Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = palladin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1466 KB  
Article
Placental Dysfunction Is Associated with Dysregulated Fibrinolytic System Activation
by Tetiana Yatsenko, Iryna Us, Daria Korolova, Svitlana Zhuk, Halyna Dziuba, Alona Nalbat, Svitlana Kharchenko, Sandor George Vari and Volodymyr Chernyshenko
Int. J. Mol. Sci. 2025, 26(19), 9339; https://doi.org/10.3390/ijms26199339 - 24 Sep 2025
Viewed by 329
Abstract
During pregnancy, the maternal hemostatic system undergoes significant changes to support placental angiogenesis, maintain fetal blood flow, and ensure safe delivery. This study investigates the dysregulation of hemostasis in placental insufficiency and explores potential markers for diagnosing and managing this gestational complication. Thromboelastography, [...] Read more.
During pregnancy, the maternal hemostatic system undergoes significant changes to support placental angiogenesis, maintain fetal blood flow, and ensure safe delivery. This study investigates the dysregulation of hemostasis in placental insufficiency and explores potential markers for diagnosing and managing this gestational complication. Thromboelastography, coagulation and fibrinolysis functional assays, ELISA, and immunoblotting were employed to assess hemostasis dysregulation in placental dysfunction of two cohorts of pregnant women with placental dysfunction and healthy controls. Thromboelastographic analysis revealed no significant differences in clot lysis indices between the control and placental dysfunction groups, with values remaining within normal ranges, suggesting this method’s limitations for assessing fibrinolysis in pregnancy. The placental dysfunction group demonstrated moderately increased fibrinogen levels and platelet sensitivity to ADP, indicating hemostasis reactiveness. Significantly lower D-dimer levels, decreased plasminogen activator inhibitor activity (total PAI-1 + PAI-2), and increased plasminogen activator activity, driven primarily by uPA in the placental dysfunction group, indicated abnormal fibrinolysis. Immunoblotting confirmed elevated uPA/uPA-PAI complexes and reduced tPA/tPA-PAI complexes, indicating that shutdown of tPA-mediated fibrinolysis and induction of uPA-driven vessel-wall-associated proteolysis are linked to placental dysfunction. Placental dysfunction involves fibrinolytic system dysregulation, marked by decreased PAI and tPA, uPA overproduction, and hypofibrinolysis, contributing to thrombotic risks, impaired placental flow, and complications like fetal growth retardation. PAI/PA ratio and D-dimer levels have diagnostic potential for placental-dysfunction-associated complications. Full article
Show Figures

Graphical abstract

10 pages, 697 KB  
Article
Obesity Is a Thrombotic Risk Factor in Pregnant Women
by Daria Korolova, Andrea Suranyi, Anastasiia Pavlenko, Abel T. Altorjay, Svitlana Zhuk, Iryna Us, Yurii Melnyk, Volodymyr Chernyshenko and Sandor G. Vari
J. Clin. Med. 2025, 14(15), 5310; https://doi.org/10.3390/jcm14155310 - 28 Jul 2025
Viewed by 684
Abstract
Background/Objectives: Pregnancy is associated with increased procoagulant conditions, and when combined with obesity, it can elevate the risk of thrombosis. The study aims to assess thrombosis risk markers during pregnancy in relation to obesity. Methods: Somatically healthy women aged 18–42 years [...] Read more.
Background/Objectives: Pregnancy is associated with increased procoagulant conditions, and when combined with obesity, it can elevate the risk of thrombosis. The study aims to assess thrombosis risk markers during pregnancy in relation to obesity. Methods: Somatically healthy women aged 18–42 years with spontaneous pregnancies who did not receive specific antithrombotic treatment were enrolled in the study (n = 97). The participants were divided into groups based on pregestational BMI: the first group consisted of patients who had a BMI ≤ 25 (n = 42), and the second group consisted of patients who were overweight (BMI > 25) and obese (BMI > 30) (n = 55). The control group comprised healthy, non-pregnant, non-obese women (n = 10). Results: Fibrinogen levels, elevated during pregnancy, were higher in the II and III trimesters, with gestational period having a greater influence than BMI. Moderate D-dimer accumulation was observed regardless of obesity, but higher levels were seen in obese women during the III trimester, indicating the dissolution of intravascular fibrin deposits. Soluble fibrin was significantly higher in obese and overweight women during the II trimester and elevated in both groups during the III trimester, correlating with D-dimer accumulation and indicating thrombus formation. A decrease in platelet aggregation ability was observed correlating with D-dimer and soluble fibrin patterns. Conclusions: A significant accumulation of thrombosis risk markers was observed in the III trimester compared to the II, occurring earlier in obese and overweight pregnant women and indicating a higher risk of thrombotic complications in obesity. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

21 pages, 12791 KB  
Article
Investigating the Evolution of Resilient Microservice Architectures: A Compatibility-Driven Version Orchestration Approach
by Mykola Yaroshynskyi, Ivan Puchko, Arsentii Prymushko, Hryhoriy Kravtsov and Volodymyr Artemchuk
Digital 2025, 5(3), 27; https://doi.org/10.3390/digital5030027 - 20 Jul 2025
Viewed by 1179
Abstract
An Application Programming Interface (API) is a formally defined interface that enables controlled interaction between software components, and is a key pillar of modern microservice-based architectures. However, asynchronous API changes often lead to breaking compatibility and introduce systemic instability across dependent services. Prior [...] Read more.
An Application Programming Interface (API) is a formally defined interface that enables controlled interaction between software components, and is a key pillar of modern microservice-based architectures. However, asynchronous API changes often lead to breaking compatibility and introduce systemic instability across dependent services. Prior research has explored various strategies to manage such evolution, including contract-based testing, semantic versioning, and continuous deployment safeguards. Nevertheless, a comprehensive orchestration mechanism that formalizes dependency propagation and automates compatibility enforcement remains lacking. In this study, we propose a Compatibility-Driven Version Orchestrator, integrating semantic versioning, contract testing, and CI triggers into a unified framework. We empirically validate the approach on a Kubernetes-based environment, demonstrating the improved resilience of microservice systems to breaking changes. This contribution advances the theoretical modeling of cascading failures in microservices, while providing developers and DevOps teams with a practical toolset to improve service stability in dynamic, distributed environments. Full article
Show Figures

Figure 1

16 pages, 9499 KB  
Article
Durability Assessment of Alkali-Activated Geopolymers Matrices for Organic Liquid Waste Immobilization
by Rosa Lo Frano, Salvatore Angelo Cancemi, Eleonora Stefanelli and Viktor Dolin
Materials 2025, 18(13), 3181; https://doi.org/10.3390/ma18133181 - 4 Jul 2025
Viewed by 424
Abstract
This study investigates the mechanical and microstructural performance of three alkali-activated geopolymer formulations, constituted of metakaolin (MK), blast furnace slag (BFS), and a ternary blend of MK, BFS, and fly ash (MIX), for the immobilization of simulated radioactive liquid organic waste (RLOW). Thermal [...] Read more.
This study investigates the mechanical and microstructural performance of three alkali-activated geopolymer formulations, constituted of metakaolin (MK), blast furnace slag (BFS), and a ternary blend of MK, BFS, and fly ash (MIX), for the immobilization of simulated radioactive liquid organic waste (RLOW). Thermal ageing tests were performed to evaluate geopolymer durability, including fire exposure (800 °C) and climatic chamber cycles (from −20 to 40 °C). Characterization through thermogravimetric analysis (TGA), compression tests, and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) was carried out to assess material degradation after thermal ageing. Preliminary results showed substantial strength and microstructural degradation in oil-loaded specimens after cyclic climatic ageing, while fire-exposed blank matrices retained partial mechanical integrity. BFS matrices exhibited the best thermal resistance, attributable to the formation of Ca-Al-Si-hydrate (C-A-S-H) gels. These findings support the use of optimized geopolymer formulations for safe RLOW immobilization, while contributing to the advancement of knowledge on sustainable and regulatory-compliant direct conditioning technology. Full article
Show Figures

Figure 1

11 pages, 496 KB  
Article
Diagnostic Value of Protein C Depletion in Pathologies Associated with the Activation of the Blood Coagulation System
by Daria S. Korolova, Tetyana M. Platonova, Olga V. Gornytska, Volodymyr Chernyshenko, Olexandr Korchynskyi and Serhiy V. Komisarenko
Int. J. Mol. Sci. 2025, 26(13), 6122; https://doi.org/10.3390/ijms26136122 - 25 Jun 2025
Viewed by 715
Abstract
Protein C (PC) is the main anticoagulant protein of the hemostasis system. It can inhibit the blood clotting cascade before the formation of a thrombus, while its concentration can decrease significantly during strong activation of blood clotting. The PC concentration was found to [...] Read more.
Protein C (PC) is the main anticoagulant protein of the hemostasis system. It can inhibit the blood clotting cascade before the formation of a thrombus, while its concentration can decrease significantly during strong activation of blood clotting. The PC concentration was found to decrease during systemic lupus erythematosus (SLE) (with a median of 75%) and depended heavily on the inflammation index. It was also associated with the accumulation of soluble fibrin monomeric (SFMCs) (with a median of 7 µg/mL). A low PC level was detected during severe ischemic heart disease (IHD) (with medians of 60 and 63%, respectively). These pathologies also were associated with clotting activation. During abdominal aortic aneurysm (AAA), the PC level in blood plasma before surgery was found to range from 40% to 119%. A decrease in the PC level in the blood plasma of patients with AAA before surgery, lower than 78%, was associated with high blood loss (more than 1.5 L). A decrease in the PC level can lead to an imbalance between coagulation and anticoagulation. Thus, during the treatment of complex pathologies associated with the activation of coagulation, specific attention should be paid not only to classic markers of thrombus formation but also to the state of the anticoagulant link. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

29 pages, 3150 KB  
Review
The Impact of Tritium in the Environment
by Viktor Dolin, Yevgenii Yakovlev, Salvatore Angelo Cancemi and Rosa Lo Frano
Appl. Sci. 2025, 15(12), 6664; https://doi.org/10.3390/app15126664 - 13 Jun 2025
Viewed by 2166
Abstract
Tritium is a radioisotope that is extremely mobile in the biosphere and that can be transferred to the environment and to humans mainly via tritium oxide or tritiated water. Moreover, as is widely known, it is extremely difficult to detect in the environment. [...] Read more.
Tritium is a radioisotope that is extremely mobile in the biosphere and that can be transferred to the environment and to humans mainly via tritium oxide or tritiated water. Moreover, as is widely known, it is extremely difficult to detect in the environment. In the last decade, many studies and research activities have been performed to fill the knowledge gap on this radionuclide, the amount of which is expected to be increasingly released into the environment from nuclear installations in the near future. Considering this and the fact that the biological and environmental effects produced by tritium have been examined mainly from a medical and detection monitoring point of view, it is considered important to propose in this study a review of the critical aspects of tritium from the environmental, engineering, and waste management points of view. Identifying sources and effects of tritium, tritium materials and wastes containing tritium in the environment is also fundamental for planning the specific and necessary actions required for an effective waste management approach under, e.g., disposal conditions. The critical analysis of the published recent studies has allowed to evaluate, for example, that the expected rate of tritium generation in a fusion reactor is four orders of magnitude higher than that of LWRs, and the environmental release from a fusion reactor is 1.4–2.2‱, which is twice as much as from a heavy water reactor and more than two orders of magnitude higher than from a LWRs. Furthermore, with reference to the waste management strategy, it is emphasized, e.g., that the condensation of moisture inside vaults and the interaction of H2O with the disposal body determine the formation of tritiated water, which is filtered through the concrete and eventually released into the environment. Consequently, in the selection of engineered barrier materials for repositories/disposal facilities, the use of a mixture of a framework and layered silicates is proposed to improve its absorption and filtering properties. Full article
(This article belongs to the Special Issue Radioactive Waste Treatment and Environment Recovery)
Show Figures

Figure 1

24 pages, 3902 KB  
Article
Potassium Iodide Induces Apoptosis in Salivary Gland Cancer Cells
by Maksym Skrypnyk, Tetiana Yatsenko, Oleksandra Riabets, Olga Zuieva, Iryna Rodionova, Margarita Skikevych, Yousef Salama, Taro Osada, Morikuni Tobita, Satoshi Takahashi, Nobutaka Hattori, Kazuhisa Takahashi, Koichi Hattori and Beate Heissig
Int. J. Mol. Sci. 2025, 26(11), 5199; https://doi.org/10.3390/ijms26115199 - 28 May 2025
Viewed by 5488
Abstract
Salivary gland cancers (SGCs) pose a therapeutic challenge due to their aggressive nature and limited treatment options. Ion transporters, particularly the sodium/iodide symporter (SLC5A5), which transport iodine in the form of iodide anion (I) into cells, have emerged as potential therapeutic [...] Read more.
Salivary gland cancers (SGCs) pose a therapeutic challenge due to their aggressive nature and limited treatment options. Ion transporters, particularly the sodium/iodide symporter (SLC5A5), which transport iodine in the form of iodide anion (I) into cells, have emerged as potential therapeutic targets in tumors of glandular origin. Our research indicates that SLC5A5 is expressed predominantly in ductal cells of human and murine SGC cells. We assessed the effects of potassium iodide (KI), a source of iodide ions. KI treatment reduced SGC cell proliferation and viability without impacting migration. KI increased ROS levels and triggered caspase-dependent apoptosis, as indicated by the upregulation of the pro-apoptotic protein BAX, downregulation of the anti-apoptotic protein Bcl-2, and induction of SGC cell shrinkage. KI did not affect NF-κB or TNF-α and SLC5A5 expression. Adding the antioxidant N-acetylcysteine reversed KI-induced growth inhibition, underscoring ROS-induced oxidative stress’s crucial role in growth inhibition. While KI administered in drinking water to mice increased epidermal growth factor (EGF) expression in non-malignant salivary gland tissues, KI decreased EGF receptor (EGFR) expression in malignant SGC cell cultures, where EGFR signaling is frequently dysregulated in SGCs but promoted AKT phosphorylation. Combining KI and anti-EGFR treatment did not yield synergistic anti-SGC cell effects. The study underscores the therapeutic potential of KI as a standalone treatment in vitro for SGC cells. However, the upregulation of EGF in non-malignant tissues and, therefore, the possibility to enhance EGFR-driven signals and AKT phosphorylation after KI treatment in cancer patients could indicate a risk of rendering SGC cells more drug resistant, warranting further investigation to optimize its clinical application. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Graphical abstract

31 pages, 4116 KB  
Article
Parallel Simulation Using Reactive Streams: Graph-Based Approach for Dynamic Modeling and Optimization
by Oleksii Sirotkin, Arsentii Prymushko, Ivan Puchko, Hryhoriy Kravtsov, Mykola Yaroshynskyi and Volodymyr Artemchuk
Computation 2025, 13(5), 103; https://doi.org/10.3390/computation13050103 - 26 Apr 2025
Viewed by 574
Abstract
Modern computational models tend to become more and more complex, especially in fields like computational biology, physical modeling, social simulation, and others. With the increasing complexity of simulations, modern computational architectures demand efficient parallel execution strategies. This paper proposes a novel approach leveraging [...] Read more.
Modern computational models tend to become more and more complex, especially in fields like computational biology, physical modeling, social simulation, and others. With the increasing complexity of simulations, modern computational architectures demand efficient parallel execution strategies. This paper proposes a novel approach leveraging the reactive stream paradigm as a general-purpose synchronization protocol for parallel simulation. We introduce a method to construct simulation graphs from predefined transition functions, ensuring modularity and reusability. Additionally, we outline strategies for graph optimization and interactive simulation through push and pull patterns. The resulting computational graph, implemented using reactive streams, offers a scalable framework for parallel computation. Through theoretical analysis and practical implementation, we demonstrate the feasibility of this approach, highlighting its advantages over traditional parallel simulation methods. Finally, we discuss future challenges, including automatic graph construction, fault tolerance, and optimization strategies, as key areas for further research. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

21 pages, 4489 KB  
Article
Membrane for Pressure-Driven Separation Prepared with a Method of 3D Printing: Performance in Concentrating Orange Peel Extract
by Priscila Pini Pereira, Isabela Pacola Gonçalves, Luiza C. A. Molina, Roberta Delcolle, Yuliya S. Dzyazko, Carolina Moser Paraiso, Guilherme L. Batista Neto, Alexandre Diório, Angélica Marquetotti Salcedo Vieira and Rosângela Bergamasco
Membranes 2025, 15(4), 105; https://doi.org/10.3390/membranes15040105 - 1 Apr 2025
Cited by 1 | Viewed by 1118
Abstract
3D-printing enables the fabrication of membranes with desired shapes and geometrical parameters. In this study, a membrane for pressure-driven processes was manufactured in a single step using the fused deposition modeling (FDM) technique. The membrane was produced from a mixture of polylactic acid [...] Read more.
3D-printing enables the fabrication of membranes with desired shapes and geometrical parameters. In this study, a membrane for pressure-driven processes was manufactured in a single step using the fused deposition modeling (FDM) technique. The membrane was produced from a mixture of polylactic acid (PLA) with sucrose as a pore-forming agent. Sucrose was removed from the final membrane by washing it with water. The membrane consists of three layers, and this sandwich-like structure ensures its mechanical stability. The material obtained was characterized using SEM and AFM imaging, as well as nitrogen adsorption-desorption and contact angle measurements. The porosity of each layer of the membrane is due to a loose region, which is coated on both sides with a dense film formed during printing. The pores responsible for rejection capability can be found in grooves between the polymer stripes in the dense layer. The membrane exhibits a water permeability of 64 L m−2h−1bar−1, with a molecular weight cut-off of 69 kDa. The PLA membrane can be used for polyphenol concentration, demonstrating a permeability of 2–3.4 L m−2h−1bar−1 and a selectivity towards these compounds of 78–98% at 0.5 bar, with a flux decline ratio of up to 50%. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

17 pages, 4459 KB  
Article
Neural Network Modeling of Physicochemical Processes in Fluvisols with the Application of Sewage Sludge as Fertilizer for Energy Crops
by Halyna Hrytsuliak, Miroslav Rimar, Vasyl Lopushniak, Andrew Kotsyubynsky, Teodoziia Yatsyshyn, Andrii Iatsyshyn, Jan Kizek, Peter Oravec, Vasyl-Danylo Liakh and Marcel Fedak
Agriculture 2025, 15(7), 727; https://doi.org/10.3390/agriculture15070727 - 28 Mar 2025
Viewed by 509
Abstract
This study investigates the impact of sewage sludge-based composts on the quality of sod-podzolic soils (Fluvisols, WRB), which are naturally acidic and low in fertility. A field experiment with eight variants was conducted, applying different doses of sewage sludge and composts mixed with [...] Read more.
This study investigates the impact of sewage sludge-based composts on the quality of sod-podzolic soils (Fluvisols, WRB), which are naturally acidic and low in fertility. A field experiment with eight variants was conducted, applying different doses of sewage sludge and composts mixed with organic materials to enhance soil properties. Energy crops, including Salix viminalis L., Miscanthus × giganteus, and Panicum virgatum L., along with Helianthus tuberosus, were cultivated in three replications to ensure research reliability. The study assessed changes in physicochemical soil properties, nutrient availability, and heavy metal accumulation within the soil-plant-ash continuum. Results indicated that compost application improved soil fertility, increased biomass yields, and influenced heavy metal dynamics, with variations depending on the applied compost type and dosage. The findings highlight the potential of sewage sludge composts to enhance soil productivity while maintaining environmental safety. Full article
(This article belongs to the Special Issue Emerging Trends in Agricultural Biomass Production and Utilization)
Show Figures

Figure 1

26 pages, 1548 KB  
Review
Acoustic Waves and Their Application in Modern Fire Detection Using Artificial Vision Systems: A Review
by Jacek Lukasz Wilk-Jakubowski, Valentyna Loboichenko, Mikhail Divizinyuk, Grzegorz Wilk-Jakubowski, Roman Shevchenko, Stefan Ivanov and Viktor Strelets
Sensors 2025, 25(3), 935; https://doi.org/10.3390/s25030935 - 4 Feb 2025
Cited by 9 | Viewed by 2180
Abstract
This paper presents information on the propagation patterns of acoustic waves and their practical application, in particular, in modern fire detection methods that use artificial vision systems and video cameras as intelligent sensors. In practice, the use of artificial intelligence allows the detection [...] Read more.
This paper presents information on the propagation patterns of acoustic waves and their practical application, in particular, in modern fire detection methods that use artificial vision systems and video cameras as intelligent sensors. In practice, the use of artificial intelligence allows the detection of flames in places where the use of typical sensors is impossible or severely limited. Such a system can work together with environmentally friendly acoustic flame extinguishing technology as a standalone platform, or it may cooperate with other modules, which is a new approach in the field of fire protection. An analysis shows that the presented eco-friendly methods outperform other methods, with many advantages. In the future, the acoustic method can be used for the monitoring and early detection of fires in factory buildings or objects of high cultural, religious, and historical value, while an acoustic extinguisher equipped with artificial vision systems can be successfully used to extinguish fires. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 1568 KB  
Article
Efficient State Synchronization in Distributed Electrical Grid Systems Using Conflict-Free Replicated Data Types
by Arsentii Prymushko, Ivan Puchko, Mykola Yaroshynskyi, Dmytro Sinko, Hryhoriy Kravtsov and Volodymyr Artemchuk
IoT 2025, 6(1), 6; https://doi.org/10.3390/iot6010006 - 11 Jan 2025
Cited by 2 | Viewed by 1608
Abstract
Modern electrical grids are evolving towards distributed architectures, necessitating efficient and reliable state synchronization mechanisms to maintain structural and functional consistency. This paper investigates the application of conflict-free replicated data types (CRDTs) for representing and synchronizing the states of distributed electrical grid systems [...] Read more.
Modern electrical grids are evolving towards distributed architectures, necessitating efficient and reliable state synchronization mechanisms to maintain structural and functional consistency. This paper investigates the application of conflict-free replicated data types (CRDTs) for representing and synchronizing the states of distributed electrical grid systems (DEGSs). We present a general structure for DEGSs based on CRDTs, focusing on the Convergent Replicated Data Type (CvRDT) model with delta state propagation to optimize the communication overhead. The Observed Remove Set (ORSet) and Last-Writer-Wins Register (LWW-Register) are utilized to handle concurrent updates and ensure that only the most recent state changes are retained. An actor-based framework, “Vigilant Hawk”, leveraging the Akka toolkit, was developed to simulate the asynchronous and concurrent nature of DEGSs. Each electrical grid node is modelled as an independent actor with isolated state management, facilitating scalability and fault tolerance. Through a series of experiments involving 100 nodes under varying latency degradation coefficients (LDK), we examined the impact of network conditions on the state synchronization efficiency. The simulation results demonstrate that CRDTs effectively maintain consistency and deterministic behavior in DEGSs, even with increased network latency and node disturbances. An effective LDK range was identified (LDK effective = 2 or 4), where the network remains stable without significant delays in state propagation. The linear relationship between the full state distribution time (FSDT) and LDK indicates that the system can scale horizontally without introducing complex communication overhead. The findings affirm that using CRDTs for state synchronization enhances the resilience and operational efficiency of distributed electrical grids. The deterministic and conflict-free properties of CRDTs eliminate the need for complex concurrency control mechanisms, making them suitable for real-time monitoring and control applications. Future work will focus on addressing identified limitations, such as optimizing message routing based on the network topology and incorporating security measures to protect state information in critical infrastructure systems. Full article
Show Figures

Figure 1

16 pages, 7981 KB  
Article
Vibrational Markers of a Model Circulating Metastatic Cells LLC-R9
by Olena Gnatyuk, Denys Kolesnyk, Taras Voitsitskyi, Sergiy Karakhim, Andriy Nikolenko, Andrej Dementjev, Galina Solyanik and Galyna Dovbeshko
Spectrosc. J. 2024, 2(4), 306-321; https://doi.org/10.3390/spectroscj2040018 - 26 Nov 2024
Cited by 1 | Viewed by 1353
Abstract
Metastasis in oncological diseases remains one of the main reasons for negative prognosis regarding treatment. Any new data on the biophysical and biochemical characteristics of circulating metastatic cells will help to develop a concept for antimetastatic therapy. In this study, we found a [...] Read more.
Metastasis in oncological diseases remains one of the main reasons for negative prognosis regarding treatment. Any new data on the biophysical and biochemical characteristics of circulating metastatic cells will help to develop a concept for antimetastatic therapy. In this study, we found a number of differences in the spectroscopic and morphological features of circulating metastatic cells. FT-IR and Raman spectra cultivated by adhesive and de-adhesive methods (with the latter used as a model for metastatic cells) have shown spectroscopic features, namely in FT-IR spectra in the region of CH stretching vibrations, which are associated with structural rearrangements in the cell membrane, as well as changes in the intensity and position of the PO2 group vibration bands correlated with proliferative activity. The spectral features in the regions of OH stretching and Amide I vibrations as well as other spectral markers of the metastatic cells grown under different cultivation conditions were derived. Raman spectra showed a redistribution of the amino acid Tyr/Trp (tryptophan to tyrosine) ratio and in Tyr doublet intensity in the region of 500–900 cm−1, as well as varying glycogen levels in different cells. The spectroscopic markers are in accordance with biochemical data. CARS and confocal optical microscopy were applied to determine the state of the cells and the F-actin expression level, which turned out to be higher for adhesive cells in comparison with de-adhesive cells. The shape and the morphological properties of the cells differ drastically. The correlation of vibrational markers with biochemical data and the cytofluorometric method was discussed. Full article
Show Figures

Figure 1

25 pages, 2286 KB  
Review
Innovative Trends in Modified Membranes: A Mini Review of Applications and Challenges in the Food Sector
by Nicole Novelli do Nascimento, Carolina Moser Paraíso, Luiza C. A. Molina, Yuliya S. Dzyazko, Rosângela Bergamasco and Angélica Marquetotti Salcedo Vieira
Membranes 2024, 14(10), 209; https://doi.org/10.3390/membranes14100209 - 28 Sep 2024
Cited by 6 | Viewed by 2713
Abstract
Membrane technologies play a pivotal role in various industrial sectors, including food processing. Membranes act as barriers, selectively allowing the passage of one or other types of species. The separation processes that involve them offer advantages such as continuity, energy efficiency, compactness of [...] Read more.
Membrane technologies play a pivotal role in various industrial sectors, including food processing. Membranes act as barriers, selectively allowing the passage of one or other types of species. The separation processes that involve them offer advantages such as continuity, energy efficiency, compactness of devices, operational simplicity, and minimal consumption of chemical reagents. The efficiency of membrane separation depends on various factors, such as morphology, composition, and process parameters. Fouling, a significant limitation in membrane processes, leads to a decline in performance over time. Anti-fouling strategies involve adjustments to process parameters or direct modifications to the membrane, aiming to enhance efficiency. Recent research has focused on mitigating fouling, particularly in the food industry, where complex organic streams pose challenges. Membrane processes address consumer demands for natural and healthy products, contributing to new formulations with antioxidant properties. These trends align with environmental concerns, emphasizing sustainable practices. Despite numerous works on membrane modification, a research gap exists, especially with regard to the application of modified membranes in the food industry. This review aims to systematize information on modified membranes, providing insights into their practical application. This comprehensive overview covers membrane modification methods, fouling mechanisms, and distinct applications in the food sector. This study highlights the potential of modified membranes for specific tasks in the food industry and encourages further research in this promising field. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

21 pages, 3792 KB  
Article
Effect of Thermal Activation on the Structure and Electrochemical Properties of Carbon Material Obtained from Walnut Shells
by Nataliia Ivanichok, Pavlo Kolkovskyi, Oleh Ivanichok, Volodymyr Kotsyubynsky, Volodymyra Boychuk, Bogdan Rachiy, Michał Bembenek, Łukasz Warguła, Rashad Abaszade and Liubomyr Ropyak
Materials 2024, 17(11), 2514; https://doi.org/10.3390/ma17112514 - 23 May 2024
Cited by 6 | Viewed by 1608
Abstract
A simple activation method has been used to obtain porous carbon material from walnut shells. The effect of the activation duration at 400 °C in an atmosphere with limited air access on the structural, morphological, and electrochemical properties of the porous carbon material [...] Read more.
A simple activation method has been used to obtain porous carbon material from walnut shells. The effect of the activation duration at 400 °C in an atmosphere with limited air access on the structural, morphological, and electrochemical properties of the porous carbon material obtained from walnut shells has been studied. Moreover, the structure and morphology of the original and activated carbon samples have been characterized by SAXS, low-temperature adsorption porosimetry, SEM, and Raman spectroscopy. Therefore, the results indicate that increasing the duration of activation at a constant temperature results in a reduction in the thickness values of interplanar spacing (d002) in a range of 0.38–0.36 nm and lateral dimensions of the graphite crystallite from 3.79 to 2.52 nm. It has been demonstrated that thermal activation allows for an approximate doubling of the specific SBET surface area of the original carbon material and contributes to the development of its mesoporous structure, with a relative mesopore content of approximately 75–78% and an average pore diameter of about 5 nm. The fractal dimension of the obtained carbon materials was calculated using the Frenkel–Halsey–Hill method; it shows that its values for thermally activated samples (2.52, 2.69) are significantly higher than for the original sample (2.17). Thus, the porous carbon materials obtained were used to fabricate electrodes for electrochemical capacitors. Electrochemical investigations of these cells in a 6 M KOH aqueous electrolyte were conducted by cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. Consequently, it was established that the carbon material activated at 400 °C for 2 h exhibits a specific capacity of approximately 110–130 F/g at a discharge current density ranging from 4 to 100 mA/g. Full article
(This article belongs to the Special Issue Progress in Carbon-Based Materials)
Show Figures

Figure 1

Back to TopTop