Characterization of Functional Biomaterials Obtained through the Immobilization of Microorganisms by Means of the Sol–Gel Method Using Isobutyltriethoxysilane †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Encapsulation of Cells by Sol–Gel Method
2.3. Biocatalyst Bed Preparation for Biofilter Column Glass
3. Results and Discussion
- BODinp—BOD of incoming wastewater, mgO2/dm3;
- BODout—BOD of treated wastewater, mgO2/dm3;
- Q—the amount of wastewater, 5 × 10−5 (m3/cycle);
- Vbiofilter—feed volume, 3.1 × 10−5 m3.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baca, H.K.; Carnes, E.C.; Ashley, C.E.; Lopez, D.M.; Douthit, C.; Karlin, S.; Brinker, C.J. Cell-directed-assembly: Directing the formation of nano/bio interfaces and architectures with living cells. Biochim. Et Biophys. Acta Gen. Subj. 2011, 1810, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, J.; Wang, J.; Bian, C.; Tong, J.; Li, Y.; Xia, S. A single-layer structured microbial sensor for fast detection of biochemical oxygen demand. Biochem. Eng. J. 2016, 112, 219–225. [Google Scholar] [CrossRef]
- Gonchar, M.; Maidan, M.; Korpan, Y.; Sibirny, V.; Kotylak, Z.; Sibirny, A. Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res. 2002, 2, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Pachaiappan, R.; Cornejo-Ponce, L.; Rajendran, R.; Manavalan, K.; Femilaa Rajan, V.; Awad, F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022, 13, 8432–8477. [Google Scholar] [CrossRef] [PubMed]
- Stathatou, P.M.; Athanasiou, C.E.; Tsezos, M.; Goss, J.W.; Blackburn, L.C.; Tourlomousis, F.; Mershin, A.; Sheldon, B.W.; Padture, N.P.; Darling, E.M.; et al. Lead removal at trace concentrations from water by inactive yeast cells. Commun. Earth Environ. 2022, 3, 132. [Google Scholar] [CrossRef]
- Lúquez-Caravaca, L.; Ogawa, M.; Rai, R.; Nitin, N.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Jiménez-Uceda, J.C.; Moreno-García, J. Yeast cell vacuum infusion into fungal pellets as a novel cell encapsulation methodology. Appl. Microbiol. Biotechnol. 2023, 107, 5715–5726. [Google Scholar] [CrossRef] [PubMed]
- Kamanina, O.A.; Lantsova, E.A.; Rybochkin, P.V.; Arlyapov, V.A.; Saverina, E.A.; Kulikovskaya, N.S.; Perepukhov, A.M.; Vereshchagin, A.N.; Ananikov, V.P. “3-in-1” Hybrid Biocatalysts: Association of Yeast Cells Immobilized in a Sol–Gel Matrix for Determining Sewage Pollution. ACS Appl. Mater. Interfaces 2023, 15, 47779–47789. [Google Scholar] [CrossRef] [PubMed]
- Lantsova, E.A.; Kamanina, O.A.; Rybochkin, P.V.; Saverina, E.A. Organosilicon Material in Combination with Structure-Controlling Agents as a Basis for Immobilization of the Enzyme Glucose Oxidase. Russ. J. Inorg. Chem. 2024. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Lantsova, E.A.; Rybochkin, P.V.; Arlyapov, V.A.; Plekhanova, Y.V.; Reshetilov, A.N. The Use of Diethoxydimethylsilane as the Basis of a Hybrid Organosilicon Material for the Production of Biosensitive Membranes for Sensory Devices. Membranes 2022, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Kamanina, O.A.; Fedoseeva, D.G.; Rogova, T.V.; Ponamoreva, O.N.; Blokhin, I.V.; Machulin, A.V.; Alferov, V.A. Synthesis of organosilicon sol-gel matrices and preparation of heterogeneous biocatalysts based on them. Russ. J. Appl. Chem. 2014, 87, 761–766. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Lavrova, D.G.; Arlyapov, V.A.; Alferov, V.A.; Ponamoreva, O.N. Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzym. Microb. Technol. 2016, 92, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Ponamoreva, O.N.; Kamanina, O.A.; Alferov, V.A.; Machulin, A.V.; Rogova, T.V.; Arlyapov, V.A.; Alferov, S.V.; Suzina, N.E.; Ivanova, E.P. Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosens. Bioelectron. 2015, 67, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Lavrova, D.G.; Kamanina, O.A.; Alferov, V.A.; Rybochkin, P.V.; Machulin, A.V.; Sidorov, A.I.; Ponamoreva, O.N. Impact of hydrophilic polymers in organosilica matrices on structure, stability, and biocatalytic activity of immobilized methylotrophic yeast used as biofilter bed. Enzym. Microb. Technol. 2021, 150, 109879. [Google Scholar] [CrossRef] [PubMed]
- Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098–4140. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- ISO 5815–1:2003; Water Quality—Determination of Biochemical Oxygen Demand after N Days (BODn), Part 1: Dilution and Seeding Method with Allylthiourea Addition. International Organization for Standardization: Geneva, Switzerland, 2003.
- Farouk, S.M.; Brusewitz, G.H. Moisture sorption characteristics of dust contaminated silica gel. J. Agric. Eng. Res. 1980, 25, 209–216. [Google Scholar] [CrossRef]
Comparison of Characteristics of Bioreceptor Elements | The Characteristics of Bioreceptor Elements Are as Follows | |
---|---|---|
Lower Limit of Determinable Contents, µmol/dm3 | Sensitivity Coefficient, mg (O2)/(mmol × min) | |
20% iBTES 80% TEOS | 5 | 3.8 ± 0.3 |
85% MTES 15% TEOS [15] | 22 | 1.01 ± 0.02 |
Initial BOD Value, mgO2/dm3 | Degree of Purification, % | OC, gO2/(m3 × Cycle) |
---|---|---|
0.7 ± 0.1 | 12 | 0.14 |
1.5 ± 0.2 | 27 | 0.65 |
2.9 ± 0.2 | 15 | 0.780 |
6.2 ± 0.2 | 8 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, O.; Rybochkin, P.; Lantsova, E.; Soromotin, V. Characterization of Functional Biomaterials Obtained through the Immobilization of Microorganisms by Means of the Sol–Gel Method Using Isobutyltriethoxysilane. Eng. Proc. 2024, 67, 45. https://doi.org/10.3390/engproc2024067045
Kamanina O, Rybochkin P, Lantsova E, Soromotin V. Characterization of Functional Biomaterials Obtained through the Immobilization of Microorganisms by Means of the Sol–Gel Method Using Isobutyltriethoxysilane. Engineering Proceedings. 2024; 67(1):45. https://doi.org/10.3390/engproc2024067045
Chicago/Turabian StyleKamanina, Olga, Pavel Rybochkin, Elizaveta Lantsova, and Vitaliy Soromotin. 2024. "Characterization of Functional Biomaterials Obtained through the Immobilization of Microorganisms by Means of the Sol–Gel Method Using Isobutyltriethoxysilane" Engineering Proceedings 67, no. 1: 45. https://doi.org/10.3390/engproc2024067045
APA StyleKamanina, O., Rybochkin, P., Lantsova, E., & Soromotin, V. (2024). Characterization of Functional Biomaterials Obtained through the Immobilization of Microorganisms by Means of the Sol–Gel Method Using Isobutyltriethoxysilane. Engineering Proceedings, 67(1), 45. https://doi.org/10.3390/engproc2024067045