Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = organosilicon precursor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 7372 KiB  
Article
Synthesis Conditions and Properties of SiAlCN Coatings Obtained by Reactive Evaporation of Al in a Hollow Cathode Arc Discharge in Hexamethyldisilazane Vapors
by Andrey Menshakov, Yulia Bryuhanova, Ivan Zhidkov, Daniil Emlin and Polina Skorynina
Ceramics 2025, 8(2), 42; https://doi.org/10.3390/ceramics8020042 - 22 Apr 2025
Viewed by 212
Abstract
SiAlCN coatings were first obtained by the method of reactive evaporation of aluminum and plasma chemical activation of an organosilicon precursor in a hollow cathode arc discharge. The spectrum of discharge plasma was studied by optical emission spectroscopy under conditions of evaporation of [...] Read more.
SiAlCN coatings were first obtained by the method of reactive evaporation of aluminum and plasma chemical activation of an organosilicon precursor in a hollow cathode arc discharge. The spectrum of discharge plasma was studied by optical emission spectroscopy under conditions of evaporation of Al in an Ar+N2+hexamethyldisilazane vapor/gas medium, and it was shown that in the presence of a metal component in the plasma, not only did intensive activation of various components of the media occur but also an increased ionic effect on the surface of the coating was provided, with a deposition rate of up to 10.1 µm/h. The films had a dense and homogeneous structure and had a hardness of up to 31 GPa and good adhesion on stainless steel. The results of SEM, FTIR, and XRD showed that their structure was a nanocomposite consisting of an amorphous matrix based on SiCN and AlN with inclusions of AlCN nanocrystals. Full article
(This article belongs to the Special Issue Research Progress in Ceramic Coatings)
Show Figures

Figure 1

8 pages, 2761 KiB  
Proceeding Paper
Characterization of Functional Biomaterials Obtained through the Immobilization of Microorganisms by Means of the Sol–Gel Method Using Isobutyltriethoxysilane
by Olga Kamanina, Pavel Rybochkin, Elizaveta Lantsova and Vitaliy Soromotin
Eng. Proc. 2024, 67(1), 45; https://doi.org/10.3390/engproc2024067045 - 19 Sep 2024
Cited by 1 | Viewed by 556
Abstract
Methylotrophic yeast Ogataea polymorpha BKM Y-2559 was immobilized in organosilicon sol–gel matrices using precursors isobutyltriethoxysilane (iBTES) and tetraethoxysilane (TEOS) to create an effective biocatalyst. The analytical and metrological performance of the biosensor permitted the determination of the optimum ratio of iBTES and TEOS, [...] Read more.
Methylotrophic yeast Ogataea polymorpha BKM Y-2559 was immobilized in organosilicon sol–gel matrices using precursors isobutyltriethoxysilane (iBTES) and tetraethoxysilane (TEOS) to create an effective biocatalyst. The analytical and metrological performance of the biosensor permitted the determination of the optimum ratio of iBTES and TEOS, which was found to be 20/80 vol.%. The results of the scanning electron microscopy method demonstrated the formation of organosilicon material around microorganisms, as well as the ease with which metabolic products of yeast cells and substrates could diffuse through the obtained pores. A laboratory model of the biofilter was developed, exhibiting an oxidative capacity that varied from 0.14 to 1.25 gO2/(m3 × cycle) in accordance with the initial level of water pollution and the degree of purification of moderately polluted water. The latter was found to be 20%, which aligns with the norm for drip biofilters operating in cyclic mode. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

19 pages, 4147 KiB  
Article
Surface Modification of Flax Fibers with TMCTS-Based PECVD for Improved Thermo-Mechanical Properties of PLA/Flax Fiber Composites
by Ghane Moradkhani, Jacopo Profili, Mathieu Robert, Gaétan Laroche, Saïd Elkoun and Frej Mighri
Polymers 2024, 16(3), 360; https://doi.org/10.3390/polym16030360 - 29 Jan 2024
Cited by 7 | Viewed by 2223
Abstract
Significant progress has been made in recent years in the use of atmospheric pressure plasma techniques for surface modification. This research focused on the beneficial effects of these processes on natural by-products, specifically those involving natural fiber-based materials. The study explored the deposition [...] Read more.
Significant progress has been made in recent years in the use of atmospheric pressure plasma techniques for surface modification. This research focused on the beneficial effects of these processes on natural by-products, specifically those involving natural fiber-based materials. The study explored the deposition of hydrophobic organosilicon-like thin films onto flax fibres through plasma-enhanced chemical vapour deposition (PECVD), using tetramethylcyclotetrasiloxane (TMCTS) as the precursor. After the successful deposition of hydrophobic organosilicon-like thin films onto the flax fibres, polylactic acid (PLA) composite materials were fabricated. This fabrication process sets the stage for an in-depth analysis of the modified materials. Subsequently, these flax fabrics were subjected to meticulous characterization through scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results demonstrated successful TMCTS deposition on the surface which led to a complete hydrophobization of the flax fibers. Mechanical tests of the PLA/flax fibre composites revealed a significant improvement in load transfer and interfacial compatibility following the surface modification of the flax fibres. This improvement was attributed to the enhanced adhesion between the modified fibres and the PLA matrix. The findings highlight the potential of TMCTS-based PECVD as a practical surface modification technique, effectively enhancing the mechanical properties of PLA/flax fibre composites. These developments open exciting possibilities for sustainable and high-performance composite materials in various industries. Full article
(This article belongs to the Special Issue Polymer-Based Coatings and Films)
Show Figures

Figure 1

11 pages, 3106 KiB  
Article
Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane
by Kirill Borisov, Alexandra Kalinina, Aleksandra Bystrova and Aziz Muzafarov
Polymers 2023, 15(19), 4012; https://doi.org/10.3390/polym15194012 - 7 Oct 2023
Viewed by 1938
Abstract
Aerogels are a class of materials that have gained increasing attention over the past several decades due to their exceptional physical and chemical properties. These materials are highly porous, with a low density and high surface area, allowing for applications such as insulation, [...] Read more.
Aerogels are a class of materials that have gained increasing attention over the past several decades due to their exceptional physical and chemical properties. These materials are highly porous, with a low density and high surface area, allowing for applications such as insulation, catalysis, and energy storage. However, traditional aerogels, such as pure silica aerogels, suffer from brittleness and fragility, which limit their usefulness in many applications. Herein, we have addressed this problem by using organosilicon compounds, namely polymethylsilsesquioxane derivatives, for the synthesis of aerogel-like materials. Specifically, we have developed a novel approach involving surfactant-free synthesis of microcapsules from partially PEGylated hyperbranched polymethylethoxysiloxane. Due to the highly diphilic nature of these compounds, they readily concentrate at the oil/water interface in aqueous emulsions encapsulating oil droplets. During the subsequent condensation, the organosilicon precursor is consumed for hexane encapsulation (yielding hollow microcapsules) followed by the formation of a continuous condensed phase. Concurrently, methyl groups ensure the hydrophobicity of the resulting materials, which eliminates the need of using additional reagents for their hydrophobization. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

23 pages, 3605 KiB  
Article
1,4-Bis(trimethylsilyl)piperazine—Thermal Properties and Application as CVD Precursor
by Evgeniya Ermakova, Sergey Sysoev, Irina Tsyrendorzhieva, Alexander Mareev, Olga Maslova, Vladimir Shayapov, Eugene Maksimovskiy, Irina Yushina and Marina Kosinova
Coatings 2023, 13(6), 1045; https://doi.org/10.3390/coatings13061045 - 5 Jun 2023
Cited by 3 | Viewed by 1623
Abstract
We report an investigation into 1,4-Bis-N,N-(trimethylsilyl)piperazine (BTMSP) as a novel precursor for the synthesis of silicon carbonitride films by chemical vapor deposition (CVD). The thermal stability, temperature dependence of vapor pressure and thermodynamic constants of the evaporation process of BTMSP were [...] Read more.
We report an investigation into 1,4-Bis-N,N-(trimethylsilyl)piperazine (BTMSP) as a novel precursor for the synthesis of silicon carbonitride films by chemical vapor deposition (CVD). The thermal stability, temperature dependence of vapor pressure and thermodynamic constants of the evaporation process of BTMSP were determined by static tensimetry with a glass membrane zero manometer. The transformation of the compound in low-power (25 W) plasma conditions was investigated by optical emission spectroscopy. It was shown that BTMSP undergoes destruction, accompanied by H and CH elimination and CN formation. SiCN(H) films were deposited in a hot-wall plasma-enhanced CVD reactor. The optical properties of the films were studied by spectral ellipsometry (refractive index: 1.5–2.2; absorption coefficient: 0–0.12) and UV–Vis spectroscopy (transmittance: up to 95%; optical bandgap: 1.6–4.9 eV). Information on the aging behavior of the films is also provided. The transformation of the films occurred through water adsorption and the formation of Si–O bonds with the degradation of Si–H, N–H and Si–CHx–Si bonds. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

10 pages, 2065 KiB  
Article
Architecture of Nanoantioxidant Based on Mesoporous Organosilica Trp-Met-PMO with Dipeptide Skeleton
by Wanli Zhou, Haohua Ma, Yunqiao Dai, Yijing Du, Cheng Guo and Jianqiang Wang
Materials 2023, 16(2), 638; https://doi.org/10.3390/ma16020638 - 9 Jan 2023
Cited by 3 | Viewed by 1617
Abstract
A nanoantioxidant of mesoporous organosilica (Trp-Met-PMO) based on the framework of tryptophan–methionine dipeptide was first designed and constructed by condensation between self-created dipeptide organosilica precursor (Trp-Met-Si) and tetraethyl orthosilicate (TEOS) in alkaline conditions under the template hexadecyl trimethyl ammonium bromide (CTAB). Trp-Met-Si was [...] Read more.
A nanoantioxidant of mesoporous organosilica (Trp-Met-PMO) based on the framework of tryptophan–methionine dipeptide was first designed and constructed by condensation between self-created dipeptide organosilica precursor (Trp-Met-Si) and tetraethyl orthosilicate (TEOS) in alkaline conditions under the template hexadecyl trimethyl ammonium bromide (CTAB). Trp-Met-Si was prepared by the reaction between dipeptide Trp-Met and conventional organosilicon coupling agent isocyanatopropyltriethoxysilane (IPTES) via a multiple-step reaction method. The material Trp-Met-PMO was confirmed by XRD, FT-IR and N2 adsorption–desorption analysis. The material Trp-Met-5-PMO with low amounts of organosilica precursor remained a mesoporous material with well-ordered 2D hexagonal (P6mm) structure. With increasing amounts of organosilica precursor, a mesoporous structure was still formed, as shown in the material Trp-Met-100-PMO with the highest amounts of organosilica precursor. Moreover, pore size distribution, surface area and porosity of Trp-Met-PMO are regulated with different amounts of organosilica precursor Trp-Met-Si. The antioxidant activity of Trp-Met-PMO was evaluated by ABTS free radical-scavenging assay. The results showed that antioxidant activity was largely enhanced with increasing contents of organosilica precusor Trp-Met-Si in the skeleton. The material Trp-Met-40-PMO exhibited maximum scavenging capacity of ABTS free radicals, the inhibition percent was 5.88%. This study provides a design strategy for nanoantioxidant by immobilizing short peptides within the porous framework of mesoporous material. Full article
(This article belongs to the Special Issue Nanostructured Porous Silicon: Fundamentals and Applications)
Show Figures

Figure 1

15 pages, 6384 KiB  
Article
Mesoscale Modeling of Phase Separation Controlled by Hydrosilylation in Polyhydromethylsiloxane (PHMS)-Containing Blends
by Yao Xiong, Chandan K. Choudhury, Vaibhav Palkar, Raleigh Wunderlich, Rajendra K. Bordia and Olga Kuksenok
Nanomaterials 2022, 12(18), 3117; https://doi.org/10.3390/nano12183117 - 8 Sep 2022
Cited by 4 | Viewed by 4408
Abstract
Controlling morphology of polysiloxane blends crosslinked by the hydrosilylation reaction followed by pyrolysis constitutes a robust strategy to fabricate polymer-derived ceramics (PDCs) for a number of applications, from water purification to hydrogen storage. Herein, we introduce a dissipative particle dynamics (DPD) approach that [...] Read more.
Controlling morphology of polysiloxane blends crosslinked by the hydrosilylation reaction followed by pyrolysis constitutes a robust strategy to fabricate polymer-derived ceramics (PDCs) for a number of applications, from water purification to hydrogen storage. Herein, we introduce a dissipative particle dynamics (DPD) approach that captures the phase separation in binary and ternary polymer blends undergoing hydrosilylation. Linear polyhydromethylsiloxane (PHMS) chains are chosen as preceramic precursors and linear vinyl-terminated polydimethylsiloxane (v-PDMS) chains constitute the reactive sacrificial component. Hydrosilylation of carbon–carbon unsaturated double bonds results in the formation of carbon–silicon bonds and is widely utilized in the synthesis of organosilicons. We characterize the dynamics of binary PHMS/v-PDMS blends undergoing hydrosilylation and ternary blends in which a fraction of the reactive sacrificial component (v-PDMS) is replaced with the non-reactive sacrificial component (methyl-terminated PDMS (m-PDMS), polyacrylonitrile (PAN), or poly(methyl methacrylate) (PMMA)). Our results clearly demonstrate that the morphology of the sacrificial domains in the nanostructured polymer network formed can be tailored by tunning the composition, chemical nature, and the degree of polymerization of the sacrificial component. We also show that the addition of a non-reactive sacrificial component introduces facile means to control the self-assembly and morphology of these nanostructured materials by varying the fraction, degree of polymerization, or the chemical nature of this component. Full article
Show Figures

Graphical abstract

15 pages, 11509 KiB  
Article
Starch-Silane Structure and Its Influence on the Hydrophobic Properties of Paper
by Tomasz Nowak, Bartłomiej Mazela, Konrad Olejnik, Barbara Peplińska and Waldemar Perdoch
Molecules 2022, 27(10), 3136; https://doi.org/10.3390/molecules27103136 - 13 May 2022
Cited by 25 | Viewed by 4614
Abstract
Starch is an inexpensive, easily accessible, and widespread natural polymer. Due to its properties and availability, this polysaccharide is an attractive precursor for sustainable products. Considering its exploitation in adhesives and coatings, the major drawback of starch is its high affinity towards water. [...] Read more.
Starch is an inexpensive, easily accessible, and widespread natural polymer. Due to its properties and availability, this polysaccharide is an attractive precursor for sustainable products. Considering its exploitation in adhesives and coatings, the major drawback of starch is its high affinity towards water. This study aims to explain the influence of the silane-starch coating on the hydrophobic properties of paper. The analysis of the organosilicon modified starch properties showed an enhanced hydrophobic behavior, suggesting higher durability for the coatings. Molecules of silanes with short aliphatic carbon chains were easily embedded in the starch structure. Longer side chains of silanes were primarily localized on the surface of the starch structure. The best hydrophobic properties were obtained for the paper coated with the composition based on starch and methyltrimethoxysilane. This coating also improved the bursting resistance and compressive strength of the tested paper. A static contact angle higher than 115° was achieved. PDA analysis confirmed the examined material exhibited high barrier properties towards water. The results extend the knowledge of the interaction of silane compositions in the presence of starch. Full article
Show Figures

Graphical abstract

17 pages, 6110 KiB  
Article
Hydrophobic Leather Coating for Footwear Applications by a Low-Pressure Plasma Polymerisation Process
by Carlos Ruzafa Silvestre, María Pilar Carbonell Blasco, Saray Ricote López, Henoc Pérez Aguilar, María Ángeles Pérez Limiñana, Elena Bañón Gil, Elena Orgilés Calpena and Francisca Arán Ais
Polymers 2021, 13(20), 3549; https://doi.org/10.3390/polym13203549 - 14 Oct 2021
Cited by 14 | Viewed by 3904
Abstract
The aim of this work is to develop hydrophobic coatings on leather materials by plasma polymerisation with a low-pressure plasma system using an organosilicon compound, such as hexamethyldisiloxane (HMDSO), as chemical precursor. The hydrophobic coatings obtained by this plasma process were evaluated with [...] Read more.
The aim of this work is to develop hydrophobic coatings on leather materials by plasma polymerisation with a low-pressure plasma system using an organosilicon compound, such as hexamethyldisiloxane (HMDSO), as chemical precursor. The hydrophobic coatings obtained by this plasma process were evaluated with different experimental techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and standardised tests including colour measurements of the samples, surface coating thickness and water contact angle (WCA) measurements. The results obtained indicated that the monomer had polymerised correctly and completely on the leather surface creating an ultra-thin layer based on polysiloxane. The surface modification produced a water repellent effect on the leather that does not alter the visual appearance and haptic properties. Therefore, the application of the plasma deposition process showed promising results that makes it a more sustainable alternative to conventional functional coatings, thus helping to reduce the use of hazardous chemicals in the finishing process of footwear manufacturing. Full article
(This article belongs to the Special Issue Advances in Plasma Processes for Polymers)
Show Figures

Figure 1

20 pages, 107433 KiB  
Review
The Evolution of Organosilicon Precursors for Low-k Interlayer Dielectric Fabrication Driven by Integration Challenges
by Nianmin Hong, Yinong Zhang, Quan Sun, Wenjie Fan, Menglu Li, Meng Xie and Wenxin Fu
Materials 2021, 14(17), 4827; https://doi.org/10.3390/ma14174827 - 25 Aug 2021
Cited by 15 | Viewed by 6074
Abstract
Since the application of silicon materials in electronic devices in the 1950s, microprocessors are continuously getting smaller, faster, smarter, and larger in data storage capacity. One important factor that makes progress possible is decreasing the dielectric constant of the insulating layer within the [...] Read more.
Since the application of silicon materials in electronic devices in the 1950s, microprocessors are continuously getting smaller, faster, smarter, and larger in data storage capacity. One important factor that makes progress possible is decreasing the dielectric constant of the insulating layer within the integrated circuit (IC). Nevertheless, the evolution of interlayer dielectrics (ILDs) is not driven by a single factor. At first, the objective was to reduce the dielectric constant (k). Reduction of the dielectric constant of a material can be accomplished by selecting chemical bonds with low polarizability and introducing porosity. Moving from silicon dioxide, silsesquioxane-based materials, and silica-based materials to porous silica materials, the industry has been able to reduce the ILDs’ dielectric constant from 4.5 to as low as 1.5. However, porous ILDs are mechanically weak, thermally unstable, and poorly compatible with other materials, which gives them the tendency to absorb chemicals, moisture, etc. All these features create many challenges for the integration of IC during the dual-damascene process, with plasma-induced damage (PID) being the most devastating one. Since the discovery of porous materials, the industry has shifted its focus from decreasing ILDs’ dielectric constant to overcoming these integration challenges. More supplementary precursors (such as Si–C–Si structured compounds), deposition processes (such as NH3 plasma treatment), and post porosity plasma protection treatment (P4) were invented to solve integration-related challenges. Herein, we present the evolution of interlayer dielectric materials driven by the following three aspects, classification of dielectric materials, deposition methods, and key issues encountered and solved during the integration phase. We aim to provide a brief overview of the development of low-k dielectric materials over the past few decades. Full article
Show Figures

Figure 1

12 pages, 2936 KiB  
Article
Modification of Ceramic Membranes with Carbon Compounds for Pharmaceutical Substances Removal from Water in a Filtration—Adsorption System
by Daniel Polak, Izabela Zielińska, Maciej Szwast, Igor Kogut and Artur Małolepszy
Membranes 2021, 11(7), 481; https://doi.org/10.3390/membranes11070481 - 28 Jun 2021
Cited by 18 | Viewed by 3764
Abstract
The aim of this work is to develop a new type of carbon-ceramic membranes for the removal of pharmaceutical substances from water. The membranes were prepared by the chemical modification method using an organosilicon precursor—octadecyltrichlorosilane (ODTS). Graphene oxide, multi-walled carbon nanotubes with carboxylic [...] Read more.
The aim of this work is to develop a new type of carbon-ceramic membranes for the removal of pharmaceutical substances from water. The membranes were prepared by the chemical modification method using an organosilicon precursor—octadecyltrichlorosilane (ODTS). Graphene oxide, multi-walled carbon nanotubes with carboxylic groups, and single-walled carbon nanotubes were used in the modification process. The filtration properties and adsorption properties of the developed membranes were tested. In order to characterize the membrane, the water permeability, the change of the permeate flux in time, and the adsorbed mass of the substance were determined. Additionally, the surface properties of the membranes were characterized by contact angle measurements and porosimetry. The antibiotic tetracycline was used in the adsorption tests. Based on the results, the improved adsorption properties of the modified membrane in relation to the unmodified membrane were noticed. Novel ceramic membranes modified with MWCNT are characterized by 45.4% removal of tetracycline and permeate flux of 520 L·h·m−2·bar−1. We demonstrated the ability of modified membranes to adsorb pharmaceuticals from water streams that are in contact with the membrane. Novel membranes retain their filtration properties. Therefore, such membranes can be used in an integrated filtration–adsorption process. Full article
Show Figures

Figure 1

12 pages, 16825 KiB  
Article
Amorphous Silicon Oxynitride-Based Powders Produced by Spray Pyrolysis from Liquid Organosilicon Compounds
by Honorata Osip, Cezary Czosnek, Jerzy F. Janik, Jakub Marchewka and Maciej Sitarz
Materials 2021, 14(2), 386; https://doi.org/10.3390/ma14020386 - 14 Jan 2021
Cited by 8 | Viewed by 2901
Abstract
Silicon oxynitrides (SiOxNy) have many advantageous properties for modern ceramic applications that justify a development of their new and efficient preparation methods. In the paper, we show the possibility of preparing amorphous SiOxNy-based materials from [...] Read more.
Silicon oxynitrides (SiOxNy) have many advantageous properties for modern ceramic applications that justify a development of their new and efficient preparation methods. In the paper, we show the possibility of preparing amorphous SiOxNy-based materials from selected liquid organosilicon compounds, methyltrimethoxysilane CH3Si(OCH3)3 and methyltriethoxysilane CH3Si(OC2H5)3, by a convenient spray pyrolysis method. The precursor mist is transported with an inert gas or a mixture of reactive gases through a preheated tube reactor to undergo complex decomposition changes, and the resulting powders are collected in the exhaust filter. The powders are produced in the tube at temperatures of 1200, 1400, and 1600 °C under various gas atmosphere conditions. In the first option, argon Ar gas is used for mist transportation and ammonia NH3 gas serves as a reactive medium, while in the second option nitrogen N2 is exclusively applied. Powder X-Ray Diffraction (XRD) results confirm the highly amorphous nature of all products except those made at 1600 °C in nitrogen. SEM examination shows the spheroidal particle morphology of powders, which is typical for this method. Fourier Transform Infrared (FT-IR) spectroscopy reveals the presence of Si–N and Si–O bonds in the powders prepared under Ar/NH3, whereas those produced under N2 additionally contain Si–C bonds. Raman spectroscopy measurements also support some turbostratic free carbon C in the products prepared under nitrogen. The directly determined O- and N-contents provide additional data linking the process conditions with specific powder composition, especially from the point of view of oxygen replacement in the Si–O moieties formed upon initial precursor decomposition reactions by nitrogen (from NH3 or N2) or carbon (from the carbonization of the organic groups). Full article
Show Figures

Figure 1

12 pages, 1967 KiB  
Article
Generation of Bis(ferrocenyl)silylenes from Siliranes
by Yang Pan, Shogo Morisako, Shinobu Aoyagi and Takahiro Sasamori
Molecules 2020, 25(24), 5917; https://doi.org/10.3390/molecules25245917 - 14 Dec 2020
Cited by 3 | Viewed by 3399
Abstract
Divalent silicon species, the so-called silylenes, represent attractive organosilicon building blocks. Isolable stable silylenes remain scarce, and in most hitherto reported examples, the silicon center is stabilized by electron-donating substituents (e.g., heteroatoms such as nitrogen), which results in electronic perturbation. In order to [...] Read more.
Divalent silicon species, the so-called silylenes, represent attractive organosilicon building blocks. Isolable stable silylenes remain scarce, and in most hitherto reported examples, the silicon center is stabilized by electron-donating substituents (e.g., heteroatoms such as nitrogen), which results in electronic perturbation. In order to avoid such electronic perturbation, we have been interested in the chemistry of reactive silylenes with carbon-based substituents such as ferrocenyl groups. Due to the presence of a divalent silicon center and the redox-active transition metal iron, ferrocenylsilylenes can be expected to exhibit interesting redox behavior. Herein, we report the design and synthesis of a bis(ferrocenyl)silirane as a precursor for a bis(ferrocenyl)silylene, which could potentially be used as a building block for redox-active organosilicon compounds. It was found that the isolated bis(ferrocenyl)siliranes could be a bottleable precursor for the bis(ferrocenyl)silylene under mild conditions. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry)
Show Figures

Graphical abstract

23 pages, 12049 KiB  
Article
Thin SiNC/SiOC Coatings with a Gradient of Refractive Index Deposited from Organosilicon Precursor
by Hieronim Szymanowski, Katarzyna Olesko, Jacek Kowalski, Mateusz Fijalkowski, Maciej Gazicki-Lipman and Anna Sobczyk-Guzenda
Coatings 2020, 10(8), 794; https://doi.org/10.3390/coatings10080794 - 17 Aug 2020
Cited by 13 | Viewed by 4767
Abstract
In this work, optical coatings with a gradient of the refractive index are described. Its aim was to deposit, using the RF PECVD method, films of variable composition (ranging from silicon carbon-oxide to silicon carbon-nitride) for a smooth change of their optical properties [...] Read more.
In this work, optical coatings with a gradient of the refractive index are described. Its aim was to deposit, using the RF PECVD method, films of variable composition (ranging from silicon carbon-oxide to silicon carbon-nitride) for a smooth change of their optical properties enabling a production of the filter with a refractive index gradient. For that purpose, two organosilicon compounds, namely tetramethyldisilazane and hexamethyldisilazane, were selected as precursor compounds. The results reveal better optical properties of the materials obtained from the latter source. Depending on whether deposited in pure oxygen atmosphere or under conditions of pure nitrogen, the refractive index of the coatings amounted to 1.65 and to 2.22, respectively. By using a variable composition N2/O2 gas mixture, coatings of intermediate magnitudes of “n” were acquired. The optical properties were investigated using both UV-Vis absorption spectroscopy and variable angle spectroscopic ellipsometry. The chemical structure of the coatings was studied with the help of Fourier transform infrared and X-ray photoelectron spectroscopies. Finally, atomic force microscopy was applied to examine their surface topography. As the last step, a “cold mirror” type interference filter with a gradient of refractive index was designed and manufactured. Full article
(This article belongs to the Special Issue Functional Ceramic Coatings)
Show Figures

Figure 1

16 pages, 4045 KiB  
Article
Atmospheric Pressure Plasma Deposition of Organosilicon Thin Films by Direct Current and Radio-frequency Plasma Jets
by Iryna Kuchakova, Maria Daniela Ionita, Eusebiu-Rosini Ionita, Andrada Lazea-Stoyanova, Simona Brajnicov, Bogdana Mitu, Gheorghe Dinescu, Mike De Vrieze, Uroš Cvelbar, Andrea Zille, Christophe Leys and Anton Yu Nikiforov
Materials 2020, 13(6), 1296; https://doi.org/10.3390/ma13061296 - 13 Mar 2020
Cited by 12 | Viewed by 3704
Abstract
Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The [...] Read more.
Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers. Full article
(This article belongs to the Special Issue Advanced Plasma Processes for Nanotechnologies)
Show Figures

Figure 1

Back to TopTop