Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = peak-to-average power ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 555 KB  
Article
Low-PAPR ASE-DMT Using Constellation Extension for Optical Wireless Communications
by Yue Wu, Yiding Li and Baolong Li
Sensors 2025, 25(16), 5109; https://doi.org/10.3390/s25165109 - 17 Aug 2025
Viewed by 464
Abstract
In the realm of optical wireless communication (OWC), augmented spectral efficiency discrete multitone (ASE-DMT) has been widely recognized as a promising modulation due to its outstanding spectral efficiency and high power efficiency. However, ASE-DMT exhibits an inherently high peak-to-average power ratio (PAPR), which [...] Read more.
In the realm of optical wireless communication (OWC), augmented spectral efficiency discrete multitone (ASE-DMT) has been widely recognized as a promising modulation due to its outstanding spectral efficiency and high power efficiency. However, ASE-DMT exhibits an inherently high peak-to-average power ratio (PAPR), which exacerbates error propagation and leads to a substantial transmission performance degradation in the successive interference cancellation (SIC) receiver of ASE-DMT. Therefore, a novel low-PAPR ASE-DMT scheme (LP-ASE-DMT) is proposed in the paper. Given the intricate multi-depth signal superposition of ASE-DMT, a progressive multi-level constellation extension algorithm is developed to effectively suppress the PAPR of the transmitted signal, while simultaneously achieving much lower computational complexity compared to conventional constellation extension schemes. Furthermore, a dedicated receiver architecture is designed for LP-ASE-DMT, in which a low-complexity modulo operation is employed to eliminate the impact of constellation extension without incurring significant additional receiver complexity. The effectiveness of the proposed LP-ASE-DMT scheme is validated through simulation, revealing a substantial mitigation of PAPR compared to its counterparts. This improvement notably strengthens the system’s robustness to nonlinear impairments. Consequently, LP-ASE-DMT enjoys superior performance across multiple metrics, including bit error rate (BER), power efficiency, and spectral efficiency. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

25 pages, 2100 KB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 356
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

16 pages, 2137 KB  
Article
Constellation-Optimized IM-OFDM: Joint Subcarrier Activation and Mapping via Deep Learning for Low-PAPR ISAC
by Li Li, Jiying Lin, Jianguo Li and Xiangyuan Bu
Electronics 2025, 14(15), 3007; https://doi.org/10.3390/electronics14153007 - 28 Jul 2025
Viewed by 381
Abstract
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is [...] Read more.
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is limited. Against this background, this paper proposes a constellation-optimized index-modulated OFDM (CO-IM-OFDM) framework that leverages neural networks to design a constellation suitable for subcarrier activation patterns. A correlation model between index modulation and constellation is established, enabling adaptive constellation mapping in IM-OFDM. Then, Adam optimizer is employed to train the constellation tailored for ISAC, enhancing spectral efficiency under PN and PAPR constraints. Furthermore, a weighting factor is defined to characterize the joint communication–sensing performance, thus optimizing the overall system performance. Simulation results demonstrate that the proposed method can achieve improvements in bit error rate (BER) by over 4 dB and in Cramér–Rao bound (CRB) by 2% to 8% compared to traditional IM-OFDM constellation mapping. It overcomes fixed constellation constraints of conventional IM-OFDM systems, offering theoretical innovation waveform design for low-power communication–sensing systems in highly dynamic environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

15 pages, 541 KB  
Article
Joint Optimization and Performance Analysis of Analog Shannon–Kotel’nikov Mapping for OFDM with Carrier Frequency Offset
by Jingwen Lin, Qiwang Chen, Yu Hua and Chen Chen
Entropy 2025, 27(8), 778; https://doi.org/10.3390/e27080778 - 23 Jul 2025
Viewed by 270
Abstract
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between [...] Read more.
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between the transmitter’s and receiver’s local oscillators often exists in actual scenarios; thus, in this paper the performance of AJSCC-OFDM with CFO is analyzed and the S-K mapping is optimized. A joint optimization strategy is developed to maximize the signal-to-distortion ratio (SDR) subject to CFO constraints. Considering that the optimized AJSCC-OFDM strategies will change the amplitude distribution of encoded symbol, the peak-to-average power ratio (PAPR) characteristics under different AJSCC parameters are also analyzed. Full article
(This article belongs to the Special Issue Next-Generation Channel Coding: Theory and Applications)
Show Figures

Figure 1

19 pages, 2624 KB  
Article
The Modeling of Electromagnetic Behavior in the High-Frequency Range of Al2O3 and TiO2 Thermoplastic Composites in Support of Developing New Substrates for Flexible Electronics
by Radu F. Damian, Cristina Pachiu, Alexandra Mocanu, Alexandru Trandabat and Romeo Cristian Ciobanu
Crystals 2025, 15(7), 637; https://doi.org/10.3390/cryst15070637 - 10 Jul 2025
Viewed by 370
Abstract
The paper describes the simulation of energy absorption in polymer micro-composites that include dielectric inserts (commercial Al2O3 and TiO2 particles, with three particle sizes of 1, 5 and 25 µm, respectively). The investigated frequency spectrum, mainly from 0.001 to [...] Read more.
The paper describes the simulation of energy absorption in polymer micro-composites that include dielectric inserts (commercial Al2O3 and TiO2 particles, with three particle sizes of 1, 5 and 25 µm, respectively). The investigated frequency spectrum, mainly from 0.001 to 100 GHz, is designed for various uses as substrates in electronic technologies. The electromagnetic simulation software chosen was CST Studio Suite, which evaluates the power loss at different frequencies, playing a crucial role in creating the ideal structure of these substrates. The effective limits of the electromagnetic simulation are specified. It is shown that a considerable increase in absorption occurs, by a factor of 12 to 120, depending on the dielectric material used for the inserts and the mass ratio applied in the insertion technique. Dielectrics with high permittivity provide higher absorption, but also create a nonuniform field distribution within the material, resulting in a high peak-to-average absorption ratio. In scenarios where this behavior is intolerable, the technology must be carefully tuned to improve the consistency of the insertions in the substrate material. The final outcomes of the simulations indicated that for creating new substrates for flexible electronics, polyethylene composites with TiO2 insertions are suggested, particularly at lower concentrations of up to 7% and with a larger radius, such as 25 μm, which could offer significant economic advantages considering that the current concept advises the use of costly particles ranging from nanoscale particles to those 1 μm in size and a composition exceeding 10%. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

30 pages, 6991 KB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 478
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

21 pages, 2223 KB  
Article
Optimized Deployment of Generalized OCDM in Deep-Sea Shadow-Zone Underwater Acoustic Channels
by Haodong Yu, Cheng Chi, Yongxing Fan, Zhanqing Pu, Wei Wang, Li Yin, Yu Li and Haining Huang
J. Mar. Sci. Eng. 2025, 13(7), 1312; https://doi.org/10.3390/jmse13071312 - 8 Jul 2025
Viewed by 453
Abstract
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its [...] Read more.
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its robustness against multipath interference. However, its high peak-to-average power ratio (PAPR) limits its reliability and efficiency in deep-sea shadow-zone environments. This study applies a recently proposed generalized orthogonal chirp division multiplexing (GOCDM) modulation scheme to deep-sea shadow-zone communication. GOCDM follows the same principles as orthogonal signal division multiplexing (OSDM) while offering the advantage of a reduced PAPR. By segmenting the data signal into multiple vector blocks, GOCDM enables flexible resource allocation, optimizing the PAPR without compromising performance. Theoretical analysis and practical simulations confirm that GOCDM preserves the full frequency diversity benefits of traditional OCDM, while mitigating PARR-related limitations. Additionally, deep-sea experiments were carried out to evaluate the practical performance of GOCDM in shadow-zone environments. The experimental results demonstrate that GOCDM achieves superior performance under low signal-to-noise ratio (SNR) conditions, where the system attains a 0 bit error rate (BER) at 4.2 dB and 6.8 dB, making it a promising solution for enhancing underwater acoustic communication in challenging deep-sea environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 1776 KB  
Article
Effects of Different Moments of Inertia on Neuromuscular Performance in Elite Female Soccer Players During Hip Extension Exercise to Prevent Hamstring Asymmetries and Injuries: A Cross-Sectional Study
by Jordi Pumarola, Alesander Badiola-Zabala and Mònica Solana-Tramunt
Sports 2025, 13(7), 212; https://doi.org/10.3390/sports13070212 - 28 Jun 2025
Viewed by 511
Abstract
Background: High-intensity actions like accelerations and decelerations, often performed unilaterally, are crucial in elite female football but increase the risk of interlimb asymmetries and injury. Flywheel resistance training enhances eccentric strength, yet limited research has assessed how different inertial loads affect mechanical outputs [...] Read more.
Background: High-intensity actions like accelerations and decelerations, often performed unilaterally, are crucial in elite female football but increase the risk of interlimb asymmetries and injury. Flywheel resistance training enhances eccentric strength, yet limited research has assessed how different inertial loads affect mechanical outputs in unilateral exercises. Purpose: This study investigated how two inertial loads (0.107 kg·m2 and 0.133 kg·m2) influence power, acceleration, speed, and asymmetry during unilateral hip extensions in elite female footballers. Methods: Eighteen professional players (27 ± 4 years, 59.9 ± 6.5 kg, 168.2 ± 6.3 cm, BMI 21.2 ± 1.8) completed unilateral hip extensions on a conical flywheel under both inertia conditions. A rotary encoder measured peak/average power, acceleration, speed, and eccentric-to-concentric (E:C) ratios. Bilateral asymmetries between dominant (DL) and non-dominant (NDL) limbs were assessed. Paired t-tests and Cohen’s d were used for analysis. Results: Higher inertia reduced peak and mean acceleration and speed (p < 0.001, d > 0.8). Eccentric peak power significantly increased in the NDL (p < 0.001, d = 3.952). E:C ratios remained stable. Conclusions: Greater inertial loads reduce movement velocity but increase eccentric output in the NDL, offering potential strategies to manage neuromuscular asymmetries in elite female football players. Full article
Show Figures

Figure 1

21 pages, 3945 KB  
Article
Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine
by Shaohua Chen, Chenguang Song, Zhong Qian, Aihua Wu, Yixian Zhu, Jianping Xia, Jian Wang, Yuan Yang, Xiang Chen, Yongfei Yuan, Chao Chen and Yang Cao
Energies 2025, 18(13), 3357; https://doi.org/10.3390/en18133357 - 26 Jun 2025
Cited by 2 | Viewed by 404
Abstract
In this paper, the aerodynamic performance of an improved hybrid vertical-axis wind turbine is investigated, and the performance of the hybrid turbine at high tip–speed ratios is significantly enhanced by adding a spoiler at the end of the inner rotor. The improved design [...] Read more.
In this paper, the aerodynamic performance of an improved hybrid vertical-axis wind turbine is investigated, and the performance of the hybrid turbine at high tip–speed ratios is significantly enhanced by adding a spoiler at the end of the inner rotor. The improved design increases the average torque coefficient by 7.4% and the peak power coefficient by 32.4%, which effectively solves the problem of power loss due to the negative torque of the inner rotor in the conventional hybrid turbine at high TSR; the spoiler improves the performance of the outer rotor in the wake region by optimizing the airflow distribution, reducing the counter-pressure differential, lowering the inner rotor drag and at the same time attenuating the wake turbulence intensity. The study verifies the validity of the design through 2D CFD simulation, and provides a new idea for the optimization of hybrid wind turbines, which is especially suitable for low wind speed and complex terrain environments, and is of great significance for the promotion of renewable energy technology development. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

10 pages, 28452 KB  
Article
Highly Linear 2.6 GHz Band InGaP/GaAs HBT Power Amplifier IC Using a Dynamic Predistorter
by Hyeongjin Jeon, Jaekyung Shin, Woojin Choi, Sooncheol Bae, Kyungdong Bae, Soohyun Bin, Sangyeop Kim, Yunhyung Ju, Minseok Ahn, Gyuhyeon Mun, Keum Cheol Hwang, Kang-Yoon Lee and Youngoo Yang
Electronics 2025, 14(11), 2300; https://doi.org/10.3390/electronics14112300 - 5 Jun 2025
Viewed by 552
Abstract
This paper presents a highly linear two-stage InGaP/GaAs power amplifier integrated circuit (PAIC) using a dynamic predistorter for 5G small-cell applications. The proposed predistorter, based on a diode-connected transistor, utilizes a supply voltage to accurately control the linearization characteristics by adjusting its dc [...] Read more.
This paper presents a highly linear two-stage InGaP/GaAs power amplifier integrated circuit (PAIC) using a dynamic predistorter for 5G small-cell applications. The proposed predistorter, based on a diode-connected transistor, utilizes a supply voltage to accurately control the linearization characteristics by adjusting its dc current. It is connected in parallel with an inter-stage of the two-stage PAIC through a series configuration of a resistor and an inductor, and features a shunt capacitor at the base of the transistor. These passive components have been optimized to enhance the linearization performance by managing the RF signal’s coupling to the diode. Using these optimized components, the AM−AM and AM−PM nonlinearities arising from the nonlinear resistance and capacitance in the diode can be effectively used to significantly flatten the AM−AM and AM−PM characteristics of the PAIC. The proposed predistorter was applied to the 2.6 GHz two-stage InGaP/GaAs HBT PAIC. The IC was tested using a 5 × 5 mm2 module package based on a four-layer laminate. The load network was implemented off-chip on the laminate. By employing a continuous-wave (CW) signal, the AM−AM and AM−PM characteristics at 2.55–2.65 GHz were improved by approximately 0.05 dB and 3°, respectively. When utilizing the new radio (NR) signal, based on OFDM cyclic prefix (CP) with a signal bandwidth of 100 MHz and a peak-to-average power ratio (PAPR) of 9.7 dB, the power-added efficiency (PAE) reached at least 11.8%, and the average output power was no less than 24 dBm, achieving an adjacent channel leakage power ratio (ACLR) of −40.0 dBc. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 4105 KB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 1038
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 1326 KB  
Article
A Wideband Digital Pre-Distortion Algorithm Based on Edge Signal Correction
by Yan Lu, Hongwei Zhang and Zheng Gong
Electronics 2025, 14(11), 2170; https://doi.org/10.3390/electronics14112170 - 27 May 2025
Viewed by 514
Abstract
With the continuous expansion of communication bandwidth, accurately modeling the non-linear characteristics of power amplifiers has become increasingly challenging, directly affecting the performance of digital pre-distortion (DPD) technology. The high peak-to-average power ratio and complex modulation schemes of wideband signals further exacerbate the [...] Read more.
With the continuous expansion of communication bandwidth, accurately modeling the non-linear characteristics of power amplifiers has become increasingly challenging, directly affecting the performance of digital pre-distortion (DPD) technology. The high peak-to-average power ratio and complex modulation schemes of wideband signals further exacerbate the difficulty of DPD implementation, necessitating more efficient algorithms. To address these challenges, this paper proposes a wideband DPD algorithm based on edge signal correction. By acquiring signals near the center frequency and comparing them with equally band-limited feedback signals, the algorithm effectively reduces the required processing bandwidth. The incorporation of cross-terms for model calibration enhances the model fitting accuracy, leading to significant improvement in pre-distortion performance. Simulation results demonstrate that compared with traditional DPD algorithms, the proposed method reduces the error vector magnitude (EVM) from 1.112% to 0.512%. Experimental validation shows an average improvement of 11.75 dBm in adjacent channel power at a 2 MHz frequency offset compared to conventional memory polynomial DPD. These improvements provide a novel solution for power amplifier linearization in wideband communication systems. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

19 pages, 4006 KB  
Article
An Assessment of TROPESS CrIS and TROPOMI CO Retrievals and Their Synergies for the 2020 Western U.S. Wildfires
by Oscar A. Neyra-Nazarrett, Kazuyuki Miyazaki, Kevin W. Bowman and Pablo E. Saide
Remote Sens. 2025, 17(11), 1854; https://doi.org/10.3390/rs17111854 - 26 May 2025
Viewed by 632
Abstract
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key [...] Read more.
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key satellite instruments: the Cross-track Infrared Sounder (CrIS) and the Tropospheric Monitoring Instrument (TROPOMI). We evaluate them during this event and assess their synergies. These two retrievals are matched temporally, as the host satellites are in tandem orbit and spatially by aggregating TROPOMI to the CrIS resolution. Both instruments show that the Western U.S. displayed significantly higher daily average CO columns compared to the Central and Eastern U.S. during the wildfires. TROPOMI showed up to a factor of two larger daily averages than CrIS during the most intense fire period, likely due to differences in the vertical sensitivity of the two instruments and representative of near-surface CO abundance near the fires. On the other hand, there was excellent agreement between the instruments in downwind free tropospheric plumes (scatter plot slopes of 0.96–0.99), consistent with their vertical sensitivities and indicative of mostly lofted smoke. Temporally, TROPOMI CO column peaks were delayed relative to the Fire Radiative Power (FRP), and CrIS peaks were delayed with respect to TROPOMI, particularly during the intense initial weeks of September, suggesting boundary layer buildup and ventilation. Satellite retrievals were evaluated using ground-based CO column estimates from the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON), showing Normalized Mean Errors (NMEs) for CrIS and TROPOMI below 32% and 24%, respectively, when compared to all stations studied. While Normalized Mean Bias (NMB) was typically low (absolute value below 15%), there were larger negative biases at Pasadena, likely associated with sharp spatial gradients due to topography and proximity to a large city, which is consistent with previous research. In situ CO profiles from AirCore showed an elevated smoke plume for 15 September 2020, highlighted consistency between TROPOMI and CrIS CO columns for lofted plumes. This study demonstrates that both CrIS and TROPOMI provide complementary information on CO distribution. CrIS’s sensitivity in the middle and lower free troposphere, coupled with TROPOMI’s effectiveness at capturing total columns, offers a more comprehensive view of CO distribution during the wildfires than either retrieval alone. By combining data from both satellites as a ratio, more detailed information about the vertical location of the plumes can potentially be extracted. This approach can enhance air quality models, improve vertical estimation accuracy, and establish a new method for assessing lower tropospheric CO concentrations during significant wildfire events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

12 pages, 1531 KB  
Article
A Modified Selected Mapping Scheme for Peak-to-Average Power Ratio Reduction in Polar-Coded Orthogonal Frequency-Division Multiplexing Systems
by Chao Xing, Nixi Chen Hu and Ana García Armada
Information 2025, 16(5), 384; https://doi.org/10.3390/info16050384 - 6 May 2025
Viewed by 316
Abstract
This paper proposes a modified polar coding-based selected mapping (PC-SLM) scheme to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency-division multiplexing (OFDM) systems. In the proposed transmitter, modulated signal vector for a subset of frozen bits, termed PAPR bits, are precomputed, enabling [...] Read more.
This paper proposes a modified polar coding-based selected mapping (PC-SLM) scheme to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency-division multiplexing (OFDM) systems. In the proposed transmitter, modulated signal vector for a subset of frozen bits, termed PAPR bits, are precomputed, enabling a single polar encoder and modulator to generate multiple modulation symbols, thereby significantly reducing the hardware complexity compared to existing PC-SLM schemes. To achieve side information (SI)-free transmission, a novel belief propagation (BP)-based receiver is introduced, incorporating a G-matrix-based early termination criterion and a frozen bit check (BP-GF) for joint detection and decoding. Simulation results show that the proposed scheme significantly reduces PAPR across various code lengths, with greater gains as the number of PAPR bits increases. Furthermore, for PC-SLM schemes employing the partially frozen bit method, the BP-GF-based receiver achieves a PAPR reduction and error correction performance comparable to that of the successive cancellation (SC)-based receiver. Additionally, the BP-GF-based receiver exhibits lower decoding latency than the successive cancellation list (SCL)-based receiver. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

20 pages, 14942 KB  
Article
Hybrid Energy Storage System for Regenerative Braking Utilization and Peak Power Decrease in 3 kV DC Railway Electrification System
by Adam Szeląg, Włodzimierz Jefimowski, Tadeusz Maciołek, Anatolii Nikitenko, Maciej Wieczorek and Mirosław Lewandowski
Electronics 2025, 14(9), 1752; https://doi.org/10.3390/electronics14091752 - 25 Apr 2025
Viewed by 829
Abstract
This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and [...] Read more.
This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and a Li-ion battery, aimed to peak power reduction. The sizing method and energy management strategy proposed in this paper aim to reduce the aging effect of lithium-ion batteries. It is shown that the parameters of both modules could be sized independently. The supercapacitor module parameters are sized based on the results of a simulation determining the regenerative power, resulting in limited catenary receptivity. The simulation model of the DC electrification system is validated by comparing the results of the simulation with the measurements of 15 min average power in a 24 h cycle as average values of one year. The battery module is sized based on the statistical data of 15 min substation power value occurrences. The battery energy capacity, its maximum discharge C-rate, and the conditions determining its operation are optimized to achieve the maximum ratio of annual income resulting from peak power reduction to annual operating cost resulting from the battery aging process and total life cycle. The case study prepared for a typical 3 kV DC substation with mixed railway traffic shows that peak power could be reduced by ~1 MW, giving a ~10-year payback period for battery module installation, while the energy consumption could be decreased by 1.9 MWh/24 h, giving a ~7.5-year payback period for supercapacitor module installation. The payback period of the whole energy storage system (ESS) is ~8.4 years. Full article
(This article belongs to the Special Issue Railway Traction Power Supply, 2nd Edition)
Show Figures

Figure 1

Back to TopTop