Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (37,655)

Search Parameters:
Keywords = pathologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3004 KB  
Article
High-Intensity In Situ Fluorescence Imaging of MicroRNA in Cells Based on Y-Shaped Cascade Assembly
by Yan Liu, Xueqing Fan, Xinying Zhou, Zhiqi Zhang, Qi Yang, Rongjie Yang, Yingxue Li, Anran Zheng, Lianqun Zhou, Wei Zhang and Jinze Li
Chemosensors 2025, 13(9), 343; https://doi.org/10.3390/chemosensors13090343 (registering DOI) - 6 Sep 2025
Abstract
MicroRNAs are closely associated with various physiological and pathological processes, making their in situ fluorescence imaging crucial for functional studies and disease diagnosis. Current methods for the in situ fluorescence imaging of microRNA predominantly rely on linear signal amplification, resulting in relatively weak [...] Read more.
MicroRNAs are closely associated with various physiological and pathological processes, making their in situ fluorescence imaging crucial for functional studies and disease diagnosis. Current methods for the in situ fluorescence imaging of microRNA predominantly rely on linear signal amplification, resulting in relatively weak imaging signals. This study introduces a Y-shaped cascade assembly (YCA) method for high-brightness microRNA imaging in cells. Triggered by target microRNA, catalytic hairpin assembly forms double-stranded DNA (H). Through annealing and hybridization, a Y-shaped structure (P) is created. These components assemble into DNA nanofluorescent particles with multiple FAM fluorophores, significantly amplifying fluorescence signals. Optimization experiments revealed that a 1:1 ratio of P to H and an assembly time of 60 min yielded the best results. Under these optimal conditions, the resulting fluorescent nanoparticles exhibited diameters of 664.133 nm, as observed by DLS. In Huh7 liver cancer cells, YCA generated DNA nanoparticles with a fluorescence intensity increase of 117.77%, triggered by target microRNA-21, producing high-intensity fluorescence images and enabling qualitative detection of microRNA-21. The YCA in situ imaging method offers excellent imaging quality and high efficiency, providing a robust and reliable analytical tool for the diagnosis and monitoring of microRNA-related diseases. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—2nd Edition)
12 pages, 1214 KB  
Article
The Reliability and Validity of a New Laryngeal Palpation Tool for Static and Dynamic Examination
by Isabelle Bargar, Melina Maria Ippers, Katrin Neumann, Philipp Mathmann and Ben Barsties v. Latoszek
J. Clin. Med. 2025, 14(17), 6309; https://doi.org/10.3390/jcm14176309 (registering DOI) - 6 Sep 2025
Abstract
Background/Objectives: Voice disorders caused by laryngeal hypertension can impact volume, quality, pitch, resonance, flexibility, and stamina. The laryngeal palpation is a tactile-perceptual assessment, which is one of a few examination methods to evaluate laryngeal hypertension. Laryngeal palpation is a manual examination of [...] Read more.
Background/Objectives: Voice disorders caused by laryngeal hypertension can impact volume, quality, pitch, resonance, flexibility, and stamina. The laryngeal palpation is a tactile-perceptual assessment, which is one of a few examination methods to evaluate laryngeal hypertension. Laryngeal palpation is a manual examination of the extrinsic and paralaryngeal tissues of the larynx (e.g., lateral laryngeal mobility, thyrohyoid and cricothyroid spaces, vertical laryngeal position/mobility, and pain) through the examiner’s fingers. It can be performed during rest (static assessment) or during phonation (dynamic assessment) of the individual being evaluated. This study aimed to validate a novel laryngeal palpation tool with quantitative ordinal scores by assessing its reliability and diagnostic accuracy establishing preliminary clinical cut-off values, and examining its correlations with self-reported voice disorder symptoms. Methods: In a prospective, controlled validation study, 33 participants were selected to assess the validity and reliability of the novel diagnostic tool in a clinical sample and healthy controls. The clinical sample (n = 19) comprised individuals diagnosed with voice disorders, whereas the healthy control group (n = 14) included participants with no history or symptoms of voice pathology. The novel laryngeal palpation tool was employed by two independent examiners to assess both static and dynamic laryngeal function in all participants. In addition, each participant completed the following questionnaires: Voice Handicap Index (VHI-30) with the 30-item, Vocal Fatigue Index (VFI), and the Vocal Tract Discomfort Scale (VTD). Results: Static palpatory assessment of laryngeal tension demonstrated excellent discriminatory power between groups and tension levels (AROC = 0.979), along with high intra-rater (ICC = 0.966) and inter-rater reliability (ICC = 0.866). Significant correlations were revealed between the static palpation results and the VHI scores (r = 0.496; p < 0.01) and VFI (r = 0.514; p < 0.01). For the dynamic evaluation of the palpation tool, comparable results for the validity (AROC = 0.840) and reliability (inter-rater: ICC = 0.800, and intra-rater: ICC = 0.840) were revealed. However, no significant correlations were found between dynamic palpation and self-perceived questionnaires, although some were likely found with static palpation. The validity of the total score was found to be AROC = 0.992. Conclusions: The static and dynamic assessments using the novel laryngeal palpation tool demonstrated promising reliability and diagnostic accuracy, providing initial evidence to support its clinical utility. Further studies are needed to establish broader validation. Full article
(This article belongs to the Special Issue New Advances in the Management of Voice Disorders: 2nd Edition)
Show Figures

Figure 1

16 pages, 898 KB  
Article
Development of 3D-Printed Gel-Based Supplement-Containing Tablets with Tailored Release Profiles for Neurological Pain Management
by Jurga Andreja Kazlauskaite, Inga Matulyte and Jurga Bernatoniene
Pharmaceutics 2025, 17(9), 1168; https://doi.org/10.3390/pharmaceutics17091168 (registering DOI) - 6 Sep 2025
Abstract
Background/Objectives: Neuropathic pain, resulting from damage or pathology affecting the somatosensory nervous system, is a prevalent form of chronic pain that significantly impacts quality of life. Combined therapies are often utilised to manage this condition. Three-dimensional printing (3DP) offers a promising approach [...] Read more.
Background/Objectives: Neuropathic pain, resulting from damage or pathology affecting the somatosensory nervous system, is a prevalent form of chronic pain that significantly impacts quality of life. Combined therapies are often utilised to manage this condition. Three-dimensional printing (3DP) offers a promising approach for personalising medication doses and dosage forms to meet individual patient needs. Methods: In this study, a formulation suitable for 3D printing was developed using magnesium citrate, uridine monophosphate, vitamins B3 (niacin), B6 (pyridoxine), B12 (cobalamin), B9 (folic acid), and spermidine to create a novel gel-based oral tablet for the targeted treatment of neurological pain. The antioxidant potential of the active pharmaceutical ingredients (APIs) was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods. The physical properties of the tablets were evaluated using a texture analyser, while the in vitro release profiles were determined by high-performance liquid chromatography (HPLC). Results: Results demonstrated that pectin–gelatin tablets hardened over time, with higher citric acid concentrations further enhancing this effect. Formulation AVII exhibited good hardness and low stickiness. Formulation AV, however, showed poor performance across all physical parameters and lacked sufficient structural integrity for practical application. While uridine monophosphate, B12, and B9 showed no significant differences in the release profiles of the tablets, spermidine, B6, and B3 displayed statistically significant variations. Specifically, AVII outperformed AV in terms of spermidine and B6 release, and AV showed a higher release of B3 compared to AV. Conclusions: The AVII tablet demonstrates potential for use in combined therapy targeting neurological pain disorders. Full article
(This article belongs to the Special Issue 3D Printing in Personalized Drug Delivery)
9 pages, 336 KB  
Article
Brain Computed Tomography Overutilization in an Emergency Department Setting
by Anne Marie Lund, Jesper Juul Larsen and Thomas A. Schmidt
Emerg. Care Med. 2025, 2(3), 44; https://doi.org/10.3390/ecm2030044 (registering DOI) - 6 Sep 2025
Abstract
Background: Brain computed tomography (CT) is the primary imaging modality for patients with acute neurological complaints in emergency departments, despite having a low diagnostic yield for many conditions. This study aimed to assess the common indications for brain CT, evaluate the prevalence of [...] Read more.
Background: Brain computed tomography (CT) is the primary imaging modality for patients with acute neurological complaints in emergency departments, despite having a low diagnostic yield for many conditions. This study aimed to assess the common indications for brain CT, evaluate the prevalence of acute pathologies, and explore whether certain patient groups may be overexposed to unnecessary scans, impacting both patient safety and healthcare costs. Methods: We conducted a retrospective review of brain CT requests from the General Emergency Department in a single center over a one-month period. We recorded patient demographics (sex, age), scan indications, presence of focal neurological symptoms, acute pathology on CT, and final diagnoses. Descriptive statistics, including means ± SEM, were calculated using GraphPad Prism version 10.4.1. Results: A total of 584 brain CT scans were requested, of which 532 (91.1%) were normal, and 52 (8.9%) showed acute pathology. The age of all included patients were 70.8 ± 0.7 years with women (n = 304, 52.1%) being 71.9 ± 1.0 years old and men (n = 280, 47.9%) 69.7 ± 1.0 years old (p > 0.1). The most common indication for CT was head trauma (265, 45.4%) followed by ischemic stroke (130, 22.3%). The most frequent pathologies were ischemic stroke (2.7%), subdural hematoma (1.7%), and other traumatic bleeds (1.7%). Of the 52 patients with acute pathology, 42 (80.8%) exhibited focal neurological deficits. Conclusions: 91.1% of the brain CT scans in the emergency department were normal and did not lead to further intervention. While this may indicate a low diagnostic yield in certain patient groups—particularly those presenting with mild or nonspecific neurological symptoms—it does not alone confirm overuse. These findings highlight the importance of careful clinical evaluation to optimize imaging decisions. Reducing potentially unnecessary brain CT scans could lower healthcare costs and minimize radiation exposure, but the health-economic impact depends on balancing the savings with the potential costs of missing critical diagnoses and the associated societal consequences. Full article
Show Figures

Figure 1

20 pages, 1895 KB  
Review
New Advances in 3D Models to Improve Diabetic Keratopathy Research: A Narrative Review
by Nicoletta Palmeri, Agata Grazia D’Amico, Carla Cavallaro, Giuseppe Evola, Velia D’Agata and Grazia Maugeri
Appl. Sci. 2025, 15(17), 9794; https://doi.org/10.3390/app15179794 (registering DOI) - 6 Sep 2025
Abstract
Diabetic keratopathy (DK) is a common ocular complication of diabetes mellitus (DM), affecting almost half of all diabetic patients. It is characterized by delayed healing of epithelial wounds, reduced corneal sensitivity, and persistent epithelial defects, which, in turn, significantly impair vision and quality [...] Read more.
Diabetic keratopathy (DK) is a common ocular complication of diabetes mellitus (DM), affecting almost half of all diabetic patients. It is characterized by delayed healing of epithelial wounds, reduced corneal sensitivity, and persistent epithelial defects, which, in turn, significantly impair vision and quality of life. The limited understanding of its pathogenesis and the lack of effective treatments highlight the urgent need for more physiologically relevant experimental models. The three-dimensional (3D) models currently available provide valuable information on the pathophysiology of DK, although none of them yet fully reproduce the diabetic corneal phenotype complex. After a brief overview of corneal anatomy, the present review aims to systematically analyze the current 3D in vitro models developed for the study of DK, in terms of tissue architecture, presence of diabetic stimuli, and ability to replicate pathological traits. Full article
(This article belongs to the Special Issue Trends and Prospects in Retinal and Corneal Diseases)
Show Figures

Figure 1

30 pages, 2248 KB  
Systematic Review
Fracture Patterns in Fatal Free Falls: A Systematic Review of Intrinsic and Extrinsic Risk Factors and the Role of Postmortem CT
by Filip Woliński, Kacper Kraśnik, Łukasz Bryliński, Jolanta Sado, Justyna Sagan, Katarzyna Brylińska, Grzegorz Teresiński, Tomasz Cywka, Robert Karpiński and Jacek Baj
J. Clin. Med. 2025, 14(17), 6305; https://doi.org/10.3390/jcm14176305 (registering DOI) - 6 Sep 2025
Abstract
Background: Free fatal falls (FFF) represent a distinct form of blunt force trauma (BFT) that is frequently encountered in forensic practice. Distinguishing FFF injuries from other forms of BFT, such as motor vehicle accidents (MVAs), can pose challenges. Despite its growing usage, the [...] Read more.
Background: Free fatal falls (FFF) represent a distinct form of blunt force trauma (BFT) that is frequently encountered in forensic practice. Distinguishing FFF injuries from other forms of BFT, such as motor vehicle accidents (MVAs), can pose challenges. Despite its growing usage, the role of postmortem computed tomography (PMCT) in diagnosing FFF and its comparison with autopsy remains underexplored. Purpose: This review synthesizes fracture patterns in FFF, examining both extrinsic and intrinsic variables that influence skeletal injuries. It also compares PMCT and autopsy findings to establish a replicable database for forensic analysis. Methods: PubMed and Google Scholar were systematically searched by three independent reviewers. The inclusion criteria required studies to be published in English, report at least 10 cases, focus on fatal falls, and provide precise data on skeletal injuries. Studies lacking detailed descriptions, focusing on survivors, or involving non-free falls were excluded. Data extraction tables facilitated synthesis and analysis. Key Findings: FFF are characterized mainly by axial skeletal fractures, particularly of the chest, skull, and pelvis. A history of intoxication and psychiatric disorders often correlates with the manner of death. Fracture patterns vary by fall height, impact surface, and cause: accidental falls show greater chest and skull involvement, whereas suicidal falls present more pelvic and skull fractures. PMCT detects fractures more frequently than traditional autopsy. Conclusions: Distinct fracture patterns aid in differentiating suicidal from accidental FFF, shaped by extrinsic and intrinsic factors. Given its superior fracture detection capabilities, PMCT should be integrated into forensic protocols for FFF investigations. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

14 pages, 1612 KB  
Article
A Competing-Risks Approach to the Progression, Regression and Persistence of High-Grade Cervical Dysplasia in Patients over 30 Years Old—A Prospective Study
by Iulian-Valentin Munteanu, Demetra Socolov, Razvan Socolov, Ana-Maria Adam, Gigi Adam, Ingrid-Andrada Vasilache, Petronela Vicoveanu, Valeriu Harabor, Anamaria Harabor and Alina-Mihaela Calin
J. Clin. Med. 2025, 14(17), 6303; https://doi.org/10.3390/jcm14176303 (registering DOI) - 6 Sep 2025
Abstract
Background/Objectives: In Romania, where cervical cancer incidence remains among the highest in the European Union, a risk-based management strategy could support more precise allocation of limited resources. The aim of this study was to test the prognostic utility of immediate pre-treatment and [...] Read more.
Background/Objectives: In Romania, where cervical cancer incidence remains among the highest in the European Union, a risk-based management strategy could support more precise allocation of limited resources. The aim of this study was to test the prognostic utility of immediate pre-treatment and post-treatment risk predictions, derived from the American Society of Colposcopy and Cervical Pathology (ASCCP) risk-based management guidelines for the prediction of progression, regression or persistence of high-grade cervical dysplasia. Methods: In this prospective cohort study, we included 223 patients aged over 30 years who underwent self-referred or targeted screening with or without histologically confirmed cervical intraepithelial neoplasia (CIN) of any grade. We employed Fine and Gray’s subdistribution hazard model that evaluated the cumulative incidence function for each specific outcome, treating other outcomes as competing events. These outcomes were further stratified depending on the type of high-grade dysplasia. Results: The immediate post-treatment risk was significantly associated with subsequent progression of cervical dysplasia. For a cut-off of 60%, the immediate post-treatment risk was able to significantly predict the progression of both CIN2+ and CIN3+. On the other hand, the immediate pre-treatment risk > 60% was significantly associated with progression of CIN3+, but not of CIN2+. Also, the immediate pre-treatment risk was significantly associated with regression, but this observation did not persist at the >60% threshold. Both pre- and post-treatment risk > 60% were strongly associated with persistence across histologic subgroups. Conclusions: The ASCCP-derived immediate risk estimates, especially post-treatment risk > 60%, proved effective in predicting progression and persistence of high-grade cervical dysplasia. Full article
(This article belongs to the Special Issue Risk Prediction for Gynecological Cancer)
Show Figures

Figure 1

22 pages, 1566 KB  
Review
Integrating Macrophages into Human-Engineered Cardiac Tissue
by Yi Peng Zhao and Barry M. Fine
Cells 2025, 14(17), 1393; https://doi.org/10.3390/cells14171393 (registering DOI) - 6 Sep 2025
Abstract
Heart disease remains a leading cause of morbidity and mortality worldwide, necessitating the development of in vivo models for therapeutic development. Advances in biomedical engineering in the past decade have led to the promising rise of human-based engineered cardiac tissues (hECTs) using novel [...] Read more.
Heart disease remains a leading cause of morbidity and mortality worldwide, necessitating the development of in vivo models for therapeutic development. Advances in biomedical engineering in the past decade have led to the promising rise of human-based engineered cardiac tissues (hECTs) using novel scaffolds and pluripotent stem cell derivatives. This has led to a new frontier of human-based models for improved preclinical development. At the same time, there has been significant progress in elucidating the importance of the immune system and, in particular, macrophages, particularly during myocardial injury. This review summarizes new methods and findings for deriving macrophages from human pluripotent stem cells (hPSCs) and advances in integrating these cells into cardiac tissue. Key challenges include immune cell infiltration in 3D constructs, maintenance of tissue architecture, and modeling aged or diseased cardiac microenvironments. By integrating immune components, hECTs can serve as powerful tools to unravel the complexities of cardiac pathology and develop targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Immune Cells from Pluripotent Stem Cells)
Show Figures

Figure 1

26 pages, 6915 KB  
Article
Apolipoprotein D Expression Dynamics During Cuprizone-Induced Demyelination and Remyelination in a Mouse Model of Multiple Sclerosis
by Eva Martínez-Pinilla, Nuria Rubio-Sardón, Gemma Fernández-García, Sandra Villar-Conde, Carlota Menéndez-Pérez, Jorge Tolivia, Eva del Valle and Ana Navarro
Int. J. Mol. Sci. 2025, 26(17), 8692; https://doi.org/10.3390/ijms26178692 (registering DOI) - 6 Sep 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system (CNS) characterized by oligodendrocyte (OLG) degeneration, myelin loss, and impaired remyelination. Apolipoprotein D (Apo D), a glia-derived lipocalin, has emerged in recent decades as a neuroprotective molecule involved in lipid [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system (CNS) characterized by oligodendrocyte (OLG) degeneration, myelin loss, and impaired remyelination. Apolipoprotein D (Apo D), a glia-derived lipocalin, has emerged in recent decades as a neuroprotective molecule involved in lipid transport, oxidative stress regulation, and inflammation control during aging and neurodegenerative diseases like MS. However, its role in demyelination/remyelination dynamics remains poorly defined. In this study, we used the cuprizone (CPZ)-induced demyelination model in C57BL/6 mice to analyze Apo D expression patterns in the corpus callosum during de- and remyelination. We also assessed whether the atypical antipsychotic clozapine (CLO), previously shown to upregulate Apo D in vivo, could modulate its expression and influence myelin recovery in this pathological context. Using a combination of magnetic resonance imaging, Luxol fast blue staining, and double immunohistochemistry, we demonstrated that CPZ treatment for 3 or 6 weeks led to significant demyelination, hydrocephalus, and reduced motor cortex thickness, which were partially reversed after treatment cessation. Apo D expression in OLGs was significantly reduced by CPZ exposure, both at the protein level and in terms of immunoreactive cell counts, but was restored following treatment withdrawal. Notably, co-administration of CLO prevented the CPZ-induced reduction in Apo D expression in OLGs, although it did not attenuate myelin loss. In this way, our results reveal a strong correlation between Apo D expression and OLG/myelin integrity in vivo. While CLO did not exert remyelinating effects, it preserved Apo D levels under demyelinating conditions, suggesting a potential indirect neuroprotective mechanism. These findings support the relevance of Apo D in CNS myelin homeostasis and highlight its potential as a molecular target for therapeutic intervention in demyelinating diseases such as MS. Full article
(This article belongs to the Special Issue Multiple Sclerosis: Molecular Basis and New Therapy)
Show Figures

Figure 1

15 pages, 447 KB  
Systematic Review
Epidemiology and Treatment of Metastatic Lesions Around the Elbow: A Systematic Review
by Andrea De Fazio, Giovan Giuseppe Mazzella, Guglielmo Miele, Maria Beatrice Bocchi, Omar El Ezzo, Giacomo Capece, Giulio Maccauro and Raffaele Vitiello
J. Clin. Med. 2025, 14(17), 6297; https://doi.org/10.3390/jcm14176297 (registering DOI) - 6 Sep 2025
Abstract
Introduction: The elbow is a rare site for bone tumors, and for this reason, the literature provides little data on the epidemiology of metastatic lesions involving the distal humerus, proximal ulna, and radius. Before performing surgery of the metastatic bone, it is [...] Read more.
Introduction: The elbow is a rare site for bone tumors, and for this reason, the literature provides little data on the epidemiology of metastatic lesions involving the distal humerus, proximal ulna, and radius. Before performing surgery of the metastatic bone, it is first necessary to consider both patients’ and metastatic lesions’ features in order to better choose the best possible treatment. This systematic review aims to collect data on elbow metastases, delineate primary tumors leading to such metastases, guide surgical treatment decisions, and evaluate reconstructive techniques and associated complications. Material and Methods: A systematic literature review was conducted in April 2024, searching the PubMed, MEDLINE, and Cochrane Library databases using specific search terms related to elbow metastases. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) was followed. Eligible studies reported at least one patient with metastatic bone disease involving the elbow region and specified the undertaken treatment. For studies reporting multiple skeletal sites, only elbow-specific data were extracted. We excluded recurrences of primary elbow tumors. The methodological quality of included studies was assessed with the modified Coleman Methodology Score (mCMS). Results: In total, 28 articles (103 patients) were included. The studies were predominantly case reports (68%), with a mean mCMS of 31. Gender was reported for only 41 patients: 71% were male and 29% female. The mean age at diagnosis of elbow metastatic lesion was 55 years old. Renal cell carcinoma was the most common primary tumor (28%), followed by breast (9%) and lung cancer (6%). The distal humerus was the most frequently affected site (85%). A surgical approach was adopted in 90% of cases, whereas 10% of patients were managed conservatively. Forty-five patients underwent wide tumor resection followed by reconstructive surgery while forty-eight patients received a surgical treatment for either pathological fractures or impending fractures. Conclusions: When treating elbow metastasis, a thorough evaluation of the patient is crucial, considering the patient’s functional status, pain management needs, and overall prognosis; all these features influence the treatment of choice. The selected treatment should aim to provide optimal functional outcomes and minimize complications. For patients with pathological or impending fractures, single or double plate fixation is typically the preferred approach. For patients with severe, symptomatic lesions unresponsive to conservative therapy, resection followed by the implantation of a modular prosthesis usually offers the best clinical and functional outcomes. Full article
(This article belongs to the Special Issue Diagnosis and Treatment for Bone Tumor)
Show Figures

Figure 1

17 pages, 1206 KB  
Review
LRP5: A Multifaceted Co-receptor in Development, Disease, and Therapeutic Target
by Abdulmajeed F. Alrefaei
Cells 2025, 14(17), 1391; https://doi.org/10.3390/cells14171391 - 5 Sep 2025
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5) is a multifunctional transmembrane coreceptor that plays a pivotal role in development and disease. Wnt/β-catenin signaling is the primary downstream signaling pathway activated by LRP5. Furthermore, some LRP5 functions are mediated by noncanonical pathways, such as AKT/P21 [...] Read more.
Low-density lipoprotein receptor-related protein 5 (LRP5) is a multifunctional transmembrane coreceptor that plays a pivotal role in development and disease. Wnt/β-catenin signaling is the primary downstream signaling pathway activated by LRP5. Furthermore, some LRP5 functions are mediated by noncanonical pathways, such as AKT/P21 and TGF-β/Smad signaling. Pathologically, both loss-of-function and gain-of-function mutations in LRP5 produce distinct phenotypes, ranging from osteoporosis-pseudoglioma syndrome to high bone mass disorders. Beyond the skeletal system, LRP5 has emerged as a key regulator of retinal angiogenesis, vascular integrity, renal tubular function, neurodevelopment, and lipid metabolism. Its physiological functions are highlighted by its ability to influence adipocyte differentiation, insulin sensitivity, and neuronal synaptic plasticity. Moreover, LRP5 displays a dual role in development and disease progression. Although it plays a protective role in acute injuries such as myocardial infarction and acute kidney injury, LRP5 also contributes to chronic pathologies such as tubulointerstitial fibrosis, polycystic kidney disease, and atherosclerosis through fibrotic and inflammatory pathways. Recent therapeutic interest has focused on modulating LRP5 activity using agents such as anti-Dickkopf-related protein 1 antibody, sclerostin inhibitors, polyclonal antibodies, CRISPR/Cas9 knockout, and some natural products. This review discusses the current understanding of LRP5's physiological and pathological roles across organ systems and highlights its therapeutic potential, emphasizing the need for targeted approaches considering its context-dependent effects. Full article
(This article belongs to the Section Tissues and Organs)
17 pages, 1296 KB  
Article
Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia
by Matteo Bruno Lodi, Raffaello Possidente, Andrea Melis, Armando Di Meglio, Alessandro Fanti and Roberto Baccoli
Appl. Sci. 2025, 15(17), 9782; https://doi.org/10.3390/app15179782 (registering DOI) - 5 Sep 2025
Abstract
Deep-seated tumors are challenging pathologies to treat. Currently available approaches are limited, prompting innovative solutions. Hyperthermia treatment (HT) is a thermal oncological therapy that raises tumor temperature (40–44 °C for 60 min), enhancing radio- and chemotherapy. Biomaterials loaded with magnetic particles, called magnetic [...] Read more.
Deep-seated tumors are challenging pathologies to treat. Currently available approaches are limited, prompting innovative solutions. Hyperthermia treatment (HT) is a thermal oncological therapy that raises tumor temperature (40–44 °C for 60 min), enhancing radio- and chemotherapy. Biomaterials loaded with magnetic particles, called magnetic scaffolds (MagSs), are used as HT agents for cancer treatment using radiofrequency (RF) heating. MagSs can be manufactured via 3D printing using fused deposition modeling to create biomimetic architectures based on triply periodic minimal surfaces (TPMSs). TPMS-based MagSs have been tested in vitro for RF HT. However, there is a lack of understanding regarding the thermal properties of TPMS MagSs for RF hyperthermia. Significant discrepancies between simulated and measured temperatures have been reported, attributed to limited knowledge of the apparent thermal conductivity of MagSs. Since planning is crucial for HT, it is fundamental to determine the thermal properties of these heterogeneous and porous composite biomaterials. Magnetic polylactic acid (PLA) scaffolds, shaped in different TPMS geometries and variable porosities, were thermally investigated in this research study. A linear relationship was found between the apparent thermal conductivity of parallelepiped and cylindrical scaffolds, and the measured values were validated using a numerical model of the RF HT test. Full article
(This article belongs to the Section Applied Thermal Engineering)
30 pages, 883 KB  
Review
Artificial Intelligence in Microbiome Research and Beyond: Connecting Human Health, Animal Husbandry, and Aquaculture
by Silvio Rizzi, Giulio Saroglia, Violeta Kalemi, Simona Rimoldi and Genciana Terova
Appl. Sci. 2025, 15(17), 9781; https://doi.org/10.3390/app15179781 (registering DOI) - 5 Sep 2025
Abstract
Technological advancements in computational power and algorithm design have enabled artificial intelligence to become a transformative force in microbiome research. This paper presents a concise overview of recent applications of this computational paradigm in human and animal health, with a particular emphasis on [...] Read more.
Technological advancements in computational power and algorithm design have enabled artificial intelligence to become a transformative force in microbiome research. This paper presents a concise overview of recent applications of this computational paradigm in human and animal health, with a particular emphasis on aquaculture. International projects focused on the intestinal microbiome have allowed human research to consistently dominate in terms of application cases, offering insights into various pathological conditions. In contrast, animal research has leveraged artificial intelligence in microbiome analysis to promote sustainable productivity, addressing environmental and public health concerns linked to livestock husbandry. In aquaculture, on the other hand, artificial intelligence has mainly supported management practices, improving rearing conditions and feeding strategies. When considering microbiome manipulation, however, fish farms have often relied on traditional methods, without harnessing the immense potential of artificial intelligence, whose recent applications include biomonitoring and modeling interactions between microbial communities and environmental factors in farming systems. Given the paradigm shift currently underway in both human health and animal husbandry, we advocate for a transition in the aquaculture industry toward smart farming, whose interconnected infrastructure will allow to fully leverage artificial intelligence to seamlessly integrate both biological measurements and rearing parameters. Full article
Show Figures

Figure 1

15 pages, 1113 KB  
Brief Report
Polynucleotide HPTTM-Based Hydrogels Exhibit Scavenging Activity Against Reactive Oxygen Species
by Maria Teresa Colangelo, Silvana Belletti, Stefano Guizzardi and Carlo Galli
Antioxidants 2025, 14(9), 1089; https://doi.org/10.3390/antiox14091089 - 5 Sep 2025
Abstract
This study investigates the scavenger activity of Polynucleotide High Purification Technology (PN HPTTM), alone or in combination with hyaluronic acid (PN HPTTM + HA) against oxidative stress induced by hydrogen peroxide (H2O2). Since oxidative stress is implicated [...] Read more.
This study investigates the scavenger activity of Polynucleotide High Purification Technology (PN HPTTM), alone or in combination with hyaluronic acid (PN HPTTM + HA) against oxidative stress induced by hydrogen peroxide (H2O2). Since oxidative stress is implicated in numerous pathological conditions, identifying effective antioxidants is crucial for therapeutic development. We employed a cell-free fluorometric assay based on Calcein-AM, a fluorescence probe whose signal increases proportionally to the generation of reactive oxygen species (ROS), to evaluate the ability to neutralize ROS under varying oxidative stress conditions and determine the dose- and time-dependent effects of these compounds. PN HPTTM, HA, and PN HPTTM + HA were tested at various concentrations over multiple time points. Our results demonstrated that all tested treatments significantly lowered ROS levels compared to the untreated control. Notably, the PN HPTTM -based compounds exhibited robust scavenging activity, with PN HPTTM + HA displaying the strongest and most consistent ROS-neutralizing effect across all concentrations and time points. This enhanced performance suggests a synergistic interaction between PN HPTTM and HA, potentially due to complementary mechanisms of free radical scavenging and structural stabilization. These findings highlight the potential of PN HPTTM and PN HPTTM + HA as effective antioxidative agents, offering potential for therapeutic applications where oxidative stress is central, including wound healing and tissue regeneration. Full article
(This article belongs to the Section ROS, RNS and RSS)
18 pages, 3709 KB  
Article
AI-Based Response Classification After Anti-VEGF Loading in Neovascular Age-Related Macular Degeneration
by Murat Fırat, İlknur Tuncer Fırat, Ziynet Fadıllıoğlu Üstündağ, Emrah Öztürk and Taner Tuncer
Diagnostics 2025, 15(17), 2253; https://doi.org/10.3390/diagnostics15172253 - 5 Sep 2025
Abstract
Background/Objectives: Wet age-related macular degeneration (AMD) is a progressive retinal disease characterized by macular neovascularization (MNV). Currently, the standard treatment for wet AMD is intravitreal anti-VEGF administration, which aims to control disease activity by suppressing neovascularization. In clinical practice, the decision to [...] Read more.
Background/Objectives: Wet age-related macular degeneration (AMD) is a progressive retinal disease characterized by macular neovascularization (MNV). Currently, the standard treatment for wet AMD is intravitreal anti-VEGF administration, which aims to control disease activity by suppressing neovascularization. In clinical practice, the decision to continue or discontinue treatment is largely based on the presence of fluid on optical coherence tomography (OCT) and changes in visual acuity. However, discrepancies between anatomic and functional responses can occur during these assessments. Methods: This article presents an artificial intelligence (AI)-based classification model developed to objectively assess the response to anti-VEGF treatment in patients with AMD at 3 months. This retrospective study included 120 patients (144 eyes) who received intravitreal bevacizumab treatment. After bevacizumab loading treatment, the presence of subretinal/intraretinal fluid (SRF/IRF) on OCT images and changes in visual acuity (logMAR) were evaluated. Patients were divided into three groups: Class 0, active disease (persistent SRF/IRF); Class 1, good response (no SRF/IRF and ≥0.1 logMAR improvement); and Class 2, limited response (no SRF/IRF but with <0.1 logMAR improvement). Pre-treatment and 3-month post-treatment OCT image pairs were used for training and testing the artificial intelligence model. Based on this grouping, classification was performed with a Siamese neural network (ResNet-18-based) model. Results: The model achieved 95.4% accuracy. The macro precision, macro recall, and macro F1 scores for the classes were 0.948, 0.949, and 0.948, respectively. Layer Class Activation Map (LayerCAM) heat maps and Shapley Additive Explanations (SHAP) overlays confirmed that the model focused on pathology-related regions. Conclusions: In conclusion, the model classifies post-loading response by predicting both anatomic disease activity and visual prognosis from OCT images. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

Back to TopTop