Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = parametric model-based designs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3264 KB  
Article
Evaluation of Tuned Mass Damper for Offshore Wind Turbine Using Coupled Fatigue Analysis Method
by Yongqing Lai, Xinyun Wu, Bin Wang, Yu Zhang, Wenhua Wang and Xin Li
Energies 2025, 18(18), 4788; https://doi.org/10.3390/en18184788 - 9 Sep 2025
Abstract
This study proposes an integrated fatigue life assessment methodology to accurately evaluate the time-domain evolution in tubular joint fatigue damage in offshore wind turbine (OWT) jacket structures under long-term combined wind and wave actions. A customized post-processing module was developed via secondary development [...] Read more.
This study proposes an integrated fatigue life assessment methodology to accurately evaluate the time-domain evolution in tubular joint fatigue damage in offshore wind turbine (OWT) jacket structures under long-term combined wind and wave actions. A customized post-processing module was developed via secondary development on the MLife platform, employing a conditional probability distribution model to perform joint probabilistic modeling of measured marine environmental data, thereby establishing a long-term joint wind–wave distribution database. The reconstruction of hotspot stress time histories at the tubular joints was achieved through a hybrid analytical–numerical approach, integrating analytical formulations of nominal stress with a multi-axial stress concentration factor (SCF) matrix. Long-term fatigue damage assessment was implemented using the Palmgren–Miner linear cumulative damage hypothesis, where a weighted summation methodology based on joint wind–wave probability distributions rigorously accounted for the statistical contributions of individual design load cases. An ultimate bearing capacity analysis was also conducted based on S-N fatigue endurance characteristic curves. This research specifically investigates the influence mechanisms of tuned mass dampers (TMDs) on the time-domain-coupled fatigue performance of tubular joints subjected to long-term combined wind and wave loads. Numerical simulations demonstrate that parametrically optimized TMD systems significantly enhance the fatigue life metrics of critical joints in jacket structures. Full article
Show Figures

Figure 1

23 pages, 12573 KB  
Article
SMA-Activated Double-Stage Yielding BRB: Experimental and FEM Insights
by Huijie Huang, Jiyang Wang, Dong Yao, Pinghuai Zhou and Senlin Zhao
Buildings 2025, 15(17), 3225; https://doi.org/10.3390/buildings15173225 - 7 Sep 2025
Viewed by 382
Abstract
To address the limitations of traditional buckling-restrained braces (BRB), which feature a single-stage yielding and inadequate energy dissipation under small earthquakes, this study proposes a novel double-stage yielding buckling-restrained brace (DSY-BRB). The proposed design integrates a sliding friction damper with shape memory alloy [...] Read more.
To address the limitations of traditional buckling-restrained braces (BRB), which feature a single-stage yielding and inadequate energy dissipation under small earthquakes, this study proposes a novel double-stage yielding buckling-restrained brace (DSY-BRB). The proposed design integrates a sliding friction damper with shape memory alloy (SMA) bolts and conventional BRB components, enabling effective energy dissipation at small deformations and adaptive performance across varying displacement amplitudes compared with traditional BRBs. Leveraging SMA superelasticity, the DSY-BRB also exhibits self-centering capability that distinguishes it from prior DSY-BRB configurations. Experimental investigations were conducted on DSY-BRB specimens with varying core plate widths under cyclic quasi-static loading to evaluate hysteresis behavior, energy dissipation capacity, and self-centering performance. Results demonstrate that DSY-BRBs exhibit symmetric flag-shaped hysteresis curves with enhanced energy dissipation and excellent self-centering capabilities, achieving minimal residual deformation compared to traditional BRBs. Complementary finite element modeling with parametric analysis was performed to establish design guidelines for optimal double-stage buckling behavior. The findings reveal critical stiffness ratio requirements between BRB and SMA bolt-based friction damper components, providing valuable design criteria for engineering applications. This hybrid approach offers significant advantages in seismic energy dissipation and structural resilience compared to existing DSY-BRB systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 5260 KB  
Article
Algorithmic Design in Architectural Heritage: Innovation in Virtual Reconstruction of the Roman Forum Transitorium in Musti, Tunisia
by Jakub Franczuk and Krzysztof Koszewski
Heritage 2025, 8(9), 362; https://doi.org/10.3390/heritage8090362 - 4 Sep 2025
Viewed by 272
Abstract
Digital technologies significantly influence architectural heritage perception, preservation, and presentation, particularly in reconstructing fragmented archaeological sites. This study explores innovative applications of algorithmic design, Heritage Building Information Modelling (HBIM), and interactive visualisation through the virtual reconstruction of the Roman Forum Transitorium in Musti, [...] Read more.
Digital technologies significantly influence architectural heritage perception, preservation, and presentation, particularly in reconstructing fragmented archaeological sites. This study explores innovative applications of algorithmic design, Heritage Building Information Modelling (HBIM), and interactive visualisation through the virtual reconstruction of the Roman Forum Transitorium in Musti, Tunisia—a complex historical site influenced by Numidian, Roman, and Byzantine cultures. The research integrates algorithmic modelling, digital surveying, and cloud-based collaboration, employing software tools such as Archicad, Rhino, Grasshopper, and Virtual Tour platforms. Central to this approach is a parametric, hypothesis-driven methodology, enabling the iterative exploration of multiple reconstruction scenarios informed by historical sources, architectural analyses, and scanned archaeological fragments. Immersive technologies enhance user engagement, allowing for the transparent exploration and interpretation of the site’s historical uncertainties. The results highlight the effectiveness of algorithmic methods in managing interpretative variability, offering flexible, academically rigorous, and publicly accessible virtual reconstructions. By emphasising the hypothetical nature of digital reconstructions and interactive visualisations, this research contributes meaningfully to digital archaeology, demonstrating how innovative algorithmic approaches can bridge academic scholarship and broader heritage preservation practices. Full article
Show Figures

Figure 1

16 pages, 3175 KB  
Article
Research and Optimization of Key Technologies for Manure Cleaning Equipment Based on a Profiling Wheel Mechanism
by Fengxin Yan, Can Gao, Lishuang Ren, Jiahao Li and Yuanda Gao
AgriEngineering 2025, 7(9), 287; https://doi.org/10.3390/agriengineering7090287 - 3 Sep 2025
Viewed by 316
Abstract
This study addresses the problems of poor dynamic stability, high vibration coupling, and inefficient energy use in large-farm manure handling machines. A profiling wheel-based multi-disciplinary approach is proposed in the study. With the rocker arm prototype, double-ball heads, and a hydraulic damping system, [...] Read more.
This study addresses the problems of poor dynamic stability, high vibration coupling, and inefficient energy use in large-farm manure handling machines. A profiling wheel-based multi-disciplinary approach is proposed in the study. With the rocker arm prototype, double-ball heads, and a hydraulic damping system, a parametric design is built that includes vibration and energy consumption. The simulation results in EDEM2022 and ANSYS2022 prove the structure viability and motion compensation capability, while NSGA-II optimizes the damping parameters (k1 = 380 kN/m, C = 1200 Ns/m). The results show a 14.7% σFc reduction, 14.3% αRMS decrease, resonance avoidance (14–18 Hz), Δx (horizontal offset of the frame) < 5 mm, 18% power loss to 12.5%, and 62% stability improvement. The new research includes constructing a dynamic model by combining the Hertz contact theory with the modal decoupling method, while interacting with an automatic algorithm of adaptive damping and a mechanical-hydraulic-control-oriented optimization platform. Future work could integrate lightweight materials and multi-machine collaboration for smarter, greener manure cleaning. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

26 pages, 5446 KB  
Article
Comparative Analysis of Structural Efficiency of Steel Bar Hyperbolic Paraboloid Modules
by Jolanta Dzwierzynska and Patrycja Lechwar
Materials 2025, 18(17), 4127; https://doi.org/10.3390/ma18174127 - 2 Sep 2025
Viewed by 539
Abstract
Curved roofs constructed using hyperbolic paraboloid (HP) modules are gaining popularity in structural engineering due to their unique aesthetic and structural advantages. Consequently, these studies have investigated steel bar modules based on HP geometry, focusing on how variations in geometric configuration and bar [...] Read more.
Curved roofs constructed using hyperbolic paraboloid (HP) modules are gaining popularity in structural engineering due to their unique aesthetic and structural advantages. Consequently, these studies have investigated steel bar modules based on HP geometry, focusing on how variations in geometric configuration and bar topology affect internal force distribution and overall structural performance. Each module was designed on a 4 × 4 m square plan, incorporating external bars that formed the spatial frame and internal grid bars that filled the frame’s interior. Parametric modeling was conducted using Dynamo, while structural analysis and design were performed in Autodesk Robot Structural Analysis Professional (ARSAP). Key variables included the vertical displacement of frame corners (0–1.0 m at 0.25 m intervals), the orientation and spacing of internal bar divisions, and the overall mesh topology. A total of 126 structural models were analyzed, representing four distinct bar topology variants, including both planar and non-planar mesh configurations. The results demonstrate that structural efficiency is significantly influenced by the geometry and topology of the internal bar system, with notable differences observed across the various structural types. Computational analysis revealed that asymmetric configurations of non-planar quadrilateral subdivisions yielded the highest efficiency, while symmetric arrangements proved optimal for planar panel applications. These findings, along with observed design trends, offer valuable guidance for the development and optimization of steel bar structures based on HP geometry, applicable to both single-module and multi-module configurations. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 6162 KB  
Article
Design and Optimization of Hierarchical Porous Metamaterial Lattices Inspired by the Pistol Shrimp’s Claw: Coupling for Superior Crashworthiness
by Jiahong Wen, Na Wu, Pei Tian, Xinlin Li, Shucai Xu and Jiafeng Song
Biomimetics 2025, 10(9), 582; https://doi.org/10.3390/biomimetics10090582 - 2 Sep 2025
Viewed by 304
Abstract
This study, inspired by the impact resistance of the pistol shrimp’s predatory claw, investigates the design and optimization of bionic energy absorption structures. Four types of bionic hierarchical porous metamaterial lattice structures with a negative Poisson’s ratio were developed based on the microstructure [...] Read more.
This study, inspired by the impact resistance of the pistol shrimp’s predatory claw, investigates the design and optimization of bionic energy absorption structures. Four types of bionic hierarchical porous metamaterial lattice structures with a negative Poisson’s ratio were developed based on the microstructure of the pistol shrimp’s fixed claw. These structures were validated through finite element models and quasi-static compression tests. Results showed that each structure exhibited distinct advantages and shortcomings in specific evaluation indices. To address these limitations, four new bionic structures were designed by coupling the characteristics of the original structures. The coupled structures demonstrated a superior balance across various performance indicators, with the EOS (Eight pillars Orthogonal with Side connectors on square frame) structure showing the most promising results. To further enhance the EOS structure, a parametric study was conducted on the distance d from the edge line to the curve vertex and the length-to-width ratio y of the negative Poisson’s ratio structure beam. A fifth-order polynomial surrogate model was constructed to predict the Specific Energy Absorption (SEA), Crush Force Efficiency (CFE), and Undulation of Load-Carrying fluctuation (ULC) of the EOS structure. A multi-objective genetic algorithm was employed to optimize these three key performance indicators, achieving improvements of 1.98% in SEA, 2.42% in CFE, and 2.05% in ULC. This study provides a theoretical basis for the development of high-performance biomimetic energy absorption structures and demonstrates the effectiveness of coupling design with optimization algorithms to enhance structural performance. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

8 pages, 1497 KB  
Proceeding Paper
Parameter-Based Finite Element Modeling of Functionally Graded Rotating Disks Subject to Thermal Loadings
by Chieh-Jung Lu and Wen-Feng Lin
Eng. Proc. 2025, 108(1), 29; https://doi.org/10.3390/engproc2025108029 - 1 Sep 2025
Viewed by 65
Abstract
A parametric-based finite element model was developed to analyze the behavior of rotating disks made from functionally graded materials (FGMs) subjected to thermal loads. The model enabled the rapid determination of critical speeds to prevent slip and plastic deformation, while also enabling the [...] Read more.
A parametric-based finite element model was developed to analyze the behavior of rotating disks made from functionally graded materials (FGMs) subjected to thermal loads. The model enabled the rapid determination of critical speeds to prevent slip and plastic deformation, while also enabling the analysis of disk performance under varying operational conditions, such as different rotational speeds, disk diameters, and material gradients. The model is a highly efficient tool for design engineers to assess stress and deformation in rotating disks and facilitates the optimization of FGM parameters, offering valuable support to FGM designers. Full article
Show Figures

Figure 1

19 pages, 4736 KB  
Article
Optimal Design of a Coaxial Magnetic Gear Pole Combination Considering an Overhang
by Tae-Kyu Ji and Soo-Whang Baek
Appl. Sci. 2025, 15(17), 9625; https://doi.org/10.3390/app15179625 - 1 Sep 2025
Viewed by 345
Abstract
This paper presents a comprehensive design approach for optimizing the pole configuration of a coaxial magnetic gear (CMG) structure with an overhang to enhance torque characteristics. Five CMG models were designed, and their characteristics were analyzed. A three-dimensional finite element method analysis was [...] Read more.
This paper presents a comprehensive design approach for optimizing the pole configuration of a coaxial magnetic gear (CMG) structure with an overhang to enhance torque characteristics. Five CMG models were designed, and their characteristics were analyzed. A three-dimensional finite element method analysis was conducted to account for axial leakage flux. To efficiently explore the design space, we utilized an optimal Latin hypercube sampling method to generate experimental points and constructed a kriging-based metamodel owing to its low root-mean-square error. We analyzed torque characteristics across the design variables to identify characteristic trends and performed a parametric sensitivity analysis to evaluate the influence of each variable on the torque. We derived an optimal solution that satisfied the objective function and constraints using the design variables. The characteristics of the proposed model were validated through electromagnetic field analysis, fast Fourier transform analysis of the air-gap magnetic flux density, and structural analysis. The optimal model achieved an average torque of 61.75 Nm, representing a 21.15% improvement over the initial model, while simultaneously reducing the ripple factor by 0.41%. These findings indicate that the proposed CMG design with an overhang effectively enhances torque characteristics. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

26 pages, 5349 KB  
Article
Smart Forest Modeling Behavioral for a Greener Future: An AI Text-by-Voice Blockchain Approach with Citizen Involvement in Sustainable Forestry Functionality
by Dimitrios Varveris, Vasiliki Basdekidou, Chrysanthi Basdekidou and Panteleimon Xofis
FinTech 2025, 4(3), 47; https://doi.org/10.3390/fintech4030047 - 1 Sep 2025
Viewed by 316
Abstract
This paper introduces a novel approach to tree modeling architecture integrated with blockchain technology, aimed at enhancing landscape spatial planning and forest monitoring systems. The primary objective is to develop a low-cost, automated tree CAD modeling methodology combined with blockchain functionalities to support [...] Read more.
This paper introduces a novel approach to tree modeling architecture integrated with blockchain technology, aimed at enhancing landscape spatial planning and forest monitoring systems. The primary objective is to develop a low-cost, automated tree CAD modeling methodology combined with blockchain functionalities to support smart forest projects and collaborative design processes. The proposed method utilizes a parametric tree CAD model consisting of four 2D tree-frames with a 45° division angle, enriched with recorded tree-leaves’ texture and color. An “AI Text-by-Voice CAD Programming” technique is employed to create tangible tree-model NFT tokens, forming the basis of a thematic “Internet-of-Trees” blockchain. The main results demonstrate the effectiveness of the blockchain/Merkle hash tree in tracking tree geometry growth and texture changes through parametric transactions, enabling decentralized design, data validation, and planning intelligence. Comparative analysis highlights the advantages in cost, time efficiency, and flexibility over traditional 3D modeling techniques, while providing acceptable accuracy for metaverse projects in smart forests and landscape architecture. Core contributions include the integration of AI-based user voice interaction with blockchain and behavioral data for distributed and collaborative tree modeling, the introduction of a scalable and secure “Merkle hash tree” for smart forest monitoring, and the facilitation of fintech adoption in environmental projects. This framework offers significant potential for advancing metaverse-based landscape architecture, smart forest surveillance, sustainable urban planning, and the improvement of citizen involvement in sustainable forestry paving the way for a greener future. Full article
Show Figures

Figure 1

22 pages, 1978 KB  
Article
Uncertainty and Global Sensitivity Analysis of a Membrane Biogas Upgrading Process Using the COCO Simulator
by José M. Gozálvez-Zafrilla and Asunción Santafé-Moros
ChemEngineering 2025, 9(5), 94; https://doi.org/10.3390/chemengineering9050094 - 1 Sep 2025
Viewed by 352
Abstract
Process designs based on deterministic simulations without considering parameter uncertainty or variability have a high probability of failing to meet specifications. In this work, uncertainty and global sensitivity analyses were applied to a biogas upgrading membrane process implemented in the COCO simulator (CAPE-OPEN [...] Read more.
Process designs based on deterministic simulations without considering parameter uncertainty or variability have a high probability of failing to meet specifications. In this work, uncertainty and global sensitivity analyses were applied to a biogas upgrading membrane process implemented in the COCO simulator (CAPE-OPEN to CAPE-OPEN), considering both controlled and non-controlled scenarios. A user-defined model code was developed to simulate gas separation membrane stages, and a preliminary study of membrane parameter uncertainty was performed. In addition, a unit generating combinations of uncertainty factors was developed to interact with the simulator’s parametric tool. Global sensitivity analyses were carried out using the Morris method and Sobol’ indices obtained by Polynomial Chaos Expansion, allowing for the ranking and quantification of the influence of feed variability and membrane parameter uncertainty on product streams and process utilities. Results showed that when feed variability was ±10%, its effect exceeded the uncertainty of the membrane parameters. Uncertainty analysis using the Monte Carlo propagation method provided lower and upper tolerance limits for the main responses. Relative gaps between tolerance limits and mean product flows were 8–9% at a feed variability of 5% and 14–18% at a feed variability of 10%, while relative tolerance gaps resulting from composition were smaller (0.4–1.2%). Full article
Show Figures

Graphical abstract

25 pages, 549 KB  
Article
Fuzzy Lyapunov-Based Gain-Scheduled Control for Mars Entry Vehicles: A Computational Framework for Robust Non-Linear Trajectory Stabilization
by Hongyang Zhang, Na Min and Shengkun Xie
Computation 2025, 13(9), 205; https://doi.org/10.3390/computation13090205 - 1 Sep 2025
Viewed by 345
Abstract
Accurate trajectory control during atmospheric entry is critical for the success of Mars landing missions, where strong non-linearities and uncertain dynamics pose significant challenges to conventional control strategies. This study develops a computational framework that integrates fuzzy parameter-varying models with Lyapunov-based analysis to [...] Read more.
Accurate trajectory control during atmospheric entry is critical for the success of Mars landing missions, where strong non-linearities and uncertain dynamics pose significant challenges to conventional control strategies. This study develops a computational framework that integrates fuzzy parameter-varying models with Lyapunov-based analysis to achieve robust trajectory stabilization of Mars entry vehicles. The non-linear longitudinal dynamics are reformulated via sector-bounded approximation into a Takagi–Sugeno fuzzy parameter-varying model, enabling systematic gain-scheduled controller synthesis. To reduce the conservatism typically associated with quadratic Lyapunov functions, a fuzzy Lyapunov function approach is adopted, in conjunction with the Full-Block S-procedure, to derive less restrictive stability conditions expressed as linear matrix inequalities. Based on this formulation, several controllers are designed to accommodate the variations in atmospheric density and flight conditions. The proposed methodology is validated through numerical simulations, including Monte Carlo dispersion and parametric sensitivity analyses. The results demonstrate improved stability, faster convergence, and enhanced robustness compared to existing fuzzy control schemes. Overall, this work contributes a systematic and less conservative control design methodology for aerospace applications operating under severe non-linearities and uncertainties. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

27 pages, 5813 KB  
Article
A Novel Dynamic Modeling Framework for Flexure Mechanism-Based Piezoelectric Stick–Slip Actuators with Integrated Design Parameter Analysis
by Xuan-Ha Nguyen and Duc-Toan Nguyen
Machines 2025, 13(9), 787; https://doi.org/10.3390/machines13090787 - 1 Sep 2025
Viewed by 325
Abstract
This paper presents an enhanced pseudo-rigid body model (PRBM) integrated with the LuGre friction law to analyze the dynamic behavior of flexure-hinge-based piezoelectric stick–slip actuators (PSSAs). The PRBM captures flexure compliance through Lagrangian dynamics, while Newtonian mechanics describe the piezoelectric stack and slider [...] Read more.
This paper presents an enhanced pseudo-rigid body model (PRBM) integrated with the LuGre friction law to analyze the dynamic behavior of flexure-hinge-based piezoelectric stick–slip actuators (PSSAs). The PRBM captures flexure compliance through Lagrangian dynamics, while Newtonian mechanics describe the piezoelectric stack and slider motion. Non-linear contact effects, including stick–slip transitions, are modeled using the LuGre formulation. A mass–spring–damper model (MSDM) is also implemented as a baseline for comparison. The models are solved in MATLAB Simulink version R2021a and validated against experimental data from a published prototype. The enhanced PRBM achieves strong agreement with experiments, with a root mean square error of 20.19%, compared to 51.65% for the MSDM. By reformulating the equations into closed-form expressions, it removes symbolic evaluations required in the standard PRBM, resulting in one to two orders of magnitude faster simulation time while preserving accuracy. Stable transient simulations are achieved at fine time steps (Δt=108 s). A systematic parametric study highlights preload force, flexure stiffness, friction coefficients, and tangential stiffness as dominant factors in extending the linear frequency–velocity regime. Overall, the PRBM–LuGre framework bridges the gap between computationally intensive finite element analysis and oversimplified lumped models, providing an accurate and efficient tool for design-oriented optimization of compliant piezoelectric actuators. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

27 pages, 7951 KB  
Article
The Influence of Traditional Residential Skywell Forms on Building Performance in Hot and Humid Regions of China—Taking Huangshan Area as an Example
by Lingling Wang, Jilong Zhao, Qingtan Deng, Siyu Wang and Ruixia Liu
Sustainability 2025, 17(17), 7792; https://doi.org/10.3390/su17177792 - 29 Aug 2025
Viewed by 389
Abstract
Skywells are crucial for climate regulation in traditional Chinese dwelling architecture, exhibiting significant variations across climatic regions. This study focuses on humid–hot China, using Huangshan, to explore skywell parameters’ impact on thermal comfort and energy efficiency. Field research on 24 buildings in the [...] Read more.
Skywells are crucial for climate regulation in traditional Chinese dwelling architecture, exhibiting significant variations across climatic regions. This study focuses on humid–hot China, using Huangshan, to explore skywell parameters’ impact on thermal comfort and energy efficiency. Field research on 24 buildings in the World Heritage Site Xidi, Hong Villages, and Chinese Historical Pingshan Village, combined with Grasshopper’s Ladybug tool, established a parametric model. Using orthogonal design, performance simulation, and Python-based machine learning, six morphological parameters were analyzed: width-to-length ratio, height-to-width ratio, orientation, hall depth, wing width, and shading width. After NSGA-II multi-objective optimization, the summer Percentage of Time Comfortable (PTC) increased by 5.3%, 38.14 h; the Universal Thermal Climate Index (UTCI) relatively improved by 2%; energy consumption decreased by 8.6%, 0.14 kWh/m2; and the useful daylight illuminance increased by 28%, 128.4 h. This confirms the climate adaptability of courtyard-style buildings in humid–hot China and identifies optimized skywell parameters within the study scope. Full article
(This article belongs to the Collection Sustainable Built Environment)
Show Figures

Figure 1

25 pages, 8084 KB  
Article
Neural Network-Based Prediction of Compression Behaviour in Steel–Concrete Composite Adapter for CFDST Lattice Turbine Tower
by Shi-Chao Wei, Hao Wen, Ji-Zhi Zhao, Yu-Sen Liu, Yong-Jun Duan and Cheng-Po Wang
Buildings 2025, 15(17), 3103; https://doi.org/10.3390/buildings15173103 - 29 Aug 2025
Viewed by 399
Abstract
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the [...] Read more.
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the upper tubular steel tower to the lower lattice segment, transferring axial loads. However, the compressive behaviour of the SCCA remains underexplored due to its complex multi-shell configuration and steel–concrete interaction. This study investigates the axial compression behaviour of SCCAs through refined finite element simulations, identifying diagonal extrusion as the typical failure mode. The analysis clarifies the distinct roles of the outer and inner shells in confinement, highlighting the dominant influence of outer shell thickness and concrete strength. A sensitivity-based parametric study highlights the significant roles of outer shell thickness and concrete strength. To address the high cost of FE simulations, a 400-sample database was built using Latin Hypercube Sampling and engineering-grade material inputs. Using this dataset, five neural networks were trained to predict SCCA capacity. The Dropout model exhibited the best accuracy and generalization, confirming the feasibility of physics-informed, data-driven prediction for SCCAs and outperforming traditional empirical approaches. A graphical prediction tool was also developed, enabling rapid capacity estimation and design optimization for wind turbine structures. This tool supports real-time prediction and multi-objective optimization, offering practical value for the early-stage design of composite adapters in lattice turbine towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 4458 KB  
Article
Analysis of Vibration Characteristics of Viscoelastic Slurry Pipe Considering Fluid–Structure Interaction Effects
by Wenjing Hu, Jianyong Hu, Handan Zhang, Xiujun Hu, Rui Kong, Kai Peng, Delei Yu and Jinke Mao
Water 2025, 17(17), 2554; https://doi.org/10.3390/w17172554 - 28 Aug 2025
Viewed by 843
Abstract
To study the vibration characteristics of viscoelastic slurry pipe structures under fluid–structure interaction (FSI), we constructed a three-dimensional FSI pipe model based on the finite element method to systematically investigate the effects of fluid effects, pipe length, and wall thickness on the vibrational [...] Read more.
To study the vibration characteristics of viscoelastic slurry pipe structures under fluid–structure interaction (FSI), we constructed a three-dimensional FSI pipe model based on the finite element method to systematically investigate the effects of fluid effects, pipe length, and wall thickness on the vibrational characteristics of viscoelastic slurry pipes. A modal analysis demonstrated that fluid effects not only significantly reduced the natural frequency of the pipe but also disrupted the symmetry of the vibration modes and eliminated the phenomenon of frequency degeneracy. The frequency reduction caused by FSI reached 54%, which was dominant compared with the water-attached effects, and its impact intensified with the increasing vibration order. The water-attached effect exhibited differences between odd and even orders, attributed to the influence of vibration modes on the distribution of fluid inertial forces, with a contribution of 45.07% to 55.24% in the odd orders and of only 37.69% to 38.93% in the even orders. When the FSI and water-attached effects acted together, the frequency reduction was further aggravated, but the reduction ratio did not follow a simple linear superposition. The parametric analysis of the pipe showed that when the pipe length increased from 1 m to 3 m, the growth rate of its natural frequency was only 26.52% that of the shorter pipe, indicating that the longer the pipes, the slower the growth rate of frequency. When the wall thickness increased from 5 mm to 11 mm, the growth rate of the first-order natural frequency decreased from 15.43% to 7.44%, suggesting that the frequency improvement effect caused by the stiffness augmentation diminished with the increase in wall thickness. The research results hold significant guiding significance for the structural design of slurry pipe systems in practical engineering and the safe operation of pipe systems. Full article
(This article belongs to the Special Issue Risk Assessment and Mitigation for Water Conservancy Projects)
Show Figures

Figure 1

Back to TopTop