Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = passive UHF RFID

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7614 KB  
Article
Virtualized Computational RFID (VCRFID) Solution for Industry 4.0 Applications
by Elisa Pantoja, Yimin Gao, Jun Yin and Mircea R. Stan
Electronics 2025, 14(12), 2397; https://doi.org/10.3390/electronics14122397 - 12 Jun 2025
Viewed by 598
Abstract
This paper presents a Virtualized Computational Radio Frequency Identification (VCRFID) solution that utilizes far-field UHF RF for sensing, computing, and self-powering at the edge. A standard UHF RFID system is asymmetric as it consists of a relatively large, complex “reader”, which acts as [...] Read more.
This paper presents a Virtualized Computational Radio Frequency Identification (VCRFID) solution that utilizes far-field UHF RF for sensing, computing, and self-powering at the edge. A standard UHF RFID system is asymmetric as it consists of a relatively large, complex “reader”, which acts as an RF transmitter and controller for a number of small simple battery-less “tags”, which work in passive mode as they communicate and harvest RF energy from the reader. Previously proposed Computational RFID (CRFID) solutions enhance the standard RFID tags with microcontrollers and sensors in order to gain enhanced functionality, but they end up requiring a relatively high level of power, and thus ultimately reduced range, which limits their use for many Internet-of-Things (IoT) application scenarios. Our VCRFID solution instead keeps the functionality of the tags minimalistic by only providing a sensor interface to be able to capture desired environmental data (temperature, humidity, vibration, etc.), and then transmit it to the RFID reader, which then performs all the computational load usually carried out by a microcontroller on the tag in prior work. This virtualization of functions enables the design of a circuit without a microcontroller, providing greater flexibility and allowing for wireless reconfiguration of tag functions over RF for a 97% reduction in energy consumption compared to prior energy-harvesting RFID tags with microcontrollers. The target application is Industry 4.0 where our VCRFID solution enables battery-less fine-grain monitoring of vibration and temperature data for pumps and motors for predictive maintenance scenarios. Full article
(This article belongs to the Special Issue RFID Applied to IoT Devices)
Show Figures

Figure 1

17 pages, 25383 KB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 1216
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

39 pages, 6737 KB  
Review
Materials-Driven Advancements in Chipless Radio-Frequency Identification and Antenna Technologies
by Hafsa Anam, Syed Muzahir Abbas, Iain B. Collings and Subhas Mukhopadhyay
Sensors 2025, 25(9), 2867; https://doi.org/10.3390/s25092867 - 1 May 2025
Cited by 1 | Viewed by 879
Abstract
This article presents a comprehensive analysis of the technical characteristics of advanced versatile materials used in chipless radio-frequency identification (RFID) tags and antennas. The focus is on materials that are used as radiators and substrates. Crucial aspects include flexibility, weight, size, gain, environmental [...] Read more.
This article presents a comprehensive analysis of the technical characteristics of advanced versatile materials used in chipless radio-frequency identification (RFID) tags and antennas. The focus is on materials that are used as radiators and substrates. Crucial aspects include flexibility, weight, size, gain, environmental sustainability, efficiency, fabrication time and type, and cost. A comprehensive set of tables are presented that summarize and compare material properties. The materials include flexible high-tech ink substances, graphene, and liquid crystals, as well as metamaterials which possess properties that allow for an increased bandwidth. Printing techniques are discussed for high-performance high-resolution fabricated tags. This paper contributes by systematically comparing emerging materials for chipless RFID tags, highlighting their impact on performance and sustainability. It also provides practical guidance for material selection and fabrication techniques to enable next-generation wireless applications. It presents a broad understanding of various materials and their use. The paper provides direction for the deployment and utilization of inexpensive passive chipless RFID tags in future intelligent wireless networks. The advancement of chipless RFID is largely driven by the development of innovative materials, especially in the realm of advanced materials and smart materials, which enable the creation of more cost-effective, flexible, and scalable RFID systems. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

20 pages, 4123 KB  
Article
RFID Unpacked: A Case Study in Employing RFID Tags from Item to Pallet Level
by Ethan Claucherty, Danielle Cummins and Bahar Aliakbarian
Electronics 2025, 14(2), 278; https://doi.org/10.3390/electronics14020278 - 11 Jan 2025
Viewed by 2356
Abstract
As the use of passive ultra-high frequency (UHF) radio frequency identification (RFID) tags continues to surge in supply chain management, it becomes crucial to optimize their application at various levels of packaging to ensure reliability. These packaging levels play a pivotal role in [...] Read more.
As the use of passive ultra-high frequency (UHF) radio frequency identification (RFID) tags continues to surge in supply chain management, it becomes crucial to optimize their application at various levels of packaging to ensure reliability. These packaging levels play a pivotal role in achieving maximum readability and widespread adoption within the industry. This research paper aims to determine the most suitable passive UHF RFID tag for consumer goods filled with liquid and wrapped in foil packaging. In this study, two distinct RFID tags from separate manufacturers were evaluated. The research focused on critical factors such as reader height, distance, and item configuration across different packaging levels (item, case, and pallet). The results demonstrated that the packaging configuration impacts the readability of RFID tags at each packaging level. Through rigorous testing, it was found that achieving a tag readability rate higher than 99.7% is feasible and readability can be optimized by adjusting the reader position, packaging configuration, and tag design. The optimized configuration and testing platform developed in this study can be used for comparable products in other supply chains such as consumer goods, pharmaceuticals, and food. The results of this study emphasize RFID’s potential to revolutionize supply chain management. Full article
(This article belongs to the Special Issue RFID Technology and Its Applications)
Show Figures

Figure 1

11 pages, 26868 KB  
Article
Wearable Displacement Sensor Using Inductive Coupling of Printed RFID Tag with Metallic Strip
by Tauseef Hussain, Ignacio Gil and Raúl Fernández-García
Electronics 2025, 14(2), 262; https://doi.org/10.3390/electronics14020262 - 10 Jan 2025
Cited by 1 | Viewed by 3643
Abstract
This paper presents a passive displacement sensor based on the inductive coupling between a printed UHF RFID tag and a metallic strip. The sensor operates by exploiting variations in mutual inductive coupling, which modulate the tag impedance and transmission coefficient, thereby altering the [...] Read more.
This paper presents a passive displacement sensor based on the inductive coupling between a printed UHF RFID tag and a metallic strip. The sensor operates by exploiting variations in mutual inductive coupling, which modulate the tag impedance and transmission coefficient, thereby altering the backscattered signal strength and the maximum read range of the RFID tag. The performance of the sensor is validated through simulations and experiments, which demonstrate a sensitivity characterized by an approximately 9 dB reduction in the received signal strength indicator (RSSI) and a 2.3 m decrease in the read range within the first 12 mm of displacement. Furthermore, its potential for wearable applications is showcased through respiratory monitoring, where RSSI variations of approximately 5 dB are observed between the inspiration and expiration phases when positioned on the abdominal region of a volunteer. Thus, the proposed displacement sensing approach offers a cost-effective and battery-free solution for wearable applications with remote monitoring capabilities. Full article
(This article belongs to the Special Issue RFID Technology and Its Applications)
Show Figures

Figure 1

27 pages, 1412 KB  
Article
A Real-Time System Status Evaluation Method for Passive UHF RFID Robots in Dynamic Scenarios
by Honggang Wang, Weibing Du, Bo Qin, Ruoyu Pan and Shengli Pang
Electronics 2024, 13(21), 4162; https://doi.org/10.3390/electronics13214162 - 23 Oct 2024
Cited by 1 | Viewed by 1388
Abstract
In dynamic scenarios, the status of a Radio Frequency Identification (RFID) system fluctuates with environmental changes. The key to improving system efficiency lies in the real-time monitoring and evaluation of the system status, along with adaptive adjustments to the system parameters and read [...] Read more.
In dynamic scenarios, the status of a Radio Frequency Identification (RFID) system fluctuates with environmental changes. The key to improving system efficiency lies in the real-time monitoring and evaluation of the system status, along with adaptive adjustments to the system parameters and read algorithms. This paper focuses on the status changes in RFID systems in dynamic scenarios, aiming to enhance system robustness and reading performance, ensuring high link quality, reasonable resource scheduling, and real-time status evaluation under varying conditions. This paper comprehensively considers the system parameter settings in dynamic scenarios, integrating the interaction model between readers and tags. The system’s real-time status is evaluated from both the physical layer and the Medium Access Control (MAC) layer perspectives. For the physical layer, a link quality evaluation model based on Uniform Manifold Approximation and Projection (UMAP) and K-Means clustering is proposed from the link quality. For the MAC layer, a multi-criteria decision-making evaluation model based on combined weighting and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is proposed, which comprehensively considers both subjective and objective factors, utilizing the TOPSIS algorithm for an accurate evaluation of the MAC layer system status. For the RFID system, this paper proposes a real-time status evaluation model based on the Classification and Regression Tree (CART), which synthesizes the evaluation results of the physical layer and MAC layer. Finally, engineering tests and verification were conducted on the RFID robot system in mobile scenarios. The results showed that the clustering average silhouette coefficient of the physical layer link quality evaluation model based on K-Means was 0.70184, indicating a relatively good clustering effect. The system status evaluation model of the MAC layer, based on the combined weighting-TOPSIS method, demonstrated good flexibility and generalization. The real-time status evaluation model of the RFID system, based on CART, achieved a classification accuracy of 98.3%, with an algorithm runtime of 0.003 s. Compared with other algorithms, it had a higher classification accuracy and shorter runtime, making it well suited for the real-time evaluation of the RFID robot system’s status in dynamic scenarios. Full article
Show Figures

Figure 1

22 pages, 3257 KB  
Article
Tag-Array-Based UHF Passive RFID Tag Attitude Identification of Tracking Methods
by Honggang Wang, Sicheng Li, Yurun Zhou, Yongli Wang, Ruoyu Pan and Shengli Pang
Sensors 2024, 24(19), 6305; https://doi.org/10.3390/s24196305 - 29 Sep 2024
Cited by 1 | Viewed by 1914
Abstract
Attitude information is as important as position information in describing and localizing objects. Based on this, this paper proposes a method for object attitude sensing utilizing ultra-high frequency passive RFID technology. This method adopts a double tag array strategy, which effectively enhances the [...] Read more.
Attitude information is as important as position information in describing and localizing objects. Based on this, this paper proposes a method for object attitude sensing utilizing ultra-high frequency passive RFID technology. This method adopts a double tag array strategy, which effectively enhances the spatial freedom and eliminates phase ambiguity by leveraging the phase difference information between the two tags. Additionally, we delve into the issue of the phase shift caused by coupling interference between the two tags. To effectively compensate for this coupling effect, a series of experiments were conducted to thoroughly examine the specific impact of coupling effects between tags, and based on these findings, a coupling model between tags was established. This model was then integrated into the original phase model to correct for the effects of phase shift, significantly improving the sensing accuracy. Furthermore, we considered the influence of the object rotation angle on phase changes to construct an accurate object attitude recognition and tracking model. To reduce random errors during phase measurement, we employed a polynomial regression method to fit the measured tag phase information, further enhancing the precision of the sensing model. Compared to traditional positioning modes, the dual-tag array strategy essentially increases the number of virtual antennas available for positioning, providing the system with more refined directional discrimination capabilities. The experimental results demonstrated that incorporating the effects of inter-tag coupling interference and rotation angle into the phase model significantly improved the recognition accuracy for both object localization and attitude angle determination. Specifically, the average error of object positioning was reduced to 12.3 cm, while the average error of attitude angle recognition was reduced to 8.28°, making the method suitable for various practical application scenarios requiring attitude recognition. Full article
(This article belongs to the Special Issue Indoor Positioning Technologies for Internet-of-Things)
Show Figures

Figure 1

12 pages, 1128 KB  
Article
Performance of a UHF RFID Detection System to Assess Activity Levels and Lying Behaviour in Fattening Bulls
by Kay Fromm, Julia Heinicke, Christian Ammon, Thomas Amon and Gundula Hoffmann
AgriEngineering 2024, 6(2), 1886-1897; https://doi.org/10.3390/agriengineering6020110 - 20 Jun 2024
Cited by 2 | Viewed by 1816
Abstract
Animal welfare strongly influences the health and performance of cattle and is an important factor for consumer acceptance. One parameter for the quantification of health status is the lying duration, which can be deployed for the early detection of possible production-related illnesses. Usually, [...] Read more.
Animal welfare strongly influences the health and performance of cattle and is an important factor for consumer acceptance. One parameter for the quantification of health status is the lying duration, which can be deployed for the early detection of possible production-related illnesses. Usually, 3D-accelerometers are the tool to detect lying duration in cattle, but the handling of bulls sometimes has special requirements because frequent manipulation in daily farming routines is often not possible. An ultrahigh-frequency (UHF) radio-frequency identification (RFID) system was installed in a beef cattle barn in Germany to measure the activity and lying time of bulls. Such UHF RFID systems are typically used for estrus detection in dairy cows via activity level, but can also be considered, for instance, as an early detection for lameness or other diseases. The aim of the study was to determine whether the estimations of activity level and lying duration can also be traced in husbandry systems for fattening bulls. Two groups of bulls (Uckermärker cattle, n = 10 and n = 13) of the same age were equipped with passive UHF RFID ear transponders. Three cameras were installed to proof the system and to observe the behaviour of the animals (standing, lying, and moving). Furthermore, accelerometers were attached to the hind legs of the bulls to validate their activity and lying durations measured by the RFID system in the recorded area. Over a period of 20 days, position (UHF RFID) and accelerometer data were recorded. Videos were recorded over a period of five days. The UHF RFID system showed an overall specificity of 95.9%, a sensitivity of 97.05%, and an accuracy of 98.45%. However, the comparison of the RFID and accelerometer data revealed residuals (ԑ) of median lying time (in minutes per day) for each group of ԑGroup1 = 51.78 min/d (p < 0.001), ԑGroup2 = −120.63 min/d (p < 0.001), and ԑGroup1+2 = −34.43 min/d (p < 0.001). In conclusion, UHF RFID systems can provide reliable activity and lying durations in 60 min intervals, but accelerometer data are more accurate. Full article
(This article belongs to the Section Livestock Farming Technology)
Show Figures

Figure 1

18 pages, 10650 KB  
Article
Textronic Capacitive Sensor with an RFID Interface
by Patryk Pyt, Kacper Skrobacz, Piotr Jankowski-Mihułowicz and Mariusz Węglarski
Sensors 2024, 24(12), 3706; https://doi.org/10.3390/s24123706 - 7 Jun 2024
Viewed by 1892
Abstract
This article presents an innovative combination of textile electrical circuits with advanced capabilities of electronic RFID sensors, indicating the revolutionary nature of the development of textronics, which is used in various areas of life, from fashion to medicine. A review of the literature [...] Read more.
This article presents an innovative combination of textile electrical circuits with advanced capabilities of electronic RFID sensors, indicating the revolutionary nature of the development of textronics, which is used in various areas of life, from fashion to medicine. A review of the literature relating to the construction of textronic RFID identifiers and capacitive textronic sensors is performed. Various approaches to measuring capacity using RFID tags are discussed. This article focuses on presenting the concept of a capacitive sensor with an RFID interface, consisting of a microelectronic part and a textile part. The textile part is based on the WL4007 material, where antennas and capacitive sensors are embroidered using SPARKFUN DEV 11791 conductive thread. The antenna is a half-wave dipole designed to operate at a frequency of 860 MHZ. The microelectronic part is sewn to the textile part and consists of a microcontroller, an RFID-integrated circuit and a coupling loop, placed on the PCB. The embroidered antenna is coupled with a loop on the microelectronic module. This article focuses on presenting various designs of textronic electrodes, enabling various types of measurements. Article presents capacitance measurements of individual sensor electrodes, made using a measuring bridge and a built RFID tag. The sensors’ capacity measurement results are shown. Full article
(This article belongs to the Special Issue Sensors and Sensing Technology: RFID Devices)
Show Figures

Figure 1

16 pages, 8137 KB  
Review
Novel Technologies towards the Implementation and Exploitation of “Green” Wireless Agriculture Sensors
by Loukia Vassiliou, Adnan Nadeem, David Chatzichristodoulou, Photos Vryonides and Symeon Nikolaou
Sensors 2024, 24(11), 3465; https://doi.org/10.3390/s24113465 - 28 May 2024
Cited by 3 | Viewed by 2241
Abstract
This manuscript presents the use of three novel technologies for the implementation of wireless green battery-less sensors that can be used in agriculture. The three technologies, namely, additive manufacturing, energy harvesting, and wireless power transfer from airborne transmitters carried from UAVs, are considered [...] Read more.
This manuscript presents the use of three novel technologies for the implementation of wireless green battery-less sensors that can be used in agriculture. The three technologies, namely, additive manufacturing, energy harvesting, and wireless power transfer from airborne transmitters carried from UAVs, are considered for smart agriculture applications, and their combined use is demonstrated in a case study experiment. Additive manufacturing is exploited for the implementation of both RFID-based sensors and passive sensors based on humidity-sensitive materials. A number of energy-harvesting systems at UHF and ISM frequencies are presented, which are in the position to power platforms of wireless sensors, including humidity and temperature IC sensors used as agriculture sensors. Finally, in order to provide wireless energy to the soil-based sensors with energy harvesting features, wireless power transfer (WPT) from UAV carried transmitters is utilized. The use of these technologies can facilitate the extensive use and exploitation of battery-less wireless sensors, which are environmentally friendly and, thus, “green”. Additionally, it can potentially drive precision agriculture in the next era through the implementation of a vast network of wireless green sensors which can collect and communicate data to airborne readers so as to support, the Artificial Intelligence and Machine Learning-based decision-making with data. Full article
(This article belongs to the Special Issue RFID-Enabled Sensor Design and Applications)
Show Figures

Figure 1

18 pages, 12188 KB  
Review
A Concise State-of-the-Art Review of Crack Monitoring Enabled by RFID Technology
by Sheng-Cai Ran, Qi-Ang Wang, Jun-Fang Wang, Yi-Qing Ni, Zhong-Xu Guo and Yang Luo
Appl. Sci. 2024, 14(8), 3213; https://doi.org/10.3390/app14083213 - 11 Apr 2024
Cited by 9 | Viewed by 2560
Abstract
Cracking is an important factor affecting the performance and life of large structures. In order to maximize personal safety and reduce costs, it is highly necessary to carry out research on crack monitoring technology. Sensors based on Radio Frequency Identification (RFID) antennas have [...] Read more.
Cracking is an important factor affecting the performance and life of large structures. In order to maximize personal safety and reduce costs, it is highly necessary to carry out research on crack monitoring technology. Sensors based on Radio Frequency Identification (RFID) antennas have the advantages of wireless and low cost, which makes them highly competitive in the field of structure health monitoring (SHM). Thus, this study systematically summarizes the research progress of crack monitoring based on RFID technology in recent years. Firstly, this study introduces the causes of cracks and the traditional monitoring methods. Further, this study summarizes several main RFID-based crack monitoring and detection methods, including crack monitoring based on chipless RFID technology, passive RFID technology, and ultra-high-frequency (UHF) RFID technology, including the implementation methods, as well as the advantages and disadvantages of those technologies. In addition, for RFID-based crack monitoring applications, the two most commonly used materials are concrete materials and metal materials, which are also illustrated in detail. In general, this study can provide technical support and a theoretical basis for crack monitoring and detection to ensure the safety of engineering structures. Full article
Show Figures

Figure 1

17 pages, 12521 KB  
Article
Artificial Intelligence-Assisted RFID Tag-Integrated Multi-Sensor for Quality Assessment and Sensing
by Chenyang Song and Zhipeng Wu
Sensors 2024, 24(6), 1813; https://doi.org/10.3390/s24061813 - 12 Mar 2024
Cited by 5 | Viewed by 4350
Abstract
Radio frequency identification (RFID) is well known as an identification, track, and trace approach and is considered to be the key physical layer technology for the industrial internet of things (IIoT). However, IIoT systems have to introduce additional complex sensor networks for pervasive [...] Read more.
Radio frequency identification (RFID) is well known as an identification, track, and trace approach and is considered to be the key physical layer technology for the industrial internet of things (IIoT). However, IIoT systems have to introduce additional complex sensor networks for pervasive monitoring, and there are still challenges related to item-level sensing and data recording. To overcome the shortage, this work proposes an artificial intelligence (AI)-assisted RFID-based multi-sensing technology. Both passive and semi-passive RFID tag-integrated multi-sensors are developed. The main contributions and the novelty of this investigation are as follows. A UHF RFID tag-integrated multi-sensor with a boosted charge pump is proposed; it enables high RF signal sensitivity and a long operational range. The whole hardware design, including the antenna and energy harvester, are studied. Moreover, a demonstration with real-world ham product sensing data is conducted. This work also proposes and successfully demonstrates the integration of machine learning algorithms, specifically the NARX neural network, with RFID sensing data for food product quality assessment and sensing (QAS). This application of machine learning to RFID-generated data for quality assessment is also a novel aspect of the research. The deployment of an autoregressive model with an exogenous input (NARX) neural network model, tailored for nonlinear processes, emerges as the most effective, achieving a root mean square error (RMSE) of 0.007 and an R-squared value of 0.99 for ham product QAS. By deploying the technology, low-cost, timely, and flexible product QAS can be achieved in manufacturing industries, which helps product quality improvement and the optimization of the manufacturing line and supply chain. Full article
(This article belongs to the Special Issue Sensing Technologies and Wireless Communications for Industrial IoT)
Show Figures

Figure 1

21 pages, 10115 KB  
Article
The Rise of Passive RFID RTLS Solutions in Industry 5.0
by Ygal Bendavid, Samad Rostampour, Yacine Berrabah, Nasour Bagheri and Masoumeh Safkhani
Sensors 2024, 24(5), 1711; https://doi.org/10.3390/s24051711 - 6 Mar 2024
Cited by 10 | Viewed by 4874
Abstract
In today’s competitive landscape, manufacturing companies must embrace digital transformation. This study asserts that integrating Internet of Things (IoT) technologies for the deployment of real-time location systems (RTLS) is crucial for better monitoring of critical assets. Despite the challenge of selecting the right [...] Read more.
In today’s competitive landscape, manufacturing companies must embrace digital transformation. This study asserts that integrating Internet of Things (IoT) technologies for the deployment of real-time location systems (RTLS) is crucial for better monitoring of critical assets. Despite the challenge of selecting the right technology for specific needs from a wide range of indoor RTLS options, this study provides a solution to assist manufacturing companies in exploring and implementing IoT technologies for their RTLS needs. The current academic literature has not adequately addressed this industrial reality. This paper assesses the potential of Passive UHF RFID-RTLS in Industry 5.0, addressing the confusion caused by the emergence of new ’passive’ RFID solutions that compete with established ’active’ solutions. Our research aims to clarify the real-world performance of passive RTLS solutions and propose an updated classification of RTLS systems in the academic literature. We have thoroughly reviewed both the academic and industry literature to remain up to date with the latest market advancements. Passive UHF RFID has been proven to be a valuable addition to the RTLS domain, capable of addressing certain challenges. This has been demonstrated through the successful implementation in two industrial sites, each with different types of tagged objects. Full article
(This article belongs to the Special Issue RFID-Enabled Sensor Design and Applications)
Show Figures

Figure 1

13 pages, 10098 KB  
Article
RFID-Based Localization System for Monitoring the Dispersal of Oak Acorns
by Maciej Ciężkowski, Piotr Jankowski-Mihułowicz and Kacper Skrobacz
Electronics 2024, 13(3), 567; https://doi.org/10.3390/electronics13030567 - 30 Jan 2024
Viewed by 1686
Abstract
Radio techniques are widely used in wildlife tracking. Currently, the most common tracking methods include radio tracking (operating on Very high frequency (VHF) and Ultra high frequency (UHF)), satellite tracking (e.g., Argos satellite Doppler-based positioning system), and Global Navigation Satellite System (GNSS) tracking. [...] Read more.
Radio techniques are widely used in wildlife tracking. Currently, the most common tracking methods include radio tracking (operating on Very high frequency (VHF) and Ultra high frequency (UHF)), satellite tracking (e.g., Argos satellite Doppler-based positioning system), and Global Navigation Satellite System (GNSS) tracking. One of the radio tracking systems is the Radio-Frequency Identification (RFID) system, characterized by small dimensions and a long operational period due to energy-efficient features. The advantages of RFID make it possible to apply this technique to track oak acorns in the process of zoochoric dispersal. In our study, we explored the potential applications of RFID systems for monitoring the dispersal of oak acorns. We developed a tracking system based on a semi-passive RFID tag, which we tested under laboratory and quasi-realistic conditions. The obtained results confirm the feasibility of using our system in radio tracking small objects such as oak acorns. Full article
(This article belongs to the Special Issue RF/Microwave Device and Circuit Integration Technology)
Show Figures

Figure 1

14 pages, 5359 KB  
Article
UHF Textronic RFID Transponder with Bead-Shaped Microelectronic Module
by Piotr Jankowski-Mihułowicz, Mariusz Węglarski, Patryk Pyt, Kacper Skrobacz and Karol Karpiński
Electronics 2023, 12(23), 4873; https://doi.org/10.3390/electronics12234873 - 3 Dec 2023
Cited by 5 | Viewed by 1896
Abstract
The idea of novel antennas and matching circuits, developed for radio frequency identification (RFID) passive transponders, and made on textile substrates, is presented in this paper. By manufacturing an RFID transponder by the means used in every clothing factory, we developed the concept [...] Read more.
The idea of novel antennas and matching circuits, developed for radio frequency identification (RFID) passive transponders, and made on textile substrates, is presented in this paper. By manufacturing an RFID transponder by the means used in every clothing factory, we developed the concept of RFIDtex tags, which, as textronic devices, make a new significant contribution to the Internet of Textile Things (IoTT). The main feature of the device consists of the use of an uncommon inductively coupled system as the antenna feed element. The antenna is sewn/embroidered with a conductive thread, and the microelectronic module with an RFID chip is made in the form of a bead, using standard electronic technology. Finally, the construction of the RFIDtex tag is developed for easy implementation in production lines in the garment industry. The proposed inductive coupling scheme has not been considered anywhere, so far. The developed transponder is dedicated to operating in RFID systems of the ultra-high frequency band (UHF). The numerical calculations confirmed by the experimental results clearly indicate that the proposed coupling system between the antenna and the microelectronic module works properly and the RFIDtex device can operate correctly within a distance of several meters. The proposed design is based on the authors’ patent on the textronic RFID transponder (patent no PL 231291 B1). Full article
(This article belongs to the Special Issue Advances in Passive RFID: From UHF to THz)
Show Figures

Figure 1

Back to TopTop