Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (224)

Search Parameters:
Keywords = particle movement characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7272 KB  
Article
Discrete Element Simulation of Vibration-Assisted Chute to Prevent Blockage of Viscous Materials
by Jie Li, Yuanqiang Tan, Sunsheng Zhou, Shiyan Yan and Jiangtao Zhang
Processes 2025, 13(9), 2819; https://doi.org/10.3390/pr13092819 - 3 Sep 2025
Viewed by 174
Abstract
Blockages in a transfer system are a crucial problem for the wet coals conveying process in thermal power plants. Improving the viscous material flow is a fundamental solution to prevent blockages. A discrete element simulation was employed to investigate the flow characteristics of [...] Read more.
Blockages in a transfer system are a crucial problem for the wet coals conveying process in thermal power plants. Improving the viscous material flow is a fundamental solution to prevent blockages. A discrete element simulation was employed to investigate the flow characteristics of viscous materials in transfer systems with different structures under vibration-assisted conditions. The results indicate that, near the structure wall, the adhesive force increased, which was the root cause of material blockages. Introducing vibration motions into the chute could break the adhesive forces between the wet particles and the structure wall. Compared with a linear chute, a curved chute was more sensitive to vibration movement and had less leftover viscous materials and a lower output velocity. Compared with a deflector hood, an impact plate had less residual material and a higher particle velocity because of its longer ejection distance and lower adhesive force. Based on the above simulation results, a transfer system with an impact plate and curved chute is proposed. By introducing the critical vibration intensity for the transfer system, the vibration parameters and transfer system structures are optimized. The aforementioned research findings provide guidance for intervention measures aimed at preventing material blockages in industrial bulk material conveying processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 7265 KB  
Article
Design and Performance Testing of a Multi-Variety Forage Grass Mixed-Sowing Seed Metering Device
by Qihao Wan, Wenxue Dong, Anbin Zhang, Fei Liu, Yingsi Wu, Yin Qi and Yuxing Ren
Agriculture 2025, 15(16), 1788; https://doi.org/10.3390/agriculture15161788 - 21 Aug 2025
Viewed by 317 | Correction
Abstract
Traditional fluted roller seed metering devices exhibit unstable seeding rates during forage seed mixed sowing. To address this issue, a new seed metering device was designed based on the agronomic requirements of forage seed mixing and the structural characteristics of fluted roller mechanisms. [...] Read more.
Traditional fluted roller seed metering devices exhibit unstable seeding rates during forage seed mixed sowing. To address this issue, a new seed metering device was designed based on the agronomic requirements of forage seed mixing and the structural characteristics of fluted roller mechanisms. The discrete element method (DEM) was employed to numerically simulate the movement of particles within the seed metering device. Single-factor experiments identified optimal parameter ranges for the seed metering device: a metering shaft speed of 10–20 r/min, a seed inlet width of 8–24 mm, and a seed outlet height of 10–20 mm. A response surface methodology (RSM) experiment was then designed using Design-Expert 13 software. The results yielded optimal operating parameters: a metering shaft speed of 18.9 r/min, a seed inlet width of 9.3 mm, and a seed outlet height of 14.4 mm. The field experiment validated the seeding performance with the optimal parameter combination. The coefficient of variation (CV) for the first-class seed (CV1) was 4.16%, and for the second-class seed (CV2) it was 2.98%, both of which met the requirements for mixed sowing of forage. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

29 pages, 6923 KB  
Article
Canadian Wildfire Smoke Episode over Europe in October 2023: Lidar, Sun-Photometer, and Model Characterization of Smoke Layers Observed Above Sofia, Bulgaria
by Tsvetina Evgenieva, Stefan Dosev, Ljuan Gurdev, Liliya Vulkova, Zahari Peshev, Eleonora Toncheva, Lyubomir Popov, Orlin Vankov and Tanja Dreischuh
Remote Sens. 2025, 17(16), 2899; https://doi.org/10.3390/rs17162899 - 20 Aug 2025
Viewed by 549
Abstract
Massive wildfires release enormous amounts of biomass-burning (BB) aerosols into the atmosphere, which might have a major impact on its thermal and radiative budget, as well as the environment and human health. This work presents the results of a study and characterization of [...] Read more.
Massive wildfires release enormous amounts of biomass-burning (BB) aerosols into the atmosphere, which might have a major impact on its thermal and radiative budget, as well as the environment and human health. This work presents the results of a study and characterization of a long-range transport episode of smoke aerosols from Canadian forest fires towards the entirety of Europe, as observed over Sofia, Bulgaria, in early October 2023. This study makes use of data from combined lidar, ceilometer, and sun-photometer measurements, supported by model and forecast data, meteorological radiosonde profiling, and (re)analyses, together with tracking and mapping of the aerosol air transport. A distinctive feature of the considered episode over Europe is the downward movement of the air masses, entraining smoke aerosols from the continental mid-troposphere down to the near-surface layers. The driving mechanism of the long-range transport of BB aerosols and their spread over Europe is revealed. Optical parameters of the registered aerosols are determined and vertically profiled with a high range resolution by lidar data analysis. A wide set of columnar optical and microphysical aerosol characteristics is also provided by sun-photometer measurements. The results show a dominance of relatively fine modes of dry smoke particles in the submicron size range, with a predominantly low degree of non-sphericity, indicating minimal up-size aging during the BB aerosol transport from Canada to the Sofia region. The average daily aerosol radiative forcing is determined by sun-photometer measurements and briefly discussed. Full article
Show Figures

Figure 1

20 pages, 4671 KB  
Article
Creep Characteristics and Fractional-Order Constitutive Modeling of Gangue–Rock Composites: Experimental Validation and Parameter Identification
by Peng Huang, Yimei Wei, Guohui Ren, Erkan Topal, Shuxuan Ma, Bo Wu and Qihe Lan
Appl. Sci. 2025, 15(15), 8742; https://doi.org/10.3390/app15158742 - 7 Aug 2025
Viewed by 241
Abstract
With the increasing depth of coal resource extraction, the creep characteristics of gangue backfill in deep backfill mining are crucial for the long-term deformation of rock strata. Existing research predominantly focuses on the instantaneous deformation response of either the backfill alone or the [...] Read more.
With the increasing depth of coal resource extraction, the creep characteristics of gangue backfill in deep backfill mining are crucial for the long-term deformation of rock strata. Existing research predominantly focuses on the instantaneous deformation response of either the backfill alone or the strata movement, lacking systematic studies that reflect the long-term time-dependent deformation characteristics of the strata-backfill system. This study addresses gangue–roof composite specimens with varying gangue particle sizes. Utilizing physical similarity ratio theory, graded loading confined compression creep experiments were designed and conducted to investigate the effects of gangue particle size and moisture content on the creep behavior of the gangue–roof composites. A fractional-order creep constitutive model for the gangue–roof composite was established, and its parameters were identified. The results indicate the following: (1) The creep of the gangue–roof composite exhibits two-stage characteristics (initial and steady-state). Instantaneous strain decreases with increasing particle size but increases with higher moisture content. Specimens reached their maximum instantaneous strain under the fourth-level loading, with values of 0.358 at a gangue particle size of 10 mm and 0.492 at a moisture content of 4.51%. (2) The fractional-order creep model demonstrated a goodness-of-fit exceeding 0.98. The elastic modulus and fractional-order coefficient showed nonlinear growth with increasing particle size, revealing the mechanism of viscoplastic attenuation in the gangue–roof composite. The findings provide theoretical support for predicting the time-dependent deformation of roofs in deep backfill mining. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 5271 KB  
Article
Impact of Biomimetic Fin on Pitching Characteristics of a Hydrofoil
by Faraz Ikram, Muhammad Yamin Younis, Bilal Akbar Chuddher, Usman Latif, Haroon Mushtaq, Kamran Afzal, Muhammad Asif Awan, Asad Ijaz and Noman Bashir
Biomimetics 2025, 10(7), 462; https://doi.org/10.3390/biomimetics10070462 - 15 Jul 2025
Viewed by 538
Abstract
Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the [...] Read more.
Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the foil leading edge. The work is performed in a recirculating water channel at low Reynolds numbers (Re) with a range of 1300 ≤ Re ≤ 3200. Using high-speed videography and Particle Image Velocimetry (PIV), the pitching characteristics and wakes are visualized. Passive pitching characteristics, i.e., the pitching amplitude and pitching frequency of the hydrofoils, are investigated based on their trailing edge movement. Significant improvement in both pitching frequency and amplitudes are observed for the foil with fin strips compared to the baseline simple foil. Comparing the pitching characteristics of the two foils, it is observed that the hydrofoil with biomimetic fin strips exhibits 25% and 21% higher pitching amplitude and pitching frequency, respectively, compared to that of the baseline at comparable Reynolds numbers. The initiation of pitching for the finned foil is also observed at comparatively low Reynolds numbers. The wake is also studied using time mean and fluctuating velocity profiles obtained using PIV. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Graphical abstract

17 pages, 3341 KB  
Article
Strength Enhancement of Clay Through Lime–Sand Stabilization at Various Remolding Water Contents
by Shuai Qi, Jinhui Liu, Wei Ma and Jing Wang
Materials 2025, 18(14), 3282; https://doi.org/10.3390/ma18143282 - 11 Jul 2025
Viewed by 458
Abstract
During the construction of subgrade, the remolding water content w of lime–sand-stabilized clay usually varies in a wide range, leading to inconsistent effectiveness in strength enhancement. Until now, this aspect has not been investigated. In this study, an unconfined compression test and microscopic [...] Read more.
During the construction of subgrade, the remolding water content w of lime–sand-stabilized clay usually varies in a wide range, leading to inconsistent effectiveness in strength enhancement. Until now, this aspect has not been investigated. In this study, an unconfined compression test and microscopic observation were carried out on clay and stabilized clay (adding 4% lime by mass and 50% sand by volume). The results show the following: (1) remolding water content w had a strong effect on the soil fabrics of pure clay and lime-stabilized clay. An increase in the w from the dry to wet side of optimum reduced matric suction, which diminished the aggregation effect among fine-grained particles in both clay and lime-stabilized clay. Correspondingly, fine-grained aggregate progressively disintegrated, and dispersed fine-grained particles increased. As a result, the w increment at wwcha made the dispersed fine-grained particles successively fill the large pores between aggregates, densifying the soil fabric. In contrast, at w > wcha, the ongoing disintegration of aggregate resulted in progressive structural weakening. Herein, wcha was defined as the characteristic water content at which the soil fabric transitioned from structural densification to weakening. (2) The UCS of both pure clay and lime–sand-stabilized clay followed a bell-shaped pattern as the w increased, with wcha acting as the turning point. For pure clay soils, the UCS increased with increasing w up to wcha because of structural densification, but decreased beyond wcha due to structural weakening. In lime–sand-stabilized clay, where a sand grain skeleton developed, the compression of lime-stabilized clay induced by the movement of sand grains during shearing activated its contribution to the overall strength. The compressive capacity of the lime-stabilized clay varied in a bell-shaped manner with w, and this trend was mirrored in the UCS of lime–sand-stabilized clay. (3) At a low w, the fact that the clay aggregate exhibited sand-like mechanical behavior reduced the effectiveness of incorporating sand and lime for enhancing the UCS. As the w increased at wwcha, the breakdown of aggregates enlarged the distinction between pure clay and sand, resulting in a more pronounced improvement in the UCS with the addition of sand and lime. At w > wcha, the lubrication effect occurring at the contact between sand grains diminished the interlocking between the sand grains. Consequently, the effectiveness of the UCS enhancement decreased. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

35 pages, 14963 KB  
Article
Research on the Digital Twin System of Welding Robots Driven by Data
by Saishuang Wang, Yufeng Jiao, Lijun Wang, Wenjie Wang, Xiao Ma, Qiang Xu and Zhongyu Lu
Sensors 2025, 25(13), 3889; https://doi.org/10.3390/s25133889 - 22 Jun 2025
Viewed by 964
Abstract
With the rise of digital twin technology, the application of digital twin technology to industrial automation provides a new direction for the digital transformation of the global smart manufacturing industry. In order to further improve production efficiency, as well as realize enterprise digital [...] Read more.
With the rise of digital twin technology, the application of digital twin technology to industrial automation provides a new direction for the digital transformation of the global smart manufacturing industry. In order to further improve production efficiency, as well as realize enterprise digital empowerment, this paper takes a welding robot arm as the research object and constructs a welding robot arm digital twin system. Using three-dimensional modeling technology and model rendering, the welding robot arm digital twin simulation environment was built. Parent–child hierarchy and particle effects were used to truly restore the movement characteristics of the robot arm and the welding effect, with the help of TCP communication and Bluetooth communication to realize data transmission between the virtual segment and the physical end. A variety of UI components were used to design the human–machine interaction interface of the digital twin system, ultimately realizing the data-driven digital twin system. Finally, according to the digital twin maturity model constructed by Prof. Tao Fei’s team, the system was scored using five dimensions and 19 evaluation factors. After testing the system, we found that the combination of digital twin technology and automation is feasible and achieves the expected results. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 4425 KB  
Article
Study on Similar Materials for Weakly Cemented Medium and Indoor Excavation Test
by Shanchao Hu, Lei Yang, Shihao Guo, Chenxi Zhang, Dawang Yin, Jinhao Dou and Yafei Cheng
Materials 2025, 18(13), 2948; https://doi.org/10.3390/ma18132948 - 22 Jun 2025
Viewed by 459
Abstract
The escalating disasters caused by the movement of shallow buried strata in China’s western mining areas are increasingly threatening operational safety. A critical issue in ensuring secure mining practices in these areas is the creep failure of weakly cemented soft rock under low-stress [...] Read more.
The escalating disasters caused by the movement of shallow buried strata in China’s western mining areas are increasingly threatening operational safety. A critical issue in ensuring secure mining practices in these areas is the creep failure of weakly cemented soft rock under low-stress conditions. The unique particle contact mechanisms in weakly cemented mudstone, combined with the persistence of the cemented materials and the particulate matter they form, lead to mechanical responses that differ significantly from those of typical soft rocks during loading. Building on an existing multivariate linear regression equation for new similar materials, this study developed qualified weakly cemented medium similar materials, offering appropriate materials for long-term creep tests of weakly cemented formations. This was accomplished by employing orthogonal proportioning tests. The principal findings of our investigation are as follows: The new, similar material exhibits low strength and prominent creep characteristics, accurately simulating weakly cemented materials in western mining areas. The concentration of rosin–alcohol solution has a measurable impact on key parameters, such as σc, E, and γ in the weakly cemented similar material specimens. Furthermore, the creep characteristics of the specimens diminish progressively with an increase in the proportion of iron powder (I) and barite powder (B). The material was applied to a similar indoor model test simulating the weakly cemented material surrounding the auxiliary haulage roadway in Panel 20314 of the Gaojialiang Coal Mine, with speckle analysis employed for detailed examination. The experimental findings suggest that both the conventional mechanical properties and long-term creep characteristics of the material align with the required specifications, offering robust support for achieving optimal outcomes in the similar model test. Full article
Show Figures

Figure 1

18 pages, 931 KB  
Article
Slip-Driven Interaction of Dual Spheres in Couple Stress Fluids Within a Permeable Medium
by Shreen El-Sapa and Munirah Aali Alotaibi
Mathematics 2025, 13(13), 2065; https://doi.org/10.3390/math13132065 - 21 Jun 2025
Viewed by 317
Abstract
This study investigates the consistent and uniform movement of two spherical particles within an infinite porous medium saturated with a couple stress fluid, with a particular focus on the effects of surface slippage. The research reveals that surface slippage significantly reduces the drag [...] Read more.
This study investigates the consistent and uniform movement of two spherical particles within an infinite porous medium saturated with a couple stress fluid, with a particular focus on the effects of surface slippage. The research reveals that surface slippage significantly reduces the drag force experienced by the particles, thereby influencing their hydrodynamic interactions. Conversely, increases in permeability and particle size similarity tend to enhance both the drag force and the inter-particle interaction forces, affecting the overall dynamics of particle motion. The analysis is conducted within the low-Reynolds-number regime, characteristic of laminar flow dominated by viscous forces, and employs boundary collocation methodologies to derive semi-analytical solutions to the governing differential equations. This approach enables a detailed characterization of the flow behavior and inter-particle forces in intricate fluid environments, including those with porous matrices and complex rheological properties. The findings from this investigation are consistent with prior numerical analyses, notably those conducted by Alotaibi and El-Sapa (2025), and corroborate earlier studies by Shehadeh and Ashmawy (2019), which examined cases of no slippage and permeability effects. Additionally, the results align with earlier research by Shreen et al. (2018) concerning viscous fluids, thereby reinforcing the validity of the conclusions. Overall, the study enhances the understanding of particle-fluid interactions in porous, couple stress-rich media, providing valuable insights into the roles of surface slippage, permeability, and particle size in determining hydrodynamic forces. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

15 pages, 3484 KB  
Article
Construction of a Mathematical Model of the Irregular Plantar and Complex Morphology of Mallard Foot and the Bionic Design of a High-Traction Wheel Grouser
by Jinrui Hu, Dianlei Han, Changwei Li, Hairui Liu, Lizhi Ren and Hao Pang
Biomimetics 2025, 10(6), 390; https://doi.org/10.3390/biomimetics10060390 - 11 Jun 2025
Viewed by 520
Abstract
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes [...] Read more.
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes and webbing on the anti-subsidence function during its locomotion on wet and soft substrates and to apply this to the bionic design of high-traction wheel grousers. A handheld three-dimensional laser scanner was used to scan the main locomotion postures of a mallard foot during ground contact, and the Geomagic Studio software was utilized to repair the scanned model. As a result, the main three-dimensional geometric models of a mallard foot during the process of touching the ground were obtained. The plantar morphology of a mallard foot was divided into three typical parts: the plantar irregular edge curve, the lateral webbing surface, and the medial webbing surface. The main morphological feature curves/surfaces were extracted through computer-aided design software for the fitting and construction of a mathematical model to obtain the fitting equations of the three typical parts, and the mathematical model construction of the plantar irregular morphology of the mallard foot was completed. In order to verify the sand-fixing and flow-limiting characteristics of this morphological feature, based on the discrete element method (DEM), the numerical simulation of the interaction between the plantar surface of the mallard foot and sand particles was carried out. The simulation results show that during the process of the mallard foot penetration into the loose medium, the lateral and medial webbing surfaces cause the particles under the foot to mainly move downward, effectively preventing the particles from spreading around and significantly enhancing the solidification effect of the particles under the sole. Based on the principle and technology of engineering bionics, the plantar morphology and movement attitude characteristics of the mallard were extracted, and the characteristics of concave middle and edge bulge were applied to the wheel grouser design of paddy field wheels. Two types of bionic wheel grousers with different curved surfaces were designed and compared with the traditional wheel grousers of the paddy field wheel. Through pressure-bearing simulation and experiments, the resistance of different wheel grousers during the process of penetrating into sand particles was compared, and the macro–micro behaviors of particle disturbance during the pressure-bearing process were analyzed. The results show that a bionic wheel grouser with unique curved surfaces can well encapsulate sand particles at the bottom of the wheel grouser, and it also has a greater penetration resistance, which plays a crucial role in improving the traction performance of the paddy field wheel and reducing the disturbance to the surrounding sand particles. This paper realizes the transformation from the biological model to the mathematical model of the plantar morphology of the mallard foot and applies it to the bionic design of the wheel grousers of the paddy field wheels, providing a new solution for improving the traction performance of mobile mechanisms on soft ground. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

21 pages, 5400 KB  
Article
Study on the Movement and Distribution Patterns of Sand Particles in a Vane-Type Multiphase Pump
by Chenwei Wang, Guangtai Shi, Yao Liu, Haigang Wen and Wenjuan Lv
J. Mar. Sci. Eng. 2025, 13(6), 1034; https://doi.org/10.3390/jmse13061034 - 24 May 2025
Viewed by 503
Abstract
In oilfield operations, produced fluids consist of complex mixtures including heavy oil, sand, and water. Variations in sand particle parameters and operational conditions can significantly impact the performance of multiphase pumps. To elucidate the movement patterns of sand particles within a vane-type multiphase [...] Read more.
In oilfield operations, produced fluids consist of complex mixtures including heavy oil, sand, and water. Variations in sand particle parameters and operational conditions can significantly impact the performance of multiphase pumps. To elucidate the movement patterns of sand particles within a vane-type multiphase pump, this study employs the Discrete Phase Model (DPM) to investigate the effects of different sand particle parameters and operational conditions on the internal flow characteristics. The study found that: sand particle diameter, flow rate, rotational speed, and oil content significantly influence the trajectories of the solid–liquid two-phase flow, the motion characteristics of sand particles, and the vortices in the liquid flow field. As sand particle diameter increases, their radial and axial momentum first rise and then decline. Both radial and axial momentum are positively correlated with sand concentration. An increase in flow rate, higher rotational speed, and lower oil content all lead to greater fluctuations in the radial momentum curve of sand particles inside the impeller. Larger sand particles are predominantly distributed near the inlet, while smaller particles are more concentrated at the outlet. Higher sand concentrations and non-spherical particles increase particle distribution within the flow passages, with the guide vane channels exhibiting the most pronounced accumulation—reaching a maximum concentration of 6260 kg/m3 due to elevated sand loading. Increasing flow rate, rotational speed, or oil content significantly reduces sand concentration in the flow channel, promoting more efficient particle transport. Conversely, lower inlet sand concentration, non-spherical particles, reduced flow rate, decreased rotational speed, and higher oil content all result in fewer large particles in the flow passage. The findings provide important guidance for improving the wear resistance of vane-type multiphase pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 798 KB  
Article
Effect of Plastics (Geotextiles) on Heavy Metal Accumulation by Industrial Hemp Plants Cultivated in Polluted Mediterranean Soils
by Dimitrios Alexiadis, John Bethanis, Sotiria G. Papadimou, Edoardo Barbieri, Rafaella Vogia, Eftihia Tatsi, Pavlos Tziourrou, Eleni Tsaliki and Evangelia E. Golia
Int. J. Plant Biol. 2025, 16(2), 53; https://doi.org/10.3390/ijpb16020053 - 20 May 2025
Viewed by 524
Abstract
An attempt was made to simulate the conditions prevailing in an agricultural crop to investigate whether and how geotextile microplastics alter the movement and accumulation of heavy metals in plants. For this purpose, a pot experiment, lasting 149 days, was carried out on [...] Read more.
An attempt was made to simulate the conditions prevailing in an agricultural crop to investigate whether and how geotextile microplastics alter the movement and accumulation of heavy metals in plants. For this purpose, a pot experiment, lasting 149 days, was carried out on soil obtained from a rural area, where pieces of a geotextile in mesoplastic dimensions, of the same chemical composition as that used by farmers in the Greek countryside, were added. Furthermore, metal solutions (Cu, Zn, Cd) were incorporated in the pots at two levels, and incubation prior to planting was carried out for two weeks. Then, industrial hemp was cultivated, while continuous measurements of its horticultural characteristics and of the levels of metals moved from the soil to the plant were made. The plants appeared to be highly resistant to the rather harsh growing conditions, and furthermore, it was observed that the cumulative metal capacity of cannabis was enhanced in most cases. The simultaneous presence of metals and geotextile (plastic) fragments enhanced the amount of Zn and Cd transfer into the soil-to-plant system. Hemp plants exhibited strong resilience abilities in the particularly stressful soil environment, possibly developing defense mechanisms. The experiments are particularly encouraging as they prove that simple and habitual practices in cultivated soils that lead to post-weather erosion of the geotextile may contribute positively in terms of remediation methods for heavy-metal-laden soils, as they indirectly help the plant to remove larger amounts of metal elements. The experiments should be intensified on a wider range of soils of different soil reactions and particle sizes and, of course, should be carried out under real field conditions in Mediterranean soil environments. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

19 pages, 2340 KB  
Article
Study on Coal Particle Properties and Critical Velocity Model in Coalbed Methane Horizontal Wells
by Ruili Zhou, Tian He, Yuxiang Liu, Peidong Mai and Guoqing Han
Processes 2025, 13(5), 1550; https://doi.org/10.3390/pr13051550 - 17 May 2025
Viewed by 489
Abstract
During the drainage process of coalbed methane (CBM) horizontal wells, wellbore fluctuations exert a significant influence on gas–liquid–solid three-phase flow behavior and coal particle migration. This study investigates the effects of wellbore inclination, gas–liquid flow rates, and coal particle sizes on migration characteristics [...] Read more.
During the drainage process of coalbed methane (CBM) horizontal wells, wellbore fluctuations exert a significant influence on gas–liquid–solid three-phase flow behavior and coal particle migration. This study investigates the effects of wellbore inclination, gas–liquid flow rates, and coal particle sizes on migration characteristics through laboratory-scale experiments, based on an initial analysis of coal particle physical properties. A critical velocity model accounting for wellbore fluctuations is developed and refined. The migration states of coal particles under various operational conditions are examined, and the corresponding critical velocities and movement patterns are analyzed. The results show that coal particle migration is predominantly governed by the liquid phase, while the presence of particles has limited impact on the overall gas–liquid flow regime. Under different wellbore inclinations, the critical velocity increases with particle size; however, the influence of inclination is more pronounced than that of particle size. Coal particle entrainment follows three distinct stages: hopping, rolling, and suspension. The velocity during the rolling stage is identified as the critical velocity. At steeper inclination angles, particles are more easily entrained by the flow, and the associated critical velocity is higher. Based on the fitted experimental data, the model is revised to improve its predictive capability for coal particle transport in CBM wells. Finally, the model is validated using field data from a CBM well in the Ordos Basin. The results confirm the model’s ability to predict coal particle accumulation trends within the wellbore. This study provides new insights into coal particle migration mechanisms under fluctuating wellbore conditions, offering both experimental and theoretical support for understanding gas–liquid–solid flow behavior. It also presents technical guidance for optimizing drainage performance, controlling particle deposition, and formulating wellbore cleaning strategies. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

21 pages, 16180 KB  
Article
Capillary Water Absorption Characteristics of Steel Fiber-Reinforced Concrete
by Fang Nan, Qing Shen, Shuang Zou, Haijing Yang, Zhenping Sun and Jingbin Yang
Buildings 2025, 15(9), 1542; https://doi.org/10.3390/buildings15091542 - 2 May 2025
Cited by 1 | Viewed by 828
Abstract
The water absorption behavior of concrete is a critical indicator of its durability, and a comprehensive understanding of water transport characteristics can significantly enhance concrete performance. This study investigates the capillary water absorption properties of steel fiber-reinforced concrete across various strength grades by [...] Read more.
The water absorption behavior of concrete is a critical indicator of its durability, and a comprehensive understanding of water transport characteristics can significantly enhance concrete performance. This study investigates the capillary water absorption properties of steel fiber-reinforced concrete across various strength grades by combining mercury intrusion porosimetry (MIP) and 1H low-field nuclear magnetic resonance (1H low-field NMR) techniques. Key findings reveal that the capillary water absorption of steel fiber-reinforced concretes occurs in the following two distinct stages: an initial rapid absorption phase (0 min to 6 h) and a subsequent slow absorption phase (1 day to 12 days). Modifications to the concrete matrix composition substantially reduce capillary water absorption rates, with ultra-high-performance concrete (UHPC) exhibiting exceptionally low absorption levels (the cumulative capillary water absorption of UHPC accounts for only 4.5–5.7% of that of C30 concrete). Additionally, for higher-strength concrete and extended absorption durations, the capillary water absorption rate deviates from the linear relationship with the square root of time. This deviation is attributed to the interaction of gel pore water with unhydrated cement particles, generating more hydration products, which refine the pore structure, reduce capillary pore connectivity, and increase pore tortuosity. Furthermore, steel fibers influence water transport through the following two primary mechanisms: interfacial interactions between the fibers and the matrix and a physical blocking effect that impedes water movement. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

26 pages, 109771 KB  
Article
Simulation and Structural Optimization of an Eccentric Rotor Extruder Feeding Section
by Jinhui Jiang, Yanhong Feng, Shuo Gao, Wenqiang Yan, Xiaochun Yin and Guizhen Zhang
Materials 2025, 18(9), 1939; https://doi.org/10.3390/ma18091939 - 24 Apr 2025
Viewed by 471
Abstract
The eccentric rotor extruder (ERE) is polymer processing equipment that exhibits excellent processing capabilities for materials with extremely high viscosity, which are difficult to plastically deform and transport efficiently. However, the mass transfer mechanism in the solid conveying section of this new device [...] Read more.
The eccentric rotor extruder (ERE) is polymer processing equipment that exhibits excellent processing capabilities for materials with extremely high viscosity, which are difficult to plastically deform and transport efficiently. However, the mass transfer mechanism in the solid conveying section of this new device is fundamentally different from that of traditional extruders, and no related research has been reported. This study uses discrete element method (DEM) simulation technology to model the solid conveying process of the ERE. By visualizing the positive displacement conveying process, and with an analysis of the output parameters, the study clarifies the mass transfer principles and quantifies the conveying capacity, providing guidance for optimizing the extruder design. The simulation results show that the ERE exhibits positive displacement conveying characteristics, with the conveying process achieved by the forward movement of the cavities (closed cavities between the rotor and stator) in a helical manner. However, differences in the dual-cavity (two types of cavities) feeding process and low fill level can lead to significant fluctuations in extrusion output and reduced conveying capacity. To address these issues, an improvement scheme for the dual-cavity feed opening is proposed, with feed openings designed with different opening lengths. Then, by analyzing the particle coordinate data from the simulation output, the conveying capacities of different feed opening structures are quantified and optimized. Finally, experimental and simulation verification results indicate that the optimized structure significantly improves the issues of uneven filling and low fill level, with good correspondence between the simulation and experimental results. Simulation results show that, compared with the original structure, the optimized dual-feed opening structure increases the feed capacity from 3953 particles per cavity to 5132 particles per cavity, an improvement of 29.8%, and it achieves balanced filling between the two cavities. Experimental validation indicates that the UPE4040 output can be increased from 165.3 g/min with structure op-00 to 231.7 g/min with the optimized structure op-05. Full article
Show Figures

Graphical abstract

Back to TopTop