Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (294)

Search Parameters:
Keywords = ore-forming fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15681 KB  
Article
Genesis of W Mineralization in the Caledonian Granite Porphyry of the Chuankou W Deposit, South China: Insights from Fluid Inclusions and C–H–O–S Isotopes
by Wei Liu, Yi Wang, Yong-Jun Shao, Wen-Jing Mao and Zhongfa Liu
Appl. Sci. 2025, 15(19), 10553; https://doi.org/10.3390/app151910553 - 29 Sep 2025
Abstract
The Chuankou deposit is a super-large W deposit formed during the Indosinian collision event in South China, and its mineralization is suggested to be related to the Indosinian muscovite granite. However, two types of W mineralizations were discovered in the Caledonian granite porphyry [...] Read more.
The Chuankou deposit is a super-large W deposit formed during the Indosinian collision event in South China, and its mineralization is suggested to be related to the Indosinian muscovite granite. However, two types of W mineralizations were discovered in the Caledonian granite porphyry in the Chuankou W deposit: disseminated scheelite and quartz-wolframite-scheelite vein mineralizations. The genesis of W mineralization in the Caledonian granite porphyry is not yet clear. This paper focuses on fluid microthermometry and stable isotopes (C, H, O, S) analysis of the quartz and scheelite in the ores in the Caledonian granite porphyry in the Chuankou W deposit. The aims are to determine the nature and evolution of the ore-forming fluids, the origin of the ore-forming materials involved in the two types of W mineralization in the Caledonian granite porphyry, and to provide a detailed discussion of the deposit’s genesis. Microthermometry results of fluid inclusions with scheelite and quartz from two stages show that the average homogenization temperature in the quartz-veins within the Caledonian granite porphyry is 248 °C, and the average salinity is 6.31 wt.% NaCl eq (n = 85), the average homogenization temperature in the quartz-veins within the slate is 219 °C, and the average salinity is 5.57 wt.% NaCl eq (n = 49). The ore-forming fluids experienced an evolution from high temperature and high salinity to low temperature and low salinity. Sulfur isotope compositions show that the δ34S values of pyrite and arsenopyrite in the quartz-veins within the Caledonian granite porphyry are 2.06 to 3.28‰ and −0.38 to 0.21‰, respectively, and the δ34S value of pyrite in the quartz-veins within the slate is −1.72 to 0.47‰. The δ34S values of each stage are close to 0‰, indicating that the origin of sulfur mainly from magma. The H-O isotope compositions of the quartz indicate that the ore-forming fluid was primarily magmatic water. The low δ18OH2O values (1.74 to 1.58‰) are influenced by fluid–rock interactions or the incorporation of atmospheric precipitation. The carbon isotopes (δ13C = −9.5 to 8.3‰) indicate a magmatic origin, but the C isotopes of quartz in the quartz-veins within the slate shift toward sedimentary rocks, reflecting the incorporation of rock components in the late mineralization period. These isotopic differences indicate that the fluid–rock interaction gradually strengthened during fluid evolution. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 15357 KB  
Article
The Fluid Evolution and Metallogenic Processes of the Liba Gold Deposit, West Qinling, China: Insights from the Texture, Trace Elements, and H-O Isotope Geochemistry of Quartz
by Yu Chen, Yuwang Wang, Jianping Wang, Dedong Li, Jian Geng, Jianxiang Luo and Rui Wang
Minerals 2025, 15(9), 956; https://doi.org/10.3390/min15090956 - 8 Sep 2025
Viewed by 380
Abstract
The evolution of ore-forming fluids in gold precipitation is a key aspect in understanding the genesis of orogenic gold deposits. Traditional fluid inclusion analyses are often limited in revealing the fluid property changes during mineralization, leading to significant debates on the mineralization temperature [...] Read more.
The evolution of ore-forming fluids in gold precipitation is a key aspect in understanding the genesis of orogenic gold deposits. Traditional fluid inclusion analyses are often limited in revealing the fluid property changes during mineralization, leading to significant debates on the mineralization temperature and fluid sources. In this study, we selected the Liba gold deposit in the West Qinling orogen and employed scanning electron microscope–cathodoluminescence (SEM-CL) and laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS) to analyze the microstructure and trace element characteristics of quartz veins, revealing the multi-stage evolution of ore-forming fluids and the mineralization mechanisms. SEM-CL imaging identified five distinct quartz stages. The pre-mineralization (Qz0) and early-stage mineralization (Qz1) fluids were predominantly magmatic–metamorphic in origin, as indicated by relatively high δ18O and δD values. During the primary metallogenic (Qz2a, Qz2b) and late-stage mineralization (Qz3), temperatures progressively decreased, and the gradual mixing of meteoric water and formation water was observed, which promoted gold precipitation. And the content of trace elements in post-mineralization quartz (Qz4) is significantly lower and similar to that in the Qz0 stage. Through the analysis of quartz trace elements (e.g., Al/Ti, Ge/Al ratios) and isotope data (δ18O = 8.25‰ to 12.67‰, δD = −119.1‰ to −79.8‰), the results indicate that the Liba gold deposit is a medium- to low-temperature orogenic gold deposit. Furthermore, the gold enrichment process was primarily driven by a hydrothermal system, with variations in the fluid composition during mineralization contributing to the concentration of gold. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 4459 KB  
Article
Geochemical Constraints on Antimony Mineralization in the Gutaishan Au–Sb Deposit, China: Insights from Trace Elements in Quartz and Sulfur Isotopes in Stibnite
by Jingping Feng, Linyan Kang, Bin Li and Peixuan Kang
Minerals 2025, 15(9), 953; https://doi.org/10.3390/min15090953 - 6 Sep 2025
Viewed by 440
Abstract
The Gutaishan Au–Sb deposit is situated in the southern segment of the Jiangnan Orogenic Belt, a region characterized by a concentration of Au–Sb–W deposits. Previous research has predominantly concentrated on Au mineralization, whereas studies addressing the equally important Sb mineralization are relatively scarce. [...] Read more.
The Gutaishan Au–Sb deposit is situated in the southern segment of the Jiangnan Orogenic Belt, a region characterized by a concentration of Au–Sb–W deposits. Previous research has predominantly concentrated on Au mineralization, whereas studies addressing the equally important Sb mineralization are relatively scarce. To investigate key scientific questions regarding the source of ore-forming materials, the physicochemical conditions, and mineralization mechanisms of Sb in the Gutaishan deposit, we conducted systematic analyses of trace elements in hydrothermal quartz and sulfur isotopes in stibnite. Li, Al, Sb, B, Na, K, Ti, Ge, and As are the dominant trace elements in hydrothermal quartz from the Gutaishan deposit. The dominant substitution mechanism is (Al3+, Sb3+) + (Li+, Na+, K+, H+) ↔ Si4+. The relatively low but variable Al concentrations indicate that quartz precipitated from fluids with fluctuating pH and weakly acidic conditions, while variations in Ti and Ge reflect significant temperature changes. These features suggest that fluid mixing was the primary mineralization mechanism in the Gutaishan deposit. Hydrothermal quartz contains anomalously high B concentrations (14.36–30.64 ppm), far exceeding typical hydrothermal levels, while stibnite displays consistent magmatic sulfur isotope signatures (−3.50‰ to −4.2‰, with an average of −3.99 ± 0.2‰), which are markedly different from the in situ δ34S values of sedimentary sulfides (+7.0‰ to +23.3‰) in the host rocks. This combination of evidence indicates a magmatic–hydrothermal origin for Sb mineralization. Integrating previous geochronological and isotopic constraints with our new observations, we interpret that the Gutaishan deposit represents an intrusion-related Au–Sb deposit formed in a post-collisional extensional setting, where Sb was precipitated after Au mineralization as a result of fluid mixing. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

23 pages, 9916 KB  
Article
Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope
by Bin Wang, Zhengjiang Ding, Qun Yang, Zhongyi Bao, Junyang Lv, Yina Bai, Shunxi Ma and Yikang Zhou
Minerals 2025, 15(9), 941; https://doi.org/10.3390/min15090941 - 4 Sep 2025
Viewed by 431
Abstract
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled [...] Read more.
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled by NNE-trending faults. Native gold primarily occurs within the interiors of pyrite grains, forming inclusion gold and fracture gold. In this study, LA-ICP-MS zircon U-Pb dating and in situ sulfur isotope analysis of gold-bearing pyrite were conducted to constrain the ore genesis of the Yanshan gold deposit. Guojialing monzogranite and porphyritic granodiorite yielded weighted mean 206Pb/238U ages of 130 ± 2 Ma (MSWD = 1.8) and 131 ± 2 Ma (MSWD = 1.8), respectively, indicating that magmatism and gold mineralization occurred during the Early Cretaceous period. The in situ sulfur δ34S values of euhedral crystalline pyrite (Py1) formed in the early stage ranged from 3.21% to 5.35‰ (n = 11), while the in situ sulfur δ34S values of pyrite (Py2) formed in the later stage ranged from 6.32‰ to 9.77‰ (n = 10), suggesting that the sulfur of the Yanshan gold deposit primarily originates from magmatism, with contamination from stratigraphic materials. Granitoids are highly likely to provide the thermal drive for fluid activity; however, the origins of the fluids and ore-forming materials remain difficult to determine. Based on geological features, geochronological data, and in situ sulfur isotopic analysis, this study concludes that the Yanshan gold deposit is a mesothermal magmatic hydrothermal vein-type gold deposit. The mineralization of the Yanshan gold deposit is related to the subduction of the Mesozoic Paleo-Pacific Plate beneath the Eurasian continent and is mainly controlled by steep dip faults. This study provides theoretical guidance for further exploration and prospecting of the Yanshan gold deposit. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 5306 KB  
Article
Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning
by Peng Zhang, Xi Xi and Bo-Chao Wang
Minerals 2025, 15(9), 923; https://doi.org/10.3390/min15090923 - 29 Aug 2025
Viewed by 401
Abstract
To unravel the link between agate geochemistry, host volcanic rocks, and ore-forming processes, this study integrated elemental correlation analysis, interaction interpretation, and interpretable machine learning (LightGBM-SHAP framework with SMOTE and 5-fold cross-validation) using 203 in-situ element datasets from 16 global deposits. The framework [...] Read more.
To unravel the link between agate geochemistry, host volcanic rocks, and ore-forming processes, this study integrated elemental correlation analysis, interaction interpretation, and interpretable machine learning (LightGBM-SHAP framework with SMOTE and 5-fold cross-validation) using 203 in-situ element datasets from 16 global deposits. The framework achieved 99.01% test accuracy and 97.4% independent prediction accuracy in discriminating host volcanic rock types. Key findings reveal divergence between statistical elemental correlations and geological interactions. Synergies reflect co-migration/co-precipitation, while antagonisms stem from source competition or precipitation inhibition, unraveling processes like stepwise crystallization. Rhyolite-hosted agates form via a “crust-derived magmatic hydrothermal fluid—medium-low salinity complexation—multi-stage precipitation” model, driven by high-silica fluids enriching Sb/Zn. Andesite-hosted agates follow a “contaminated fluid—hydrothermal alteration—precipitation window differentiation” model, controlled by crustal contamination. Basalt-hosted agates form through a “low-temperature hydrothermal fluid—basic alteration—progressive mineral decomposition” model, with meteoric water regulating Na-Zn relationships. Zn acts as a cross-lithology indicator, tracing crust-derived fluid processes in rhyolites, feldspar alteration intensity in andesites, and alteration timing in basalts. This work advances volcanic-agate genetic studies via “correlation—interaction—mineralization model” coupling, with future directions focusing on large-scale micro-area elemental analysis. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 4683 KB  
Article
Geochemical Characteristics and Genetic Significance of Garnet in the Dulong Sn-Polymetallic Deposit, Yunnan Province, Southwestern China
by Tong Liu, Shao-Yong Jiang, Dong-Fang Li, Suo-Fei Xiong, Wei Wang and Shugang Xiao
Minerals 2025, 15(9), 911; https://doi.org/10.3390/min15090911 - 27 Aug 2025
Viewed by 486
Abstract
The Dulong Sn-polymetallic deposit in Yunnan Province of southwestern China serves as a unique case study for unraveling the evolution of skarn systems and tin mineralization. Four distinct garnet types (Grt I to Grt IV) were classified based on petrographic observations. Compositional analysis [...] Read more.
The Dulong Sn-polymetallic deposit in Yunnan Province of southwestern China serves as a unique case study for unraveling the evolution of skarn systems and tin mineralization. Four distinct garnet types (Grt I to Grt IV) were classified based on petrographic observations. Compositional analysis reveals a progression from Grt I to Grt III, marked by increasing andradite components, and elevated tin concentrations, peaking at 5039 ppm. These trends suggest crystallization from Sn-enriched magmatic-hydrothermal fluids. In contrast, Grt IV garnet exhibits dominant almandine components and minimal tin content (<2 ppm). Its association with surrounding rocks (schist) further implies its metamorphic origin, distinct from the magmatic origin of the other garnet types. Combined with previously published sulfur and lead isotopic data, as well as trace element compositions of garnet, our study suggests that Laojunshan granites supply substantial ore-forming elements such as S, Pb, W, Sn, In, and Ga. In contrast, elements such as Sc, Y, and Ge are inferred to be predominantly derived from, or buffered by, the surrounding rocks. The geochemical evolution of the garnets highlights the critical role of redox fluctuations and fluid chemistry in controlling tin mineralization. Under neutral-pH fluid conditions, early-stage garnets incorporated significant tin. As the oxygen fugacity of the ore-forming fluid declined, cassiterite precipitation was triggered, leading to tin mineralization. This study reveals the interplay between fluid redox dynamics, garnet compositional changes, and mineral paragenesis in skarn-type tin deposits. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Graphical abstract

23 pages, 11454 KB  
Article
Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea
by Song Ouyang, Xiaojia Jiang, Xianquan Lei, Baoquan Wan, Zhenlong Quan and Yizhao Li
Minerals 2025, 15(8), 851; https://doi.org/10.3390/min15080851 - 11 Aug 2025
Viewed by 458
Abstract
The metallogenic process of gold deposits is typically characterized by multi-stage mineralization and complex tectonic evolution. Precise determination of metallogenic age is thus critical yet challenging for establishing ore-forming models and tectonic evolutionary frameworks. The Koka gold deposit in Eritrea represents the largest [...] Read more.
The metallogenic process of gold deposits is typically characterized by multi-stage mineralization and complex tectonic evolution. Precise determination of metallogenic age is thus critical yet challenging for establishing ore-forming models and tectonic evolutionary frameworks. The Koka gold deposit in Eritrea represents the largest gold discovery to date in the area, though its metallogenic age and tectonic evolution remain debated. This study employs in situ micro-analysis techniques to investigate major/trace elements and U-Pb geochronology of hydrothermal monazite coexisting with gold mineralization, providing new constraints on the metallogenic timeline and tectonic setting. Petrographic observations reveal well-crystallized monazite with structural associations to pyrite and native gold, indicating near-contemporaneous formation. Trace element geochemistry shows peak formation temperatures of 270–340 °C for monazite, consistent with fluid inclusion data. Genetic diagrams confirm a hydrothermal origin, enabling metallogenic age determination. Monazite Tera–Wasserburg lower intercept ages and weighted mean 208Pb/233Th ages yield 586 ± 8.7 Ma and 589 ± 2.3 Ma, respectively, overlapping error ranges with published sericite 40Ar/39Ar ages. This confirms Ediacaran gold mineralization, unrelated to the Koka granite (851 ± 2 Ma). Statistical analysis of reliable age data reveals a three-stage tectonic evolution model: (1) 1000–875 Ma, Rodinia supercontinental rifting, with depleted mantle-derived mafic oceanic crust formation and Mozambique Ocean spreading; (2) 875–630 Ma, subduction-driven crustal accretion and Koka granite emplacement; and (3) 630–570 Ma, post-collision crustal/lithospheric remelting, with mixed metamorphic–magmatic fluids and meteoric water input driving gold precipitation. Full article
(This article belongs to the Special Issue Role of Granitic Magmas in Porphyry, Epithermal, and Skarn Deposits)
Show Figures

Figure 1

29 pages, 9860 KB  
Article
The Source and Evolution of Ore-Forming Fluids in the Xiaobaihegou Fluorite Deposit, Altyn-Tagh Orogen, NW China: Constraints from Trace Element, Fluid Inclusion, and Isotope Studies
by Kang Chen, Wenlei Song, Yuanwei Wang, Long Zhang, Yongkang Jing, Yi Zhang, Yongbao Gao, Ming Liu, Nan Deng and Junwei Wu
Minerals 2025, 15(8), 840; https://doi.org/10.3390/min15080840 - 8 Aug 2025
Viewed by 502
Abstract
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone [...] Read more.
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone between the granite and the wall rocks. The zircon U-Pb age of the alkali-feldspar granite in the Xiaobaihegou fluorite deposit is 482.3 ± 4.1 Ma. The ore-hosting lithologies are mainly calcareous rock series of the Altyn Group. The ore bodies are controlled by NE-trending faults and consist primarily of veined, brecciated, massive, and banded ores. The ore mineral assemblage is primarily composed of calcite and fluorite. The rare earth element (REE) patterns of fluorite and calcite in the Xiaobaihegou deposit exhibit right-dipping LREE enrichment with distinct negative Eu anomalies, which closely resemble those of the alkali-feldspar granite. This similarity suggests that the REE distribution patterns of fluorite and calcite were likely inherited from the pluton. The ore-forming process can be divided into an early stage and a late stage. The massive ores formed in the early stage contain mainly gas-rich two-phase fluid inclusions and CO2-bearing three-phase inclusions, with homogenization temperatures ranging from 235 °C to 426 °C and salinities from 28.59% to 42.40% NaCl equivalent. In the late stage, brecciated and stockwork ores were formed. They host liquid-rich two-phase and gas-rich two-phase fluid inclusions, with homogenization temperatures ranging from 129 °C to 350 °C and salinities from 0.88% to 21.61% NaCl equivalent. The results of hydrogen and oxygen isotope studies indicate that the ore-forming fluids were derived from a mixture of magmatic–hydrothermal and meteoric water. Fluorite precipitation in the early stage was mainly due to the mixing of magmatic–hydrothermal solution and meteoric water, as well as a water–rock reaction. In the late stage, fluid mixing further occurred, resulting in a decrease in temperature and the formation of brecciated and stockwork ores. The 87Sr/86Sr and 143Nd/144Nd ratios of fluorite from the deposit range from 0.71033 to 0.71272 and 0.511946 to 0.512073, respectively, indicating that the ore-forming material originates from the crust. Based on the ore-forming characteristics, it is proposed that Ca may be primarily leached from the strata formation, while F may predominantly originate from magmatic–hydrothermal solutions. The formation of fluorite deposits is closely related to the transition of the Central Altyn-Tagh Block and Qaidam Block from a compressional orogenic environment to an extensional tectonic environment. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 7393 KB  
Article
Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
by Shaoying Zhang, Wenyan He, Huaqing Wang and Yiwu Xiao
Minerals 2025, 15(8), 780; https://doi.org/10.3390/min15080780 - 25 Jul 2025
Viewed by 573
Abstract
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration [...] Read more.
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration overprinting and metal precipitation. The modeling results suggest that the ore-forming fluid related to potassic alteration was initially oxidized (ΔFMQ = +3.54~+3.26) with a near-neutral pH (pH = 5.0~7.0). Continued fluid–rock interactions, combined with the input of reduced groundwater, resulted in a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ~+1), leading to the precipitation of propylitic alteration minerals and pyrrhotite. As temperature further decreased, fluids associated with phyllic alteration showed a slight increase in pH (5.8~6.0) and redox potential (ΔFMQ = +2). The intense superposition of propylitic and phyllic alteration on the potassic alteration zone is attributed to the rapid temperature decline in the magmatic–hydrothermal system, triggering fluid collapse and reflux. Mo, mainly transported as HMoO4 and MoO4−2, precipitated in the high-temperature range; Cu, carried primarily by CuCl complexes (CuCl4−3, CuCl2, CuCl), precipitated over intermediate to high temperatures; and Au, transported as Au-S complexes (Au(HS)2, AuHS), precipitated from intermediate to low temperatures. This study demonstrates that fluid–rock interactions alone can account for the observed sequence of alteration and mineralization in porphyry systems. Full article
Show Figures

Figure 1

23 pages, 12729 KB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 477
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

21 pages, 5158 KB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 568
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

13 pages, 6501 KB  
Article
Pyrite-Hosted Inclusions in the Southern Ore Belt of the Bainaimiao Porphyry Cu Deposit: Composition and δ34S Characteristics
by Liwen Wu, Yushan Zuo, Yongwang Zhang, Jianjun Yang, Yimin Liu, Guobin Zhang, Hong Zhang, Peng Zhang and Rui Liu
Minerals 2025, 15(7), 729; https://doi.org/10.3390/min15070729 - 12 Jul 2025
Viewed by 339
Abstract
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the [...] Read more.
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the deposit’s southern ore belt were analyzed across distinct mineralization stages. Using Electron Probe Micro-Analysis (EPMA) and in situ sulfur isotope analysis (MC-ICP-MS), inclusion assemblages in pyrite were identified, including pyrrhotite-chalcopyrite solid solutions, biotite, and dolomite. The results demonstrate that these inclusions primarily formed through coprecipitation with pyrite during crystal growth. Early-stage mineralizing fluids exhibited extreme temperatures exceeding 700 °C, coupled with low oxygen fugacity (fO2) and low sulfur fugacity (fS2). Sulfur isotope compositions (δ34S: −5.85 to −4.97‰) indicate a dominant mantle-derived magmatic sulfur source, with contributions from reduced sulfur in sedimentary rocks. Combined with regional geological evolution, the Bainaimiao deposit is classified as a porphyry-type deposit. Its ore-forming materials were partially derived from Mesoproterozoic submarine volcanic exhalative sedimentary source beds, which were later modified and enriched by granodiorite porphyry magmatism. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 9353 KB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 384
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

19 pages, 6150 KB  
Article
Ore Genesis of the Jurassic Granite-Hosted Naizhigou Gold Deposit in the Jiapigou District of Northeast China: Constraints from Fluid Inclusions and H–O–S Isotopes
by Jilong Han, Zhicheng Lü, Chuntao Zhao, Xiaotian Zhang, Jinggui Sun, Shu Wang and Xinwen Zhang
Minerals 2025, 15(7), 696; https://doi.org/10.3390/min15070696 - 29 Jun 2025
Cited by 1 | Viewed by 392
Abstract
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic [...] Read more.
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic theories and mineral exploration. Here we present a comprehensive investigation including geology, fluid inclusions (FIs), and H–O–S isotopic data for the Naizhigou deposit in the Jiapigou district to elucidate the sources of orefluids and metals, as well as the metallogenic mechanism. The results show the following: (1) The Naizhigou deposit is characterized by quartz vein-type ores and is hosted in the Middle Jurassic granitic pluton. Native gold and sulfides were mainly deposited in the second stage (quartz–polymetallic sulfides) compared with the first (quartz–pyrite–molybdenite) and third (quartz–calcite) stages. (2) The FI studies indicated that the orefluids evolved from the early–main-stage CO2–H2O–NaCl system to the late-stage H2O–NaCl system and have homogenization temperatures of 289–363, 210–282, and 124–276 °C and salinities of 4.1–20.9, 5.8–16.4, and 6.1–12.7 wt% NaCl equivalent, respectively. Fluid boiling and fluid mixing collectively controlled the precipitation of gold and ore-forming elements. (3) The δD values of the FIs hosted in quartz from the three stags range from −81 to −75 ‰, from −99 to −86 ‰, and from −110 to −101 ‰, while δ18Owater values of these FIs range from 5.3 to 5.9 ‰, from 1.1 to 5.2 ‰, and from −2.1 to −0.7 ‰, respectively. Pyrite samples from the three stages in the Naizhigou deposit have δ34S values of 2.1 to 2.5 ‰, 3.1 to 4.3 ‰, and 3.8 to 3.9 ‰, respectively. The stable isotopes indicate that the orefluids and metals mainly originated from magma. A comparative study of regional observations reveals that the Naizhigou deposit is a magmatic-related mesothermal gold deposit, rather than a metamorphism-related orogenic gold deposit. The estimated ore-forming depths are 4.0–20.7 km, with exhumation depths of 4.1–5.5 km, which indicated that the deposit has been well preserved. Regionally, the new exploration strategies should place greater emphasis on work concerning ore-related plutons, ore-controlling faults, and hydrothermal alteration. Full article
Show Figures

Figure 1

34 pages, 10609 KB  
Article
Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco)
by Khadra Zaid, Mohammed Bouabdellah, Gilles Levresse, Mohamed Idbaroud, Erik Melchiorre, Ryan Mathur, Michel Jébrak, Adriana Potra, Johan Yans, Max Frenzel, Valby van Schijndel, Lakhlifa Benaissi and Said Belkacim
Minerals 2025, 15(7), 669; https://doi.org/10.3390/min15070669 - 22 Jun 2025
Viewed by 1268
Abstract
Unusual Ag-(Ni-Co-Sb-As-Hg ± Bi)-bearing fault-fill vein ore shoot mineralization set in a gangue of quartz, fluorite, and barite has been identified in Morocco’s Aouli deposit. The Paleozoic host rocks consist of a succession of Cambrian to Ordovician-aged folded and low- to medium-grade metasediments [...] Read more.
Unusual Ag-(Ni-Co-Sb-As-Hg ± Bi)-bearing fault-fill vein ore shoot mineralization set in a gangue of quartz, fluorite, and barite has been identified in Morocco’s Aouli deposit. The Paleozoic host rocks consist of a succession of Cambrian to Ordovician-aged folded and low- to medium-grade metasediments and metavolcaniclastic rocks with tuff interbeds and amphibolite sills, locally intruded by late Visean calc-alkaline to alkaline granitoid intrusions. Paragenetic relationships indicate that the sequence of ore precipitation comprises a succession of Ni-Co-Fe arsenides, followed by Pb-Sb-As-Ag-Hg sulfarsenides/sulfosalts and then Zn-Pb-Fe sulfides. Results indicate that the ore shoot mineralization formed from episodic stages of fracturing and subsequent fluid migration. Precipitation of ore phases is thought to have occurred as a result of isothermal mixing and subsequent fluid–rock interactions. The timing of mineralization is thought to have occurred between Late Triassic and Late Miocene, coinciding with major crustal extension and Middle Jurassic–Upper Cretaceous alkaline magmatism. Thermal convection and seismic pumping are proposed as the main driving force for the large-scale migration of the ore-forming brines. This research bears directly upon the potential for new exploration targets in Pb-Zn ± fluorite ± barite deposits hosted in Variscan inliers throughout North Africa. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

Back to TopTop