Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = parchment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1997 KB  
Article
Impact of Altitudinal Gradients on Exportable Performance, and Physical and Cup Quality of Coffee (Coffea arabica L.) Grown in Inter-Andean Valley
by Katia Choque-Quispe, Delma Diana Reynoso-Canicani, John Peter Aguirre-Landa, Henrry W. Agreda Cerna, Medalit Villegas Casaverde, Alfredo Prado Canchari, Edwin Mescco Cáceres, Lucero Quispe Chambilla, Hilka Mariela Carrión Sánchez, Yasminia Torres Flores, Henry Palomino-Rincón and David Choque-Quispe
Resources 2025, 14(9), 136; https://doi.org/10.3390/resources14090136 - 30 Aug 2025
Viewed by 728
Abstract
Coffee production is one of the main sources of income for products from Peru’s inter-Andean valleys. However, the rugged geographical conditions offer few growing areas with different altitudes, which could lead to variations in the quality of the beans and, consequently, of the [...] Read more.
Coffee production is one of the main sources of income for products from Peru’s inter-Andean valleys. However, the rugged geographical conditions offer few growing areas with different altitudes, which could lead to variations in the quality of the beans and, consequently, of the coffee in the cup. This study aimed to evaluate the effect of altitudinal gradients on the exportable yield, and physical and cup quality of the Typica and Catimor varieties produced in the Inkawasi inter-Andean valley of Cusco, Peru. Coffee beans produced at altitudes of 1600, 1800, and 2100 m were considered, and the physical quality of parchment and green coffee was evaluated using Peruvian Technical Standards and the SCAA guidelines. Similarly, the sensory attributes of the coffee in the cup were assessed according to criteria established by the SCAA by five certified tasters. It was observed that increasing altitude considerably reduces pest attack and damage in both varieties and increases secondary damage, shrinkage, and exportable yield, which ranged from 79.12 to 81.98%. Sensory attributes ranged from “Very Good” to “Extraordinary”, allowing the Specialty Grade (>80 points) to be achieved according to SCAA standards. The PCA revealed that the Typica variety has superior sensory qualities that improve with altitude. The coffee produced in the Inkawasi valleys is well received on the international market, especially that grown above 1800 m. Its sustainable cultivation could improve the socioeconomic conditions of its inhabitants. Full article
Show Figures

Figure 1

29 pages, 12570 KB  
Article
Sustainable Zinc-Ion Battery Separators Based on Silica and Cellulose Fibers Derived from Coffee Parchment Waste
by Vorrada Loryuenyong, Buntita Plongmai, Nitikorn Pajantorn, Prasit Pattananuwat and Achanai Buasri
J. Compos. Sci. 2025, 9(8), 452; https://doi.org/10.3390/jcs9080452 - 21 Aug 2025
Viewed by 907
Abstract
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding [...] Read more.
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding in order to promote a circular economy and sustainable materials. This research focuses on the usage of cellulose fibers obtained from coffee parchment (CP) waste. The extracted cellulose fibers are produced via both mechanical and chemical methods. The sustainable separators are fabricated through vacuum filtration using a polymer filter membrane. The impact of incorporating silica particles and varying silica content on the physical and electrochemical properties of a cellulose-based separator is examined. The optimum amount of silica integrated into the cellulose separator is determined to be 5 wt%. This content led to an effective distribution of the silica particles, enhanced wettability, and improved fire resistance. The ZIBs incorporating cellulose/recycled silica at 5 wt% demonstrate exceptional cycle stability and the highest capacity retention (190% after 400 cycles). This study emphasizes the promise of sustainable polymers as a clean energy resource, owing to their adaptability and simplicity of processing, serving as a substitute for synthetic polymers sourced from fossil fuels. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

21 pages, 3103 KB  
Article
Systemic and Mucosal Humoral Immune Responses to Lumazine Synthase 60-mer Nanoparticle SARS-CoV-2 Vaccines
by Cheng Cheng, Jeffrey C. Boyington, Edward K. Sarfo, Cuiping Liu, Danealle K. Parchment, Andrea Biju, Angela R. Corrigan, Lingshu Wang, Wei Shi, Yi Zhang, Yaroslav Tsybovsky, Tyler Stephens, Adam S. Olia, Audrey S. Carson, Syed M. Moin, Eun Sung Yang, Baoshan Zhang, Wing-Pui Kong, Peter D. Kwong, John R. Mascola and Theodore C. Piersonadd Show full author list remove Hide full author list
Vaccines 2025, 13(8), 780; https://doi.org/10.3390/vaccines13080780 - 23 Jul 2025
Viewed by 1063
Abstract
Background: Vaccines that stimulate systemic and mucosal immunity to a level required to prevent SARS-CoV-2 infection and transmission are an unmet need. Highly protective hepatitis B and human papillomavirus nanoparticle vaccines highlight the potential of multivalent nanoparticle vaccine platforms to provide enhanced immunity. [...] Read more.
Background: Vaccines that stimulate systemic and mucosal immunity to a level required to prevent SARS-CoV-2 infection and transmission are an unmet need. Highly protective hepatitis B and human papillomavirus nanoparticle vaccines highlight the potential of multivalent nanoparticle vaccine platforms to provide enhanced immunity. Here, we report the construction and characterization of self-assembling 60-subunit icosahedral nanoparticle SARS-CoV-2 vaccines using the bacterial enzyme lumazine synthase (LuS). Methods and Results: Nanoparticles displaying prefusion-stabilized SARS-CoV-2 spike ectodomains fused to the surface-exposed amino terminus of LuS were designed using structure-guided approaches. Negative stain-electron microscopy studies of purified nanoparticles were consistent with self assembly into 60-mer nanoparticles displaying 20 spike trimers. After two intramuscular doses, these purified spike-LuS nanoparticles elicited significantly higher SARS-CoV-2 neutralizing activity than spike trimers in vaccinated mice. Furthermore, intramuscular DNA priming and intranasal boosting with a SARS-CoV-2 LuS nanoparticle vaccine stimulated mucosal IgA responses. Conclusion: These data identify LuS nanoparticles as highly immunogenic SARS-CoV-2 vaccine candidates and support the further development of this platform against SARS-CoV-2 and its emerging variants. Full article
(This article belongs to the Special Issue Novel Vaccines and Vaccine Technologies for Emerging Infections)
Show Figures

Figure 1

21 pages, 2143 KB  
Article
Physically Informed Synthetic Data Generation and U-Net Generative Adversarial Network for Palimpsest Reconstruction
by Jose L. Salmeron and Eva Fernandez-Palop
Mathematics 2025, 13(14), 2304; https://doi.org/10.3390/math13142304 - 18 Jul 2025
Viewed by 910
Abstract
This paper introduces a novel adversarial learning framework for reconstructing hidden layers in historical palimpsests. Recovering text hidden in historical palimpsests is complicated by various artifacts, such as ink diffusion, degradation of the writing substrate, and interference between overlapping layers. To address these [...] Read more.
This paper introduces a novel adversarial learning framework for reconstructing hidden layers in historical palimpsests. Recovering text hidden in historical palimpsests is complicated by various artifacts, such as ink diffusion, degradation of the writing substrate, and interference between overlapping layers. To address these challenges, the authors of this paper combine a synthetic data generator grounded in physical modeling with three generative architectures: a baseline VAE, an improved variant with stronger regularization, and a U-Net-based GAN that incorporates residual pathways and a mixed loss strategy. The synthetic data engine aims to emulate key degradation effects—such as ink bleeding, the irregularity of parchment fibers, and multispectral layer interactions—using stochastic approximations of underlying physical processes. The quantitative results suggest that the U-Net-based GAN architecture outperforms the VAE-based models by a notable margin, particularly in scenarios with heavy degradation or overlapping ink layers. By relying on synthetic training data, the proposed method facilitates the non-invasive recovery of lost text in culturally important documents, and does so without requiring costly or specialized imaging setups. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

13 pages, 2729 KB  
Article
Natural Colorants for a Bio-Based Economy—Recovering a Lost Knowledge for Novel Applications of Chrozophora tinctoria Extracts as Paints Through a Multi-Analytical Approach
by Imogen Cleveland, Andrew Beeby, Márcia Vieira, Fernando Pina, Paula S. Branco, Paula Nabais and Maria J. Melo
Molecules 2025, 30(13), 2860; https://doi.org/10.3390/molecules30132860 - 4 Jul 2025
Viewed by 653
Abstract
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential [...] Read more.
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential of sustainable solutions in our field. As part of our research, we prepared three medieval temperas using gum arabic, parchment glue, and casein glue. These tempera were explicitly designed to protect the purples obtained from Chrozophora tinctoria extracts. A comprehensive multi-analytical approach guides our research on natural colorants. Central to this approach is the use of molecular fluorescence by microspectrofluorimetry, a key tool in our study. By analyzing the emission and excitation spectra in the visible range, we can identify specific formulations. This method is further supported by fingerprinting techniques, including Fourier Transform Infrared Spectroscopy (FTIR) and High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD). These are further complemented by Fiber Optics Reflectance Spectroscopy (FORS) and colorimetry. Building on our understanding of orcein purples, we have extended our research to purples derived from Chrozophora tinctoria extracts. Our findings reveal the unique properties of Chrozophora tinctoria, which can be accurately distinguished from orcein purples, highlighting the distinctiveness of each. Full article
Show Figures

Figure 1

20 pages, 2030 KB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Viewed by 1610
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

21 pages, 919 KB  
Review
A Survey of Electromagnetic Techniques Applied to Cultural Heritage Conservation
by Patrizia Piersigilli, Rocco Citroni, Fabio Mangini and Fabrizio Frezza
Appl. Sci. 2025, 15(11), 5884; https://doi.org/10.3390/app15115884 - 23 May 2025
Cited by 1 | Viewed by 587
Abstract
Cultural Heritage (CH) represents the identity of populations; it is a heritage not only for the culture that produced it, but also for the entire human civilization. Still, preserving it is not an easy task; several factors hinder its preservation, from time and [...] Read more.
Cultural Heritage (CH) represents the identity of populations; it is a heritage not only for the culture that produced it, but also for the entire human civilization. Still, preserving it is not an easy task; several factors hinder its preservation, from time and natural disasters to wars and neglect. Science can play a leading role in preserving CH, and among the different techniques available, Electromagnetic (EM) techniques are particularly suitable for this purpose because of their efficacy, safety for both people and materials, and their applicability to artifacts made from different materials and of complex and irregular shapes. Although usually associated with diagnostic applications, EM techniques also have a crucial role in restoration applications thanks to EM radiation treatments for the recovery and consolidation of materials such as wood, paper, parchment, stone, ceramics, and mummies. The state-of-the-art of radiation technologies shows efficacy for the elimination of pests, mold, fungi and bacteria, and for the consolidation of damaged or weakened artifacts. This paper aims to provide a useful tool for a first yet rigorous understanding of the contribution of EM techniques to CH recovery and lifetime extension, also comparing them with traditional methods and highlighting main issues in their application, such as lack of protocols and distrust, and potential risks in their application. Full article
Show Figures

Figure 1

16 pages, 3070 KB  
Communication
Open-Access Infrared Spectra Depository for the Damage Assessment of Parchment
by Charis Theodorakopoulos and Marianne Odlyha
Heritage 2025, 8(3), 110; https://doi.org/10.3390/heritage8030110 - 19 Mar 2025
Viewed by 510
Abstract
An open-access infrared spectroscopy database of reference and historical parchments has been developed at Northumbria University in collaboration with Birkbeck, University of London. The resource includes the spectra acquired with attenuated total reflectance/Fourier transform infrared (ATR/FTIR) spectroscopy for a wide range of parchments, [...] Read more.
An open-access infrared spectroscopy database of reference and historical parchments has been developed at Northumbria University in collaboration with Birkbeck, University of London. The resource includes the spectra acquired with attenuated total reflectance/Fourier transform infrared (ATR/FTIR) spectroscopy for a wide range of parchments, which were studied in the EU 5th Framework project “Improved Damage Assessment of Parchment” (IDAP). The parchment samples include reference samples, samples exposed to dry and humid heat, light, and inorganic gaseous pollutants, as well as parchments from three archives: Archivio di Stato di Firenze; the National Archives, Scotland; and the Royal Library and Royal Danish Academy—Architecture, Design, Conservation, Copenhagen. The database is invaluable for scholars, including archivists, conservation scientists, conservators, librarians, curators, and the general public, as to the best of our knowledge such a resource has not previously existed. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

23 pages, 5048 KB  
Article
Coffee By-Products and Chitosan for Preventing Contamination for Botrytis sp. and Rhizopus sp. in Blueberry Commercialization
by Gonzalo Hernández-López and Laura Leticia Barrera-Necha
Resources 2025, 14(3), 48; https://doi.org/10.3390/resources14030048 - 17 Mar 2025
Viewed by 1505
Abstract
In blueberry storage, non-biodegradable synthetic plastic packaging is used for commercializing this product. The fungi Botrytis sp. and Rhizopus sp. can cause significant losses in postharvest blueberry commercialization. Consequently, the formulations of degradable polymeric based on polylactic acid (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) 60/40 (PP) [...] Read more.
In blueberry storage, non-biodegradable synthetic plastic packaging is used for commercializing this product. The fungi Botrytis sp. and Rhizopus sp. can cause significant losses in postharvest blueberry commercialization. Consequently, the formulations of degradable polymeric based on polylactic acid (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) 60/40 (PP) with coffee parchment (CP), green coffee bean oil (GCBO), chitosan solution (Ch), chitosan nanoparticles (ChNp), and nanostructured coating (NC) were used to develop biodegradable polymer matrix (PM). Caffeine and hexadecanoic acid were identified as principal compounds in GCBO, and the principal compounds in CP were flavonoids, terpenes, and lignans. The 100% mycelial growth inhibition to Botrytis sp. and Rhizopus sp. was observed using GCBO, Ch, ChNp, and NC in high concentrations. GCBO inhibited 100% of spore production in both fungi at all evaluated doses. In the in vivo tests, when compared to the control, the better treatments were: CP for Botrytis sp., with an incidence of 46.6% and a severity of 16%; and Ch for Rhizopus sp., with an incidence of 13.3% and a severity of 0.86%. The PM in the culture medium presented a fungistatic effect. The principal inhibition of mycelial growth (63%) on Botrytis sp. was with PLA/PBAT+NC (PP+NC), and (100%) was observed with PLA/PBAT+CP+NC (PPCP+NC), PP, and PP+NC on Rhizopus sp. Coffee by-products and PM have potential for the control of postharvest fungi in fruits and vegetables. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

14 pages, 2299 KB  
Article
Effect of Branch-Bagged Shading on the Photosynthetic Physiology of Sweet Cherry Leaves in a Greenhouse Environment
by Jiayin Ai, Min Wu, Feng Cai, Mingli He, Yao Chen and Qijing Zhang
Horticulturae 2025, 11(2), 136; https://doi.org/10.3390/horticulturae11020136 - 27 Jan 2025
Viewed by 926
Abstract
The aim of this study was to improve understanding of the impacts of low-light stress induced by branch-bagged shading on photosynthetic physiology and biochemical composition. Eight-year-old ‘Tieton’ sweet cherry leaves and white parchment bags with a 23% shading rate were selected to cover [...] Read more.
The aim of this study was to improve understanding of the impacts of low-light stress induced by branch-bagged shading on photosynthetic physiology and biochemical composition. Eight-year-old ‘Tieton’ sweet cherry leaves and white parchment bags with a 23% shading rate were selected to cover ten 50 cm long branches for 10 d, 20 d, and 30 d followed by 10 d light restoring. The results indicated that when shading for 30 d, the net photosynthetic rate (PN) of the leaves, including stomatal conductance (gs), transpiration rate (E), intercellular CO2 concentration (Ci), superoxide dismutase (SOD), peroxide (POD), catalase (CAT), starch, and sugar contents were lower, whereas chlorophyll (Chl) and malondialdehyde (MDA) concentrations were higher than those in CK leaves. After 10-10 treatments, leaf parameters including SOD, POD, CAT, starch, and sugar levels were almost the same as those in control (CK; no shading) leaves; the opposite was true for Chl and MDA. However, after 10 d of no bag following 20 and 30 d of shading, the PN, Ci, E, and SOD, CAT, glucose, sorbitol, sucrose and starch levels were lower than those in CK leaves, whereas MDA levels were higher. At 20-10, there was no difference in leaf fructose levels compared to those in CK leaves; the Chl levels were higher. At 30-10, leaf fructose levels were reduced compared with those in CK leaves; Chl levels showed no difference. Therefore, sweet cherry leaves have robust recovery abilities; however, prolonged low-light stress can impede physiological restoration. Full article
Show Figures

Figure 1

34 pages, 398 KB  
Review
Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents
by José Pedro Zanetti Prado, Rodrigo Corrêa Basso and Christianne Elisabete da Costa Rodrigues
Foods 2025, 14(3), 342; https://doi.org/10.3390/foods14030342 - 21 Jan 2025
Cited by 6 | Viewed by 2494
Abstract
Coffee and cocoa agribusinesses generate large volumes of byproducts, including coffee husk, coffee pulp, parchment skin, silver skin, and cocoa bean shell. Despite the rich composition of these materials, studies on biomolecule extraction with green solvents are still scarce, and further research is [...] Read more.
Coffee and cocoa agribusinesses generate large volumes of byproducts, including coffee husk, coffee pulp, parchment skin, silver skin, and cocoa bean shell. Despite the rich composition of these materials, studies on biomolecule extraction with green solvents are still scarce, and further research is needed. Extraction methods using alternative solvents to obtain biomolecules must be developed to enhance the byproducts’ value and align with biorefinery concepts. This article reviews the compositions of coffee and cocoa byproducts, their potential applications, and biomolecule extraction methods, focusing on alternative solvents. The extraction methods currently studied include microwave-assisted, ultrasound-assisted, pulsed electric field-assisted, supercritical fluid, and pressurized liquid extraction. At the same time, the alternative solvents encompass the biobased ones, supercritical fluids, supramolecular, ionic liquids, and eutectic solvents. Considering the biomolecule caffeine, using alternative solvents such as pressurized ethanol, supercritical carbon dioxide, ionic liquids, and supramolecular solvents resulted in extraction yields of 2.5 to 3.3, 4.7, 5.1, and 1.1 times higher than conventional solvents. Similarly, natural deep eutectic solvents led to a chlorogenic acid extraction yield 84 times higher than water. The results of this research provide a basis for the development of environmentally friendly and efficient biomolecule extraction methods, improving the utilization of agricultural waste. Full article
69 pages, 2104 KB  
Review
Upcycling Coffee Waste: Key Industrial Activities for Advancing Circular Economy and Overcoming Commercialization Challenges
by Kanokthip Pongsiriyakul, Peerawat Wongsurakul, Worapon Kiatkittipong, Aerwadee Premashthira, Kulapa Kuldilok, Vesna Najdanovic-Visak, Sushil Adhikari, Patrick Cognet, Tetsuya Kida and Suttichai Assabumrungrat
Processes 2024, 12(12), 2851; https://doi.org/10.3390/pr12122851 (registering DOI) - 12 Dec 2024
Cited by 10 | Viewed by 11324
Abstract
The valorization of coffee waste has gained traction due to its potential to generate valuable products, lessen its impact on the environment, and promote sustainability. This review examines the diverse range of coffee waste, including pulp, husk, mucilage, and parchment from the upstream [...] Read more.
The valorization of coffee waste has gained traction due to its potential to generate valuable products, lessen its impact on the environment, and promote sustainability. This review examines the diverse range of coffee waste, including pulp, husk, mucilage, and parchment from the upstream processing of green beans, as well as silverskin (coffee chaff) and spent coffee grounds (SCGs) generated during roasting and brewing. These materials are identified as valuable raw inputs for biorefineries pursuing a bio-circular economy. Recent research has yielded several viable applications for these by-products, categorized into four main areas: (1) agriculture, (2) biofuels and bioenergy, (3) biochemicals and biomaterials, and (4) food ingredients and nutraceuticals. Despite significant advancements in research, the industrial application of coffee waste remains limited. This review summarizes the global commercialization landscape, highlighting that SCGs are particularly advantageous for large-scale upcycling, with applications spanning agriculture, biofuels, and biochemicals. In contrast, coffee husk is primarily utilized in food ingredients and nutraceuticals. The review also addresses the challenges and constraints that must be overcome to facilitate successful commercialization. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Figure 1

19 pages, 1848 KB  
Article
Ecological and Health Risk Assessment of Metals in Organic and Conventional Peruvian Coffee from a Probabilistic Approach
by Grobert A. Guadalupe, Ligia García, Segundo G. Chavez and Eva Doménech
Agronomy 2024, 14(12), 2817; https://doi.org/10.3390/agronomy14122817 - 27 Nov 2024
Cited by 3 | Viewed by 2202
Abstract
This study aims to understand the risks posed by metals in Peruvian coffee plantations to human health and environmental integrity, ensuring the protection of local communities and the ecosystems reliant on this agricultural activity. To assess the contamination levels, arsenic (As), cadmium (Cd), [...] Read more.
This study aims to understand the risks posed by metals in Peruvian coffee plantations to human health and environmental integrity, ensuring the protection of local communities and the ecosystems reliant on this agricultural activity. To assess the contamination levels, arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) were surveyed in the soil, roots, and parchment coffee beans cultivated in Amazonas and San Martin regions, using both conventional and organic cultivation. Results showed that As was the metal with the highest concentration in soil (52.37 ± 21.16 mg/kg), roots (11.27 ± 2.3 mg/kg), and coffee beans (10.19 ± 1.69 mg/kg), followed by Cr in soil (22.36 ± 11.47 mg/kg) and roots (8.17 ± 3.85 mg/kg) and Pb in beans (0.7 ± 0.05 mg/kg). Cd was only detected in soil (1.70 ± 1.73 mg/kg). The bioaccumulation (BAF) findings suggest that roots and coffee beans have a low capacity to accumulate As, Cd, Ni, and Pb, but they have the potential capacity to accumulate Cr. The translocation factor (TF) indicated that all values were less than one, except for As from San Martin in conventional and organic cultivation. The geo-accumulation index (Igeo) showed that the soil was unpolluted for Cr, Ni, and Pb but was polluted to different extents for As and Cd. Similarly, the ecological risk (ER) pointed to a low risk for Cr, Ni, and Pb and values from low to considered risk for As and Cd depending on the region and cultivation system. Hazard index (adults: 1.68 × 10−3, children: 9.26 × 10−3) and cancer risk (adults: 1.84 × 10−7, children: 2.51 × 10−7) indicated a low risk for humans via ingestion, dermal contact, and inhalation. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 8514 KB  
Article
Multi-Analytical Characterization of Illuminated Choirbooks from the Royal Audience of Quito
by Martha Romero-Bastidas, Katherine Guacho-Pachacama, Carlos Vásquez-Mora, Fernando Espinoza-Guerra, Rita Díaz-Benalcázar, Johanna Ramírez-Bustamante and Luis Ramos-Guerrero
Heritage 2024, 7(12), 6592-6613; https://doi.org/10.3390/heritage7120305 - 24 Nov 2024
Cited by 1 | Viewed by 1263
Abstract
Choirbooks are historical heritage manuscripts used for the performance of vocal music in religious ceremonies in colonial times. This study aimed to understand the characteristics of choirbook manuscripts produced in the Real Audiencia de Quito during the 17th century. The methodology combined non-invasive [...] Read more.
Choirbooks are historical heritage manuscripts used for the performance of vocal music in religious ceremonies in colonial times. This study aimed to understand the characteristics of choirbook manuscripts produced in the Real Audiencia de Quito during the 17th century. The methodology combined non-invasive techniques, such as infrared false-color imaging (IRFC) and X-ray fluorescence (XRF), together with spot analysis by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). The analytical results revealed the use of pumice, chalk and lime carbonate as support materials in the manufacturing process and surface treatment of the parchment. In the illuminations, three pictorial techniques based on protein, polysaccharide and lipid binders were recognized, establishing that the pigments used with greater regularity in the illuminations were vermilion, minium, verdigris, orpiment, azurite, and indigo, preferably in a pure state. Materials used less regularly were also identified, such as yellow ochre, saffron, smalt, red ochre, and bone black, among others. Regarding the vulnerability of the pictorial materials, it was determined that, although most of the pigments exhibit chemical stability, they present some vulnerabilities associated with their intrinsic composition and the medium that contains them. Full article
(This article belongs to the Special Issue Analytical Chemistry for Archaeology and Cultural Heritage)
Show Figures

Figure 1

20 pages, 1415 KB  
Review
Disinfection in Archives—A Short Review of the Sustainable Approaches and Green Perspectives of Using Radiation for Mass Disinfection
by Cristina Cicero, Monia Vadrucci, Giulia Doni and Enrico Trogu
Sustainability 2024, 16(21), 9303; https://doi.org/10.3390/su16219303 - 26 Oct 2024
Viewed by 1710
Abstract
The conservation of the immense archival heritage of a country like Italy presents scholars with the enormous challenge of finding techniques and procedures that enable rapid and large-scale interventions, especially in cases of biodeterioration. The volume of material to be preserved and often [...] Read more.
The conservation of the immense archival heritage of a country like Italy presents scholars with the enormous challenge of finding techniques and procedures that enable rapid and large-scale interventions, especially in cases of biodeterioration. The volume of material to be preserved and often the inadequacy of the storage conditions constitute crucial factors that promote microbial growth on substrates such as paper, leather, and parchment. These materials serve as primary sources of sustenance for fungi and bacteria which can infect the collections, and so it is frequently necessary to adopt chemical mass-disinfection treatments. These treatments are often expensive, polluting, and hazardous to the assets, the operators, and the environment. The use of ionizing radiation can provide an environmentally sustainable alternative to the traditional mass disinfection treatments of library and archive materials, which currently involve chemical agents (such as ethylene oxide) that impact the environment and human health. The use of such chemicals is increasingly subject to stringent restrictions. In this work, we report and discuss the advantages and disadvantages of physical disinfection methods, focusing on the use of radiation for disinfection treatments and their effects. Full article
Show Figures

Figure 1

Back to TopTop