Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = pedestrian behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3139 KB  
Article
A Kinetic Theory Approach to Modeling Counterflow in Pedestrian Social Groups
by Nouamane Bakhdil, Carlo Bianca and Abdelilah Hakim
Mathematics 2025, 13(17), 2788; https://doi.org/10.3390/math13172788 - 30 Aug 2025
Viewed by 251
Abstract
This article focuses on modeling counterflows within pedestrian social groups in a corridor using the kinetic theory approach, specifically when two social groups move in opposite directions. The term social group refers to a set of pedestrians with established social relationships who stay [...] Read more.
This article focuses on modeling counterflows within pedestrian social groups in a corridor using the kinetic theory approach, specifically when two social groups move in opposite directions. The term social group refers to a set of pedestrians with established social relationships who stay as close as possible to one another and share a common goal or destination, such as friends or family. The model accounts for interactions both within the same social group and between pedestrians from different social groups. Numerical simulations based on a Monte Carlo particle method are performed. A key criterion for evaluating simulation models is their ability to reproduce empirically observed collective motion patterns. One of the most significant emergent behaviors in bidirectional pedestrian flows is lane formation. To analyze this phenomenon, we employ Yamori’s band index to quantify the evolution of lane structures. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

21 pages, 6890 KB  
Article
SOAR-RL: Safe and Open-Space Aware Reinforcement Learning for Mobile Robot Navigation in Narrow Spaces
by Minkyung Jun, Piljae Park and Hoeryong Jung
Sensors 2025, 25(17), 5236; https://doi.org/10.3390/s25175236 - 22 Aug 2025
Viewed by 766
Abstract
As human–robot shared service environments become increasingly common, autonomous navigation in narrow space environments (NSEs), such as indoor corridors and crosswalks, becomes challenging. Mobile robots must go beyond reactive collision avoidance and interpret surrounding risks to proactively select safer routes in dynamic and [...] Read more.
As human–robot shared service environments become increasingly common, autonomous navigation in narrow space environments (NSEs), such as indoor corridors and crosswalks, becomes challenging. Mobile robots must go beyond reactive collision avoidance and interpret surrounding risks to proactively select safer routes in dynamic and spatially constrained environments. This study proposes a deep reinforcement learning (DRL)-based navigation framework that enables mobile robots to interact with pedestrians while identifying and traversing open and safe spaces. The framework fuses 3D LiDAR and RGB camera data to recognize individual pedestrians and estimate their position and velocity in real time. Based on this, a human-aware occupancy map (HAOM) is constructed, combining both static obstacles and dynamic risk zones, and used as the input state for DRL. To promote proactive and safe navigation behaviors, we design a state representation and reward structure that guide the robot toward less risky areas, overcoming the limitations of traditional approaches. The proposed method is validated through a series of simulation experiments, including straight, L-shaped, and cross-shaped layouts, designed to reflect typical narrow space environments. Various dynamic obstacle scenarios were incorporated during both training and evaluation. The results demonstrate that the proposed approach significantly improves navigation success rates and reduces collision incidents compared to conventional navigation planners across diverse NSE conditions. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 8789 KB  
Article
Integrating Image Recognition, Sentiment Analysis, and UWB Tracking for Urban Heritage Tourism: A Multimodal Case Study in Macau
by Deng Ai, Da Kuang, Yiqi Tao and Fanbo Zeng
Sustainability 2025, 17(17), 7573; https://doi.org/10.3390/su17177573 - 22 Aug 2025
Viewed by 570
Abstract
Amid growing demands for heritage conservation and precision urban governance, this study proposes a multimodal framework to analyze tourist perception and behavior in Macau’s Historic Centre. We integrate geotagged social media images and text, ultra-wideband (UWB) pedestrian trajectories, and a LiDAR-derived 3D digital [...] Read more.
Amid growing demands for heritage conservation and precision urban governance, this study proposes a multimodal framework to analyze tourist perception and behavior in Macau’s Historic Centre. We integrate geotagged social media images and text, ultra-wideband (UWB) pedestrian trajectories, and a LiDAR-derived 3D digital twin to examine the interplay among spatial configuration, movement, and affect. Visual content in tourist photos is classified with You Only Look Once (YOLOv8), and sentiment polarity in Weibo posts is estimated with a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model. UWB data provide fine-grained trajectories, and all modalities are georeferenced within the digital twin. Results indicate that iconic landmarks concentrate visual attention, pedestrian density, and positive sentiment, whereas peripheral sites show lower footfall yet strong emotional resonance. We further identify three coupling typologies that differentiate tourist experiences across spatial contexts. The study advances multimodal research on historic urban centers by delivering a reproducible framework that aligns image, text, and trajectory data to extract microscale patterns. Theoretically, it elucidates how spatial configuration, movement intensity, and affective expression co-produce experiential quality. Using Macau’s Historic Centre as an empirical testbed, the findings inform heritage revitalization, wayfinding, and crowd-management strategies. Full article
Show Figures

Figure 1

13 pages, 1048 KB  
Article
Driving Behavior of Older and Younger Drivers in Simplified Emergency Scenarios
by Yun Xiao, Mingming Dai and Shouqiang Xue
Sensors 2025, 25(16), 5178; https://doi.org/10.3390/s25165178 - 20 Aug 2025
Viewed by 351
Abstract
This study focuses on exploring the differences in driving abilities in emergency traffic situations between older drivers (aged 60–70) and young drivers (aged 20–35) in a simple traffic environment. Two typical emergency scenarios were designed in the experiment: Scenario A (intrusion of electric [...] Read more.
This study focuses on exploring the differences in driving abilities in emergency traffic situations between older drivers (aged 60–70) and young drivers (aged 20–35) in a simple traffic environment. Two typical emergency scenarios were designed in the experiment: Scenario A (intrusion of electric bicycles) and Scenario B (pedestrians crossing the road). The experiment employed a driving simulation system to synchronously collect data on eye movement characteristics, driving behavior, and physiological metrics from 30 drivers. Two-factor covariance analysis, correlation analysis, and regression analysis were conducted on the experimental data. The comprehensive study results indicated that the older group exhibited better driving performance in emergency scenarios compared to the younger group. Specifically, in Scenario A, the older group had a faster first fixation time on the AOI compared to the younger group, a faster braking reaction time, a higher maximum brake pedal depth, and a higher skin conductance level. In Scenario B, the older group’s driving performance was similar to that in Scenario A, with better performance than the younger group. The study reveals that in some simple driving tasks, young-old drivers (60–70 years) can compensate for their physiological decline through self-regulation and self-restraint, thereby exhibiting safer driving behaviors. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

52 pages, 15058 KB  
Article
Optimizing Autonomous Vehicle Navigation Through Reinforcement Learning in Dynamic Urban Environments
by Mohammed Abdullah Alsuwaiket
World Electr. Veh. J. 2025, 16(8), 472; https://doi.org/10.3390/wevj16080472 - 18 Aug 2025
Viewed by 635
Abstract
Autonomous vehicle (AV) navigation in dynamic urban environments faces challenges such as unpredictable traffic conditions, varying road user behaviors, and complex road networks. This study proposes a novel reinforcement learning-based framework that enhances AV decision making through spatial-temporal context awareness. The framework integrates [...] Read more.
Autonomous vehicle (AV) navigation in dynamic urban environments faces challenges such as unpredictable traffic conditions, varying road user behaviors, and complex road networks. This study proposes a novel reinforcement learning-based framework that enhances AV decision making through spatial-temporal context awareness. The framework integrates Proximal Policy Optimization (PPO) and Graph Neural Networks (GNNs) to effectively model urban features like intersections, traffic density, and pedestrian zones. A key innovation is the urban context-aware reward mechanism (UCARM), which dynamically adapts the reward structure based on traffic rules, congestion levels, and safety considerations. Additionally, the framework incorporates a Dynamic Risk Assessment Module (DRAM), which uses Bayesian inference combined with Markov Decision Processes (MDPs) to proactively evaluate collision risks and guide safer navigation. The framework’s performance was validated across three datasets—Argoverse, nuScenes, and CARLA. Results demonstrate significant improvements: An average travel time of 420 ± 20 s, a collision rate of 3.1%, and energy consumption of 11,833 ± 550 J in Argoverse; 410 ± 20 s, 2.5%, and 11,933 ± 450 J in nuScenes; and 450 ± 25 s, 3.6%, and 13,000 ± 600 J in CARLA. The proposed method achieved an average navigation success rate of 92.5%, consistently outperforming baseline models in safety, efficiency, and adaptability. These findings indicate the framework’s robustness and practical applicability for scalable AV deployment in real-world urban traffic conditions. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

20 pages, 9279 KB  
Article
Mining Asymmetric Traffic Behavior at Signalized Intersections Using a Cellular Automaton Framework
by Yingxu Rui, Junqing Shi, Chengyuan Mao, Peng Liao and Sulan Li
Symmetry 2025, 17(8), 1328; https://doi.org/10.3390/sym17081328 - 15 Aug 2025
Viewed by 358
Abstract
Understanding asymmetric interactions among heterogeneous traffic participants is essential for managing congestion and enhancing safety at urban signalized intersections. This study proposes a cellular automaton modeling framework that captures the spatial and behavioral asymmetries among vehicles, bicycles, and pedestrians, with a particular focus [...] Read more.
Understanding asymmetric interactions among heterogeneous traffic participants is essential for managing congestion and enhancing safety at urban signalized intersections. This study proposes a cellular automaton modeling framework that captures the spatial and behavioral asymmetries among vehicles, bicycles, and pedestrians, with a particular focus on right-of-way hierarchies and conflict anticipation. Beyond simulation, the framework integrates a behavior pattern mining module that applies unsupervised trajectory clustering to identify recurrent interaction patterns emerging from mixed traffic flows. Simulation experiments are conducted under varying demand levels to investigate the propagation of congestion and the structural distribution of conflicts. The results reveal distinct asymmetric behavior patterns, such as right-turn vehicle blockage, non-lane-based bicycle overtaking, and pedestrian-induced disruptions. These patterns provide interpretable insights into the spatiotemporal dynamics of intersection performance and offer a data-driven foundation for optimizing signal control and multimodal traffic flow separation. The proposed framework demonstrates the value of combining microscopic modeling with data mining techniques to uncover latent structures in complex urban traffic systems. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry Studies in Data Mining & Machine Learning)
Show Figures

Figure 1

18 pages, 2398 KB  
Article
Real-Time Detection of Distracted Walking Using Smartphone IMU Sensors with Personalized and Emotion-Aware Modeling
by Ha-Eun Kim, Da-Hyeon Park, Chan-Ho An, Myeong-Yoon Choi, Dongil Kim and Youn-Sik Hong
Sensors 2025, 25(16), 5047; https://doi.org/10.3390/s25165047 - 14 Aug 2025
Viewed by 430
Abstract
This study introduces GaitX, a real-time pedestrian behavior recognition system that leverages only the built-in sensors of a smartphone eliminating the need for external hardware. The system is capable of detecting abnormal walking behavior, such as using a smartphone while walking, regardless of [...] Read more.
This study introduces GaitX, a real-time pedestrian behavior recognition system that leverages only the built-in sensors of a smartphone eliminating the need for external hardware. The system is capable of detecting abnormal walking behavior, such as using a smartphone while walking, regardless of whether the device is handheld or pocketed. GaitX applies multivariate time-series features derived from accelerometer data, using ensemble machine learning models like XGBoost and Random Forest for classification. Experimental validation across 21 subjects demonstrated an average classification accuracy of 92.3%, with notably high precision (97.1%) in identifying distracted walking. In addition to real-time detection, the system explores the link between gait variability and psychological traits by integrating MBTI personality profiling, revealing the potential for emotion-aware mobility analytics. Our findings offer a scalable, cost-effective solution for mobile safety applications and personalized health monitoring. Full article
(This article belongs to the Special Issue AI in Sensor-Based E-Health, Wearables and Assisted Technologies)
Show Figures

Figure 1

19 pages, 7846 KB  
Article
Effect of Visual Quality of Street Space on Tourists’ Stay Willingness in Traditional Villages—Empirical Evidence from Huangcun Village Based on Street View Images and Machine Learning
by Li Tu, Xiao Jiang, Yixing Guo and Qi Qin
Land 2025, 14(8), 1631; https://doi.org/10.3390/land14081631 - 13 Aug 2025
Viewed by 413
Abstract
As the texture skeleton of the traditional village, the street space is the main area for tourists to visit in traditional villages; it is regarded as the spatial conversion place of human flow and the space frequently visited by tourists. Accumulating evidence shows [...] Read more.
As the texture skeleton of the traditional village, the street space is the main area for tourists to visit in traditional villages; it is regarded as the spatial conversion place of human flow and the space frequently visited by tourists. Accumulating evidence shows that the visual quality of street spaces has an effect on pedestrians’ walking behaviors in urban areas, but this effect in traditional villages needs to be further explored. This paper takes Huangcun Village, Yixian County, Huangshan City, as the research area to explore the influence of the objective visual factors of street spaces on tourists’ subjective stay willingness. First, an evaluation system of the visual quality of street spaces was developed. With the assistance of computer vision and deep learning technologies, semantic segmentation of Huangcun Village street view images was performed to obtain a visual quality index and then calculate the descriptive index of Huangcun Village’s street space. Then, combining the data of tourists’ stay willingness with the visual quality of the street space, the overall evaluation results and space distribution of tourists’ stay willingness in Huangcun Village were predicted using the Trueskill algorithm and machine learning prediction model. Finally, the influence of the objective visual quality of the street space on tourist subjective stay willingness was analyzed by correlation analysis. This research could provide some useful information for street space design and tourism planning in traditional villages. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

17 pages, 3359 KB  
Article
Automated Generation of Test Scenarios for Autonomous Driving Using LLMs
by Aaron Agyapong Danso and Ulrich Büker
Electronics 2025, 14(16), 3177; https://doi.org/10.3390/electronics14163177 - 10 Aug 2025
Viewed by 1267
Abstract
This paper introduces an approach that leverages large language models (LLMs) to convert detailed descriptions of an Operational Design Domain (ODD) into realistic, executable simulation scenarios for testing autonomous vehicles. The method combines model-based and data-driven techniques to decompose ODDs into three key [...] Read more.
This paper introduces an approach that leverages large language models (LLMs) to convert detailed descriptions of an Operational Design Domain (ODD) into realistic, executable simulation scenarios for testing autonomous vehicles. The method combines model-based and data-driven techniques to decompose ODDs into three key components: environmental, scenery, and dynamic elements. It then applies prompt engineering to generate ScenarioRunner scripts compatible with CARLA. The model-based component guides the LLM using structured prompts and a “Tree of Thoughts” strategy to outline the scenario, while a data-driven refinement process, drawing inspiration from red teaming, enhances the accuracy and robustness of the generated scripts over time. Experimental results show that while static components, such as weather and road layouts, are well captured, dynamic elements like vehicle and pedestrian behavior require further refinement. Overall, this approach not only reduces the manual effort involved in creating simulation scenarios but also identifies key challenges and opportunities for advancing safer and more adaptive autonomous driving systems. Full article
(This article belongs to the Special Issue Autonomous and Connected Vehicles)
Show Figures

Figure 1

18 pages, 4942 KB  
Article
MSTT: A Multi-Spatio-Temporal Graph Attention Model for Pedestrian Trajectory Prediction
by Qingrui Zhang, Xuxiu Zhang, Zilang Ye and Jing Mi
Sensors 2025, 25(15), 4850; https://doi.org/10.3390/s25154850 - 7 Aug 2025
Viewed by 443
Abstract
Accurate prediction of pedestrian movements is vital for autonomous driving, smart transportation, and human–computer interactions. To effectively anticipate pedestrian behavior, it is crucial to consider the potential spatio-temporal interactions among individuals. Traditional modeling approaches often depend on absolute position encoding to discern the [...] Read more.
Accurate prediction of pedestrian movements is vital for autonomous driving, smart transportation, and human–computer interactions. To effectively anticipate pedestrian behavior, it is crucial to consider the potential spatio-temporal interactions among individuals. Traditional modeling approaches often depend on absolute position encoding to discern the positional relationships between pedestrians. Unfortunately, this method overlooks relative spatio-temporal relationships and fails to simulate ongoing interactions adequately. To overcome this challenge, we present a relative spatio-temporal encoding (RSTE) strategy that proficiently captures and analyzes this essential information. Furthermore, we design a multi-spatio-temporal graph (MSTG) modeling technique aimed at modeling and characterizing spatio-temporal interaction data across several individuals over time and space, with the goal of representing the movement patterns of pedestrians accurately. Additionally, an attention-based MSTT model has been developed, which utilizes an end-to-end approach for learning the structure of the MSTG. The findings indicate that an understanding of an individual’s preceding trajectory is crucial for forecasting the subsequent movements of other individuals. Evaluations using two challenging datasets reveal that the MSTT model markedly outperforms traditional trajectory-based modeling methods in predictive performance. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

11 pages, 876 KB  
Article
Nudging Safety in Elementary School Zones: A Pilot Study on a Road Sticker Intervention to Enhance Children’s Dismounting Behavior at Zebra Crossings
by Veerle Ross, Kris Brijs, Dries Vanassen and Davy Janssens
Safety 2025, 11(3), 76; https://doi.org/10.3390/safety11030076 - 4 Aug 2025
Viewed by 341
Abstract
In this pilot study, the crossing behavior of elementary school students commuting on bicycles was investigated with the objective of enhancing safety around pedestrian crossings within school zones. With a noticeable increase in crashes involving young cyclists near schools, this research assessed the [...] Read more.
In this pilot study, the crossing behavior of elementary school students commuting on bicycles was investigated with the objective of enhancing safety around pedestrian crossings within school zones. With a noticeable increase in crashes involving young cyclists near schools, this research assessed the effectiveness of visual nudges in the form of red strips displaying “CYCLISTS DISMOUNT” instructions. Initial observations indicated a lack of compliance with dismounting regulations. After the initial observations, a specific elementary school was selected for the implementation of the nudging intervention and additional pre- (N = 91) and post-intervention (N = 71) observations. The pre-intervention observations again revealed poor adherence to the regulations requiring cyclists to dismount at specific points. Following our targeted intervention, the post-intervention observations marked an improvement in compliance. Indeed, the visual nudge effectively communicated the necessity of dismounting at a critical location, leading to a higher rate of adherence among cyclists (52.74% pre-intervention, 97.18% post-intervention). Although it also indirectly affected the behavior of the accompanying adult, who more often held hands with their children while crossing, this effect was weaker than the direct effect on dismounting behavior (20.88% pre-intervention, 39.44% post-intervention). The findings of the current pilot study underscore the possible impact of nudging on behavior and advocate for a combined approach utilizing physical nudges to bolster safety within school zones. Follow-up research, including, for instance, multiple sites, long-term effects, or children traveling alone, is called for. Full article
Show Figures

Figure 1

24 pages, 48949 KB  
Article
Co-Construction Mechanisms of Spatial Encoding and Communicability in Culture-Featured Districts—A Case Study of Harbin Central Street
by Hehui Zhu and Chunyu Pang
Sustainability 2025, 17(15), 7059; https://doi.org/10.3390/su17157059 - 4 Aug 2025
Viewed by 572
Abstract
During the transition of culture-featured district planning from static conservation to innovation-driven models, existing research remains constrained by mechanistic paradigms, reducing districts to functional containers and neglecting human perceptual interactions and meaning-production mechanisms. This study explores and quantifies the generative mechanisms of spatial [...] Read more.
During the transition of culture-featured district planning from static conservation to innovation-driven models, existing research remains constrained by mechanistic paradigms, reducing districts to functional containers and neglecting human perceptual interactions and meaning-production mechanisms. This study explores and quantifies the generative mechanisms of spatial communicability and cultural dissemination efficacy within human-centered frameworks. Grounded in humanistic urbanism, we analyze Harbin Central Street as a case study integrating historical heritage with contemporary vitality, developing a tripartite communicability assessment framework comprising perceptual experience, infrastructure utility, and behavioral dynamics. Machine learning-based threshold analysis reveals that spatial encoding elements govern communicability through significant nonlinear mechanisms. The conclusion shows synergies between street view-quantified greenery visibility and pedestrian accessibility establish critical human-centered design thresholds. Spatial data analysis integrating physiologically sensed emotional experiences and topologically analyzed spatial morphology resolves metric fragmentation while examining spatial encoding’s impact on interaction efficacy. This research provides data-driven decision support for sustainable urban renewal and enhanced cultural dissemination, advancing heritage sustainability. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

27 pages, 3107 KB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Cited by 1 | Viewed by 387
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

24 pages, 3559 KB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 - 1 Aug 2025
Viewed by 478
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

17 pages, 655 KB  
Review
Passenger Service Time at the Platform–Train Interface: A Review of Variability, Design Factors, and Crowd Management Implications Based on Laboratory Experiments
by Sebastian Seriani, Vicente Aprigliano, Vinicius Minatogawa, Alvaro Peña, Ariel Lopez and Felipe Gonzalez
Appl. Sci. 2025, 15(15), 8256; https://doi.org/10.3390/app15158256 - 24 Jul 2025
Viewed by 491
Abstract
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd [...] Read more.
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd management strategies. This review synthesizes findings from empirical and experimental research to clarify the main factors influencing PST and their implications for platform-level interventions. Key contributors to PST variability include door width, gap dimensions, crowd density, and user characteristics such as mobility impairments. Design elements—such as platform edge doors, yellow safety lines, and vertical handrails—affect flow efficiency and spatial dynamics during boarding and alighting. Advanced tracking and simulation tools (e.g., PeTrack and YOLO-based systems) are identified as essential for evaluating pedestrian behavior and supporting Level of Service (LOS) analysis. To complement traditional LOS metrics, the paper introduces Level of Interaction (LOI) and a multidimensional LOS framework that captures spatial conflicts and user interaction zones. Control strategies such as platform signage, seating arrangements, and visual cues are also reviewed, with experimental evidence showing that targeted design interventions can reduce PST by up to 35%. The review highlights a persistent gap between academic knowledge and practical implementation. It calls for greater integration of empirical evidence into policy, infrastructure standards, and operational contracts. Ultimately, it advocates for human-centered, data-informed approaches to PTI planning that enhance efficiency, inclusivity, and resilience in high-demand transit environments. Full article
(This article belongs to the Special Issue Research Advances in Rail Transport Infrastructure)
Show Figures

Figure 1

Back to TopTop