, achieving strong fit (R2 = 0.94; Adj-R2 = 0.93). The optimum conditions are found to be MRR ≈ 1251 mm3/min at F = 300 mm/min, ϕ = 100%, N ≈ 3500 rpm and LT ≈ 1.05 mm. Ra can only be measured for 100% infill specimens, as lower infill surfaces violate profile measurement requirements. Its regression model shows weak explanatory power (R2 = 0.14; Adj-R2 = 0.03) and is excluded from optimization. Instead, Ra is reported descriptively: milling reduced roughness from ≈25–30 μm (as-printed) to ≈13.8 μm under favorable conditions. Overall, the study highlights machining’s role in the hybrid manufacturing practice. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

22 pages, 2630 KB  
Article
Research on Congestion Situation Relief in Terminal Area Based on Flight Path Adjustment
by Yuren Ji, Fuping Yu, Di Shen and Yating Peng
Aerospace 2025, 12(10), 856; https://doi.org/10.3390/aerospace12100856 - 23 Sep 2025
Viewed by 113
Abstract
With the continuous growth of air transportation demand, air traffic congestion in the Terminal Area has become increasingly serious. In order to assist controllers in efficiently alleviating the traffic congestion situation in the Terminal Area, this paper takes aircraft trajectory adjustment and flow [...] Read more.
With the continuous growth of air transportation demand, air traffic congestion in the Terminal Area has become increasingly serious. In order to assist controllers in efficiently alleviating the traffic congestion situation in the Terminal Area, this paper takes aircraft trajectory adjustment and flow control from the perspective of the Terminal Area as a starting point and proposes a congestion relief strategy based on a complex network and multi-objective optimization theory. First, a Terminal Area traffic network model is established with the approach point, departure point, waypoint, and navigation station as nodes and the flight path as edges. Next, a multi-objective optimization model that takes into account both congestion relief and reduced operating costs is constructed. Finally, an improved ant colony optimization is proposed to solve this optimization model and provide a unified approach to path planning for multiple aircraft. Finally, simulation experiments were conducted based on the airspace structure and operation of the Beijing Terminal Area. At the same time, ablation experiments were designed to compare the method in this paper with other ant colony optimizations. The experimental results show that the path planning results of the improved ant colony optimization can better alleviate the traffic congestion situation in the Terminal Area, converge faster, and reduce the risk of falling into a local optimum. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

20 pages, 10382 KB  
Article
Stability Analysis and Design of Composite Breakwater Based on Fluid-Solid Coupled Approach Using CFD/NDDA
by Xinyu Wang and Abdellatif Ouahsine
J. Mar. Sci. Eng. 2025, 13(9), 1817; https://doi.org/10.3390/jmse13091817 - 19 Sep 2025
Viewed by 171
Abstract
Composite breakwater is a commonly employed structure for coastal and harbor protection. However, strong hydrodynamic impact can lead to failure and instability of these protective structures. In this study, a two-dimensional fluid-porous-solid coupling model is developed to investigate the stability of composite breakwaters. [...] Read more.
Composite breakwater is a commonly employed structure for coastal and harbor protection. However, strong hydrodynamic impact can lead to failure and instability of these protective structures. In this study, a two-dimensional fluid-porous-solid coupling model is developed to investigate the stability of composite breakwaters. The fluid-porous model is based on the Volume-Averaged Reynolds-Averaged Navier-Stokes equations, in which the nonlinear Forchheimer equations are added to describe the porous layer. The solid model employs the Nodal-based Discontinuous Deformation Analysis (NDDA) method to analyze the displacement of the caisson. NDDA is a nodal-based method that couples FEM and DDA to improve non-linear processes. This proposed coupled model permits the examination of the influence of the thickness and porosity of the porous layer on maximum impacting wave height (IWHmax) and the turbulent kinetic energy (TKE) generation. The results show that high porosity values lead to the dissipation of TKE and reduce the IWHmax. However, the reduction in the IWHmax is not monotonic with increasing porous layer thickness. We observed that IWHmax reaches an optimum value as the porous layer thickness continues to increase. These results can contribute to improve the design of composite breakwaters. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 7246 KB  
Article
Fabrication of Spinel-Type H4Ti5O12 Ion Sieve for Lithium Recovery from Aqueous Resources: Adsorption Performance and Mechanism
by Weiwei Ma, Hongrong Huang, Guangjin Zhu, Xueqing Wang, Qiaoping Kong and Xueqing Shi
Processes 2025, 13(9), 2981; https://doi.org/10.3390/pr13092981 - 18 Sep 2025
Viewed by 270
Abstract
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological [...] Read more.
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological parameters in the preparation process of Li ion sieve and poor recycling efficiency limit its application. In this study, spinel-type H4Ti5O12 ion sieves (HTO) were successfully prepared through a high-temperature solid-state method for recovering Li+ from aqueous resources. Through the experiment of optimizing the key preparation process parameters of HTO, it was found that the optimum preparation conditions were as follows: lithium ion source of CH3COOLi‧H2O, calcination temperature of 800 °C, and acid (HCl) washing concentration of 0.3 mol/L. The uptake of Li+ by HTO aligned with the pseudo-second-order kinetic model, which was a chemical adsorption process controlled by reversible Li–H ion exchange reaction. HTO exhibited extremely high regeneration cycle characteristics, and after five cycles, it retained 96.06% of its initial adsorption capacity. The present work highlighted that spinel-type HTO has high industrial application potential in the field of Li+ recovery from oilfield brine. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 4968 KB  
Article
Process Optimization of Biodiesel Production from Waste Cooking Oil and Neem Oil Blend
by Sara Maen Asaad, Abrar Inayat, Farrukh Jamil and Paul Hellier
Energies 2025, 18(18), 4944; https://doi.org/10.3390/en18184944 - 17 Sep 2025
Viewed by 263
Abstract
This study explores the use of a novel heterogeneous CoZnFe4O8 nanocatalyst for biodiesel production from a sustainable and innovative blend of waste cooking oil and neem oil feedstock. Utilizing waste cooking oil and inedible neem oil feedstock to produce biodiesel [...] Read more.
This study explores the use of a novel heterogeneous CoZnFe4O8 nanocatalyst for biodiesel production from a sustainable and innovative blend of waste cooking oil and neem oil feedstock. Utilizing waste cooking oil and inedible neem oil feedstock to produce biodiesel provides a green and economical way to produce renewable and environmentally friendly fuel while simultaneously reducing waste and valorizing inedible oils. Additionally, this feedstock blend does not threaten food or land resources as opposed to feedstocks obtained from edible resources. To fulfill the rising demand for biodiesel and address issues related to lower ester yields, particularly when utilizing waste cooking oils with high free fatty acid concentration, there is an urgent need for more effective processes, including two-stage transesterification. The novel CoZnFe4O8 nanocatalyst employed in this study demonstrated high efficiency in biodiesel production thanks to its high surface area, mesoporous structure, and catalytic properties. The effect of key process parameters, including catalyst concentration, reaction time, alcohol-to-oil molar ratio, and oil blend ratio, was investigated to evaluate the performance of the nanocatalyst and optimize the biodiesel yield with the help of Response Surface Methodology (RSM). The optimized process achieved a yield of 94.23% under optimum parameters of 2.13 wt% catalyst, 6.80:1 methanol-to-oil ratio, 4 h, and a ratio of waste cooking oil to neem oil of 98.32:1.68. The predicted and experimental values were in close agreement, indicating that the model was adequate. Additionally, detailed catalyst characterization, including analysis of the surface area, structure, and thermal stability, was carried out. Similarly, the biodiesel was characterized to assess its quality through heating value, density, Fourier Transform Infrared (FTIR) spectroscopy, and ultimate analysis. The recovery and reusability of the nanocatalyst were also investigated, highlighting its potential for multiple reaction cycles. The novel CoZnFe4O8 nanocatalyst and innovative feedstock blend demonstrated high efficiency in biodiesel production comparable to other nanocatalysts and feedstocks reported in the literature, highlighting their potential as an efficient and sustainable method to produce biofuels. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

25 pages, 6621 KB  
Article
Predicting the Effects of Nano Additives and Elevated Temperatures on Concrete Compressive Strength Utilizing Machine Learning
by Hany A. Dahish and Mansour Alturki
Buildings 2025, 15(18), 3349; https://doi.org/10.3390/buildings15183349 - 16 Sep 2025
Viewed by 258
Abstract
In this study, the synergistic effects of a combination of nano additives (nano-clay (NC) and nano-silica (NS)) on the compressive strength (CS) of concrete exposed to temperatures ranging between 25 °C and 800 °C were modeled with two machine learning (ML) techniques: extreme [...] Read more.
In this study, the synergistic effects of a combination of nano additives (nano-clay (NC) and nano-silica (NS)) on the compressive strength (CS) of concrete exposed to temperatures ranging between 25 °C and 800 °C were modeled with two machine learning (ML) techniques: extreme gradient boosting (XGB) and random forest (RF) algorithms. A dataset comprising 169 compressive strength results (using four input parameters: NC dose, NS dose, temperature, and duration) was utilized for the raw data for the prediction models. The results indicated the superior performance of the XGB model in terms of the high accuracy attained in the prediction and the few errors present. Furthermore, SHAP analysis demonstrated that temperature has the highest negative impact on the prediction of the CS of nano-modified concrete. The individual conditional expectation (ICE) with partial dependence plots (PDPs) demonstrated that the optimum doses of NS and NC, leading to maximum compressive strength, were (2~3%) and (5~6%) by weight of cement. The developed models can be used as tools for optimizing mix designs to enhance fire resistance, thereby contributing to more durable and sustainable concrete construction and reducing the need for costly experimental trials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 2527 KB  
Article
Geotechnical Performance of Lateritic Soil Subgrades Stabilized with Agro-Industrial Waste: An Experimental Assessment and ANN-Based Predictive Modelling
by Nabanita Daimary, Devabrata Sarmah, Arup Bhattacharjee, Utpal Barman and Manob Jyoti Saikia
Geotechnics 2025, 5(3), 65; https://doi.org/10.3390/geotechnics5030065 - 15 Sep 2025
Viewed by 281
Abstract
The increasing difficulty of handling industrial and agricultural wastes has generated interest in reusing materials such as Cement Kiln Dust (CKD) and Rice Husk Ash (RHA) for sustainable soil stabilization. This study examined the enhancement of lateritic soil with the incorporation of CKD [...] Read more.
The increasing difficulty of handling industrial and agricultural wastes has generated interest in reusing materials such as Cement Kiln Dust (CKD) and Rice Husk Ash (RHA) for sustainable soil stabilization. This study examined the enhancement of lateritic soil with the incorporation of CKD (0–12%) and RHA (0–25%) by weight. An integrated experimental and Artificial Neural Network (ANN) methodology was utilized to evaluate and forecast geotechnical features. Laboratory assessments were conducted to measure Atterberg limits, Maximum Dry Density (MDD), Optimum Moisture Content (OMC), and Unconfined Compressive Strength (UCS) at 0, 7, and 28 days of curing. The results indicated significant enhancements in soil characteristics with CKD-RHA combinations. Artificial Neural Network models, including GELU, LOGSIG-3, and Leaky ReLU activation functions, accurately predicted the UCS, MDD, and OMC, achieving R2 values as high as 0.980. This work underscores the efficacy of CKD-RHA mixtures in improving soil stability and the promise of ANN models as excellent prediction instruments, fostering sustainable and economical construction methodologies. Full article
Show Figures

Figure 1

17 pages, 4663 KB  
Article
Using Organic Substances as Green Corrosion Inhibitors for Carbon Steel in HCl Solution
by Claudia A. Crișan, Horațiu Vermeșan, Anca Ștefan-Sicoe and Nicoleta Zdrob
Appl. Sci. 2025, 15(18), 9983; https://doi.org/10.3390/app15189983 - 12 Sep 2025
Viewed by 412
Abstract
Acid pickling is a vital stage in metal manufacturing during which the material is susceptible to corrosion if the process is not appropriately managed. Adding green corrosion inhibitors to the acidic solution used is one solution to this critical problem that the industry [...] Read more.
Acid pickling is a vital stage in metal manufacturing during which the material is susceptible to corrosion if the process is not appropriately managed. Adding green corrosion inhibitors to the acidic solution used is one solution to this critical problem that the industry faces today. This paper examines the application of two organic substances, tea tree essential oil and the expired drug Sinecod, as green corrosion inhibitors for carbon steel in concentrated chlorohydric acid. Corrosion behavior is evaluated using the weight loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy for three inhibitor concentrations (1%, 2%, 3%, and 4%) and a Blank sample. SEM analysis was performed for surface analysis. The mechanism of inhibition was also investigated by fitting the electrochemical data to adsorption isotherms such as the Langmuir and the Freundlich models. The optimum concentration proved to be 4% for both substances, with inhibition efficiencies up to 90% in the case of tea tree essential oil and up to 60% in the case of expired Sinecod, showing that the inhibitor concentration and inhibitor efficiency are directly correlated in this case. The findings of this study show the possibility of using expired pharmaceutical compounds or natural extracts as corrosion inhibitors for the concentration of acid solutions used for industrial processing. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion of Materials)
Show Figures

Figure 1

20 pages, 3507 KB  
Article
Aerodynamic Design Optimization for Flying Wing Gliders Based on the Combination of Artificial Neural Networks and Genetic Algorithms
by Dinh Thang Tran, Van Khiem Pham, Anh Tuan Nguyen and Duy-Trong Nguyen
Aerospace 2025, 12(9), 818; https://doi.org/10.3390/aerospace12090818 - 10 Sep 2025
Viewed by 386
Abstract
Gliders are engineless aircraft capable of maintaining altitude for extended periods and achieving long ranges. This paper presents an optimal aerodynamic design method for flying wing gliders, leveraging a combination of artificial neural networks (ANNs) as a surrogate model and genetic algorithms (GAs) [...] Read more.
Gliders are engineless aircraft capable of maintaining altitude for extended periods and achieving long ranges. This paper presents an optimal aerodynamic design method for flying wing gliders, leveraging a combination of artificial neural networks (ANNs) as a surrogate model and genetic algorithms (GAs) for optimization. Data for training the ANN is generated using the vortex-lattice method (VLM). The study identifies optimal aerodynamic shapes for two objectives: maximum flight endurance and maximum range. A key finding is the inherent conflict between aerodynamic performance and static stability in tailless designs. By introducing a stability constraint via a penalty function, we successfully generate stable and high-performance configurations. For instance, the stabilized RG15 airfoil design achieves a maximum glide ratio of 24.1 with a robust 5.1% static margin. This represents a calculated 11.5% performance reduction compared to its unstable theoretical optimum, quantitatively demonstrating the crucial trade-off between stability and performance. The methodology provides a computationally efficient path to designing practical, high-performance, and inherently stable flying wing gliders. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 3216 KB  
Article
Enhancement of Aerodynamic Performance of Two Adjacent H-Darrieus Turbines Using a Dual-Rotor Configuration
by Douha Boulla, Saïf ed-Dîn Fertahi, Maryam Bernatchou, Abderrahim Samaouali and Asmae Arbaoui
Fluids 2025, 10(9), 239; https://doi.org/10.3390/fluids10090239 - 8 Sep 2025
Viewed by 1073
Abstract
Improvements in the aerodynamic performance of the H-Darrieus turbine are crucial to address future energy requirements. This work aims to optimize the behavior of two adjacent turbines through the addition of a dual H-Darrieus rotor. The first rotor is composed of three NACA [...] Read more.
Improvements in the aerodynamic performance of the H-Darrieus turbine are crucial to address future energy requirements. This work aims to optimize the behavior of two adjacent turbines through the addition of a dual H-Darrieus rotor. The first rotor is composed of three NACA 0021 blades, while the second comprises a single Eppler 420 blade. This study focuses on 2D CFD simulation based on the solution of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations, using the sliding mesh method and kω SST turbulence model. The simulation results indicate a 17% improvement in the efficiency of the two turbines integrating dual rotors, compared to the two isolated turbines, for α = 0°. Moreover, the power coefficient  (CP) reaches maximum values of 0.49, 0.42, and 0.40 for angles of attack of 30°, 25°, and 20°, respectively, at TSR = 2.51. Conversely, the selection of an optimal angle of attack allows the efficiency of the two H-Darrieus turbines to be increased. It is also shown by the results that the effect of stagnation is reduced and lift is maximized when the optimum distance between two adjacent turbines is chosen. Moreover, the overall aerodynamic performance of the system is enhanced by the potential of a dual-rotor configuration, and the wake between the two turbines is disrupted, which can result in a decrease in energy production within wind farms. Full article
(This article belongs to the Topic Fluid Mechanics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop