Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (696)

Search Parameters:
Keywords = peer production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 947 KB  
Systematic Review
Systematic Review of Biomass Supercritical Water Gasification for Energy Production
by Filipe Neves, Armando A. Soares and Abel Rouboa
Energies 2025, 18(20), 5374; https://doi.org/10.3390/en18205374 (registering DOI) - 12 Oct 2025
Abstract
Due to the growing global population, rising energy demands, and the environmental impacts of fossil fuel use, there is an urgent need for sustainable energy sources. Biomass conversion technologies have emerged as a promising solution, particularly supercritical water gasification (SCWG), which enables efficient [...] Read more.
Due to the growing global population, rising energy demands, and the environmental impacts of fossil fuel use, there is an urgent need for sustainable energy sources. Biomass conversion technologies have emerged as a promising solution, particularly supercritical water gasification (SCWG), which enables efficient energy recovery from wet and dry biomass. This systematic review, following PRISMA 2020 guidelines, analyzed 51 peer-reviewed studies published between 2015 and 2025. The number of publications has increased over the decade, reflecting rising interest in SCWG for energy production. Research has focused on six biomass feedstock categories, with lignocellulosic and wet biomasses most widely studied. Reported energy efficiencies ranged from ~20% to >80%, strongly influenced by operating conditions and system integration. Integrating SCWG with solid oxide fuel cells, organic Rankine cycles, carbon capture and storage, or solar input enhanced both energy recovery and environmental performance. While SCWG demonstrates lower greenhouse gas emissions than conventional methods, many studies lacked comprehensive life cycle or economic analyses. Common limitations include high energy demand, modeling simplifications, and scalability challenges. These trends highlight both the potential and the barriers to advancing SCWG as a viable biomass-to-energy technology. Full article
33 pages, 3499 KB  
Review
A Comprehensive Review of AI Methods in Agri-Food Engineering: Applications, Challenges, and Future Directions
by Kaichen Wu, Zhenyang Ji, Hanyue Wang, Xiaoyan Shao, Haohan Li, Wence Zhang, Wa Kong, Jing Xia and Xu Bao
Electronics 2025, 14(20), 3994; https://doi.org/10.3390/electronics14203994 (registering DOI) - 12 Oct 2025
Abstract
The deep integration of artificial intelligence (AI) is a core driver for digitalization and intelligence in agricultural and food engineering, boosting production efficiency, resource optimization, and product quality. This review systematically analyzes AI’s application scenarios, technical pathways, and challenges across the agricultural value [...] Read more.
The deep integration of artificial intelligence (AI) is a core driver for digitalization and intelligence in agricultural and food engineering, boosting production efficiency, resource optimization, and product quality. This review systematically analyzes AI’s application scenarios, technical pathways, and challenges across the agricultural value chain. It aims to develop a structured taxonomy of AI-driven technical application mechanisms in agriculture, highlighting their roles in optimizing core agricultural processes. A systematic literature review was conducted using reputable databases, including Google Scholar, IEEE Xplore, ScienceDirect, Web of Science, SpringerLink, and Scopus, focusing on peer-reviewed articles from the last decade. Findings show that AI-enhanced techniques improve product quality and safety inspection efficiency. However, challenges like multi-source data synchronization barriers, high intelligent equipment costs, and model adaptability limitations in complex agricultural environments remain. This review contributes to the field by providing a unified framework for understanding AI applications in agri-food engineering, identifying key research gaps, and highlighting pathways for sustainable technology adoption that can benefit diverse agricultural stakeholders. Full article
17 pages, 3822 KB  
Article
Ecological Suitability Assessment of Larimichthys crocea in Coastal Waters of the East China Sea and Yellow Sea Based on MaxEnt Modeling
by Shuwen Yu, Wei Meng, Hongliang Zhang, Hui Ge, Lei Wu, Yao Qu, Qiuhong Zhang and Yongdong Zhou
J. Mar. Sci. Eng. 2025, 13(10), 1945; https://doi.org/10.3390/jmse13101945 (registering DOI) - 11 Oct 2025
Abstract
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources [...] Read more.
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources remains markedly slow. To address this, our study employed the Maximum Entropy (MaxEnt) model to evaluate and characterize the habitat selection patterns of Larimichthys crocea, thereby providing a theoretical foundation for scientifically informed stock enhancement and resource recovery strategies. Species occurrence data were compiled from field surveys conducted during April and November (2019–2023), supplemented with records from the GBIF database and peer-reviewed literature. Concurrent environmental variables, including primary productivity, current velocity, depth, temperature, salinity, silicate, nitrate, phosphate, and pH, were obtained from the Copernicus and NOAA databases. After rigorous screening, 136 distribution points (April) and 369 points (November) were retained for analysis. The model performance was robust, with an AUC (Area Under the Curve) value of 0.935 for April (2019–2023) and 0.905 for November (2019–2023), indicating excellent predictive accuracy (AUC > 0.9). April (2019–2023): Nitrate, salinity, phosphate, and silicate were identified as the primary environmental factors influencing habitat suitability. November (2019–2023): Silicate, salinity, nitrate, and primary productivity emerged as the dominant drivers. Spatially, Larimichthys crocea exhibited high-density distributions in offshore regions of Zhejiang and Jiangsu, particularly near the Yangtze River estuary. Populations were also associated with island-reef systems, forming continuous distributions along Zhejiang’s offshore waters. In Jiangsu, aggregations were concentrated between Nantong and Yancheng. This study delineates habitat suitability zones for Larimichthys crocea, offering a scientific basis for optimizing stock enhancement programs, designing targeted conservation measures, and establishing marine protected areas. Our findings enable policymakers to develop sustainable fisheries management strategies, ensuring the long-term viability of this ecologically and economically vital species. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

28 pages, 2726 KB  
Proceeding Paper
Recent Advances in Tool Coatings and Materials for Superior Performance in Machining Nickel-Based Alloys
by Kerolina Sonowal and Partha Protim Borthakur
Eng. Proc. 2025, 105(1), 8; https://doi.org/10.3390/engproc2025105008 - 9 Oct 2025
Viewed by 217
Abstract
Nickel-based alloys, including Inconel 718 and alloy 625, are indispensable in industries such as aerospace, marine, and nuclear energy due to their exceptional mechanical strength, high-temperature performance, and corrosion resistance. However, these very properties pose severe machining challenges, such as accelerated tool wear, [...] Read more.
Nickel-based alloys, including Inconel 718 and alloy 625, are indispensable in industries such as aerospace, marine, and nuclear energy due to their exceptional mechanical strength, high-temperature performance, and corrosion resistance. However, these very properties pose severe machining challenges, such as accelerated tool wear, poor surface finish, and high cutting forces. Although several studies have investigated coatings, lubrication strategies, and process optimization, a comprehensive and up-to-date integration of these advancements is still lacking. To address this gap, a systematic review was conducted using Web of Science and Scopus databases. The inclusion criteria focused on peer-reviewed journal and conference articles published in the last eleven years (2014–2025), written in English, and directly addressing machining of nickel-based alloys, with particular emphasis on tool coatings, lubrication/cooling technologies, and machinability optimization. Exclusion criteria included duplicate records, non-English documents, papers lacking experimental or modeling results, and studies unrelated to tool life or coating performance. Following this screening process, 101 high-quality articles were selected for detailed analysis. The novelty of this work lies in synthesizing comparative insights across TiAlN, TiSiN, and CrAlSiN coatings, alongside advanced lubrication methods such as HPC, MQL, nano-MQL, and cryogenic cooling. Results highlight that CrAlSiN coatings retain hardness up to 36 ± 2 GPa after exposure to 700 °C and extend tool life by 4.2× compared to TiAlN, while optimized cooling strategies reduce flank wear by over 30% and improve tool longevity by up to 133%. The integration of coating performance, thermal stability, and lubrication effects into a unified framework provides actionable guidelines for machining optimization. The study concludes by proposing future research directions, including hybrid coatings, real-time process monitoring, and sustainable lubrication technologies, to bridge the remaining gaps in machinability and promote industrial adoption. This integrative approach establishes a robust foundation for advancing machining strategies of nickel-based superalloys, ensuring improved productivity, reduced costs, and enhanced component reliability. Full article
Show Figures

Figure 1

30 pages, 1769 KB  
Review
Decarbonizing the Cement Industry: Technological, Economic, and Policy Barriers to CO2 Mitigation Adoption
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Clean Technol. 2025, 7(4), 85; https://doi.org/10.3390/cleantechnol7040085 - 9 Oct 2025
Viewed by 361
Abstract
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study [...] Read more.
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study is to systematically map and synthesize existing evidence on technological pathways, policy measures, and economic barriers to four core decarbonization strategies: clinker substitution, energy efficiency, alternative fuels, as well as carbon capture, utilization, and storage (CCUS) in the cement sector, with the goal of identifying practical strategies that can align industry practice with long-term climate goals. A scoping review methodology was adopted, drawing on peer-reviewed journal articles, technical reports, and policy documents to ensure a comprehensive perspective. The results demonstrate that each mitigation pathway is technically feasible but faces substantial real-world constraints. Clinker substitution delivers immediate reduction but is limited by SCM availability/quality, durability qualification, and conservative codes; LC3 is promising where clay logistics allow. Energy-efficiency measures like waste-heat recovery and advanced controls reduce fuel use but face high capital expenditure, downtime, and diminishing returns in modern plants. Alternative fuels can reduce combustion-related emissions but face challenges of supply chains, technical integration challenges, quality, weak waste-management systems, and regulatory acceptance. CCUS, the most considerable long-term potential, addresses process CO2 and enables deep reductions, but remains commercially unviable due to current economics, high costs, limited policy support, lack of large-scale deployment, and access to transport and storage. Cross-cutting economic challenges, regulatory gaps, skill shortages, and social resistance including NIMBYism further slow adoption, particularly in low-income regions. This study concludes that a single pathway is insufficient. An integrated portfolio supported by modernized standards, targeted policy incentives, expanded access to SCMs and waste fuels, scaled CCUS investment, and international collaboration is essential to bridge the gap between climate ambition and industrial implementation. Key recommendations include modernizing cement standards to support higher clinker replacement, providing incentives for energy-efficient upgrades, scaling CCUS through joint investment and carbon pricing and expanding access to biomass and waste-derived fuels. Full article
Show Figures

Figure 1

29 pages, 2376 KB  
Systematic Review
Manufacturing Supply Chain Resilience Amid Global Value Chain Reconfiguration: An Enhanced Bibliometric–Systematic Literature Review
by Yan Li, Xinxin Xia, Cong Wang and Qingbo Huang
Systems 2025, 13(10), 873; https://doi.org/10.3390/systems13100873 - 5 Oct 2025
Viewed by 476
Abstract
Global Value Chains (GVCs) have driven the worldwide dispersion of manufacturing but remain highly vulnerable to macro-level shocks, including financial crises, geopolitical tensions, and the COVID-19 pandemic. These shocks expose manufacturing supply chains (MSCs) to systemic risks, but limited research has explored how [...] Read more.
Global Value Chains (GVCs) have driven the worldwide dispersion of manufacturing but remain highly vulnerable to macro-level shocks, including financial crises, geopolitical tensions, and the COVID-19 pandemic. These shocks expose manufacturing supply chains (MSCs) to systemic risks, but limited research has explored how GVC reconfiguration mediates their impact on manufacturing supply chain resilience (MSCR). To address this gap, this study conducts an enhanced bibliometric–systematic literature review (B-SLR) of 120 peer-reviewed articles. The findings reveal that macro-level shocks induce GVC reconfigurations along geographical, value, and governance dimensions, which in turn trigger MSCR through node- and link-level mechanisms. MSCR represents a manufacturer-centered capability that enables MSCs to preserve, realign, and enhance value amid shocks. Building on these insights, this research proposes a multi-tier strategy encompassing firm-level practices, inter-firm collaborations, and policy interventions. This study outlines three key contributions. First, at the theoretical level, it embeds MSCR within a GVC framework, clarifying how GVC reconfiguration mediates SCR under macro-level shocks. Second, at the methodological level, it ensures corpus completeness through snowballing and refines bibliometric mapping with multi-dimensional visualization. Third, at the managerial level, it provides actionable guidance for firms, industry alliances, and policymakers to align MSCR strategies with the dynamics of global production networks. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

20 pages, 2313 KB  
Review
Citrus Waste Valorisation Processes from an Environmental Sustainability Perspective: A Scoping Literature Review of Life Cycle Assessment Studies
by Grazia Cinardi, Provvidenza Rita D’Urso, Giovanni Cascone and Claudia Arcidiacono
AgriEngineering 2025, 7(10), 335; https://doi.org/10.3390/agriengineering7100335 - 5 Oct 2025
Viewed by 295
Abstract
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, [...] Read more.
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, driving growing scientific interest in exploring environmentally sustainable and profitable valorisation strategies. This study aimed at mapping the sustainability of post-processing citrus valorisation strategies documented in the scientific literature, through a scoping literature review based on the PRISMA-ScR model. Only peer-reviewed studies in English were selected from Scopus and Web of Science; in detail, 29 life cycle assessment studies (LCAs) focusing on the valorisation of citrus by-products have been analysed. Most of the studies were focused on essential oil extraction and energy production. Most of the biorefinery systems and valorisation aims proposed were found to be better than the business-as-usual solution. However, results are strongly influenced by the functional unit and allocation method. Economic allocation to the main product resulted in better environmental performances. The major environmental hotspot is the agrochemicals required for crop management. The analysis of LCAs facilitated the identification of valorisation strategies that deserve greater interest from the scientific community to propose sustainable bio-circular solutions in the agro-industrial and agricultural sectors. Full article
Show Figures

Figure 1

35 pages, 5316 KB  
Review
Machine Learning for Quality Control in the Food Industry: A Review
by Konstantinos G. Liakos, Vassilis Athanasiadis, Eleni Bozinou and Stavros I. Lalas
Foods 2025, 14(19), 3424; https://doi.org/10.3390/foods14193424 - 4 Oct 2025
Viewed by 942
Abstract
The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; [...] Read more.
The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; Ingredient Optimization and Nutritional Assessment; Packaging—Sensors and Predictive QC; Supply Chain—Traceability and Transparency and Food Industry Efficiency; and Industry 4.0 Models. Following a PRISMA-based methodology, a structured search of the Scopus database using thematic Boolean keywords identified 124 peer-reviewed publications (2005–2025), from which 25 studies were selected based on predefined inclusion and exclusion criteria, methodological rigor, and innovation. Neural networks dominated the reviewed approaches, with ensemble learning as a secondary method, and supervised learning prevailing across tasks. Emerging trends include hyperspectral imaging, sensor fusion, explainable AI, and blockchain-enabled traceability. Limitations in current research include domain coverage biases, data scarcity, and underexplored unsupervised and hybrid methods. Real-world implementation challenges involve integration with legacy systems, regulatory compliance, scalability, and cost–benefit trade-offs. The novelty of this review lies in combining a transparent PRISMA approach, a six-domain thematic framework, and Industry 4.0/5.0 integration, providing cross-domain insights and a roadmap for robust, transparent, and adaptive QC systems in the food industry. Full article
(This article belongs to the Special Issue Artificial Intelligence for the Food Industry)
Show Figures

Figure 1

43 pages, 1439 KB  
Review
Advances in Algae-Based Bioplastics: From Strain Engineering and Fermentation to Commercialization and Sustainability
by Nilay Kumar Sarker and Prasad Kaparaju
Fermentation 2025, 11(10), 574; https://doi.org/10.3390/fermentation11100574 - 4 Oct 2025
Viewed by 930
Abstract
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis [...] Read more.
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis is placed on integrated biorefinery models, innovative processing techniques, and the role of government–industry–academia partnerships in accelerating commercialization. The analysis incorporates both demonstrated algal systems and theoretical applications derived from established microbial processes, reflecting the emerging nature of this field. The environmental advantages, market readiness, and scalability challenges of algal bioplastics are critically evaluated, with reference to peer-reviewed studies and industrial pilot projects. The analysis underscores that while technical feasibility has been demonstrated, economic viability and large-scale adoption depend on optimizing yield, reducing production costs, and fostering collaborative frameworks. Future research priorities include enhancing strain performance via AI-enabled screening, expanding product valorization streams, and aligning regulatory standards to support global market integration. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

19 pages, 1585 KB  
Article
How Science Supports Honey Bees: Identification of Research on Best Practices in Beekeeping
by Kristina Gratzer, Veronika Musalkova and Robert Brodschneider
Insects 2025, 16(10), 1025; https://doi.org/10.3390/insects16101025 - 4 Oct 2025
Viewed by 819
Abstract
Honey bee health and productivity are strongly linked to management practices and biosecurity measures. We collected and analyzed 744 practice records from 191 peer-reviewed field studies published since 1995, each documenting the impact of a specific hive intervention on colony health or productivity [...] Read more.
Honey bee health and productivity are strongly linked to management practices and biosecurity measures. We collected and analyzed 744 practice records from 191 peer-reviewed field studies published since 1995, each documenting the impact of a specific hive intervention on colony health or productivity parameters. Practices were categorized into good beekeeping practices (n = 128, 17.2%) and biosecurity measures (n = 616, 82.8%) and grouped by management or pathogen theme, geographic region, and season. Most research originated from Europe (34.6%) and North America (33.4%), with nearly all focused on Apis mellifera (99.9%). Varroa control dominated (57.0%), followed by general apiary management (17.2%) and american foulbrood (9.7%). For varroosis, “soft” acaricides such as oxalic and formic acid accounted for 58.5% of records, while “hard” synthetic products represented 21.0%. Within general apiary management, colony management was most frequent (46.9%). For american foulbrood, antibiotics (41.7%) and biotechnical methods (22.2%) were prominent. Tropilaelaps app. treatments relied mainly on “soft” acaricides (81.5%), while small hive beetle control focused on in-hive traps (55.9%). Seasonally, most interventions occurred from August to October, with AFB measures peaking in spring and early summer. The dataset highlights regional research gaps and offers a structured, expandable framework to guide future research and support evidence-based decision-making in beekeeping and advisory services. Full article
Show Figures

Figure 1

25 pages, 3956 KB  
Review
Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management
by Emmanuel Bicamumakuba, Md Nasim Reza, Hongbin Jin, Samsuzzaman, Kyu-Ho Lee and Sun-Ok Chung
Sensors 2025, 25(19), 6134; https://doi.org/10.3390/s25196134 - 3 Oct 2025
Viewed by 613
Abstract
Management of smart greenhouses represents a transformative advancement in precision agriculture, enabling sustainable intensification of food production through the integration of multi-sensor networks, intelligent control, and sophisticated data filtering techniques. Unlike conventional greenhouses that rely on manual monitoring, smart greenhouses combine environmental sensors, [...] Read more.
Management of smart greenhouses represents a transformative advancement in precision agriculture, enabling sustainable intensification of food production through the integration of multi-sensor networks, intelligent control, and sophisticated data filtering techniques. Unlike conventional greenhouses that rely on manual monitoring, smart greenhouses combine environmental sensors, Internet of Things (IoT) platforms, and artificial intelligence (AI)-driven decision making to optimize microclimates, improve yields, and enhance resource efficiency. This review systematically investigates three key technological pillars, multi-sensor monitoring, intelligent control, and data filtering techniques, for smart greenhouse environment management. A structured literature screening of 114 peer-reviewed studies was conducted across major databases to ensure methodological rigor. The analysis compared sensor technologies such as temperature, humidity, carbon dioxide (CO2), light, and energy to evaluate the control strategies such as IoT-based automation, fuzzy logic, model predictive control, and reinforcement learning, along with filtering methods like time- and frequency-domain, Kalman, AI-based, and hybrid models. Major findings revealed that multi-sensor integration enhanced precision and resilience but faced changes in calibration and interoperability. Intelligent control improved energy and water efficiency yet required robust datasets and computational resources. Advanced filtering strengthens data integrity but raises concerns of scalability and computational cost. The distinct contribution of this review was an integrated synthesis by linking technical performance to implementation feasibility, highlighting pathways towards affordable, scalable, and resilient smart greenhouse systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

28 pages, 2561 KB  
Systematic Review
Electrodeposition of Metallic Magnesium in Ionic Liquids: A Systematic Review
by Agustín Arancibia-Zúñiga and Carlos Carlesi
Minerals 2025, 15(10), 1021; https://doi.org/10.3390/min15101021 - 26 Sep 2025
Viewed by 469
Abstract
Metallic magnesium is a strategic material with applications in mobility, energy and medicine, due to its low density, biocompatibility and use as an anode in rechargeable batteries. However, industrial production methods—such as the thermal reduction of dolomite or the electrolysis of anhydrous MgCl [...] Read more.
Metallic magnesium is a strategic material with applications in mobility, energy and medicine, due to its low density, biocompatibility and use as an anode in rechargeable batteries. However, industrial production methods—such as the thermal reduction of dolomite or the electrolysis of anhydrous MgCl2—face environmental and operational challenges, including high temperatures, emissions, and dehydration of precursors like bischofite. In response, ionic liquids (ILs) have emerged as alternative electrolytes, offering low volatility, thermal stability and wide electrochemical windows that enable electrodeposition in water-free media. This study presents a systematic review of 32 peer-reviewed articles, applying the PRISMA 2020 methodology. The analysis is structured across three dimensions: (1) types of ILs employed, (2) operational parameters and (3) magnesium source materials. In addition to electrolyte composition, key factors such as temperature, viscosity control, precursor purity and cell architecture were identified as critical for achieving efficient and reproducible magnesium deposition. Furthermore, the use of elevated temperatures and co-solvent strategies has been shown to effectively mitigate viscosity-related transport limitations, enabling more uniform ion mobility and enhancing interfacial behavior. The use of alloy co-deposition strategies and multicomponent electrolyte systems also expands the technological potential of IL-based processes, especially for corrosion-resistant coatings or composite electrode materials. This review contributes by critically synthesizing current techniques, identifying knowledge gaps and proposing strategies for scalable, sustainable magnesium production. The findings position IL-based electrodeposition as a potential alternative for environmentally responsible metal recovery. Full article
Show Figures

Graphical abstract

19 pages, 1118 KB  
Systematic Review
Climatic Heat Stress Management Systems in Hong Kong’s Construction Industry: A Scoping Review
by Mohammed Abdul-Rahman, Shahnawaz Anwer, Maxwell Fordjour Antwi-Afari, Mohammad Nyme Uddin and Heng Li
Buildings 2025, 15(19), 3456; https://doi.org/10.3390/buildings15193456 - 24 Sep 2025
Viewed by 269
Abstract
Climatic heat stress in Hong Kong’s construction industry has been exacerbated by global climate change in recent times and the city has been taking proactive measures in protecting its workforce. Heat stress management systems refer to integrated frameworks, including policies, technologies, and practices, [...] Read more.
Climatic heat stress in Hong Kong’s construction industry has been exacerbated by global climate change in recent times and the city has been taking proactive measures in protecting its workforce. Heat stress management systems refer to integrated frameworks, including policies, technologies, and practices, designed to monitor, mitigate, and prevent heat-related risks to workers’ health and productivity in hot environments. This scoping review investigates the existing heat stress management systems within Hong Kong’s construction industry, analyzing policies and academic research, and highlighting challenges and proposing solutions. A systematic scoping method was used to review and synthesize findings from 49 peer-reviewed articles (updated to 2025) and nine policy documents. This study highlights the interplay between research innovations like AI-driven models and wearable cooling technologies and policy frameworks. The results indicate substantial progress in Hong Kong’s drive to manage heat strain and accidents among construction workers over the years, with advancements in real-time advisory systems and protective equipment, improving worker safety and productivity. However, limited scalability, costs, socio-cultural compliance issues, gaps in addressing equity concerns among vulnerable workers, policy implementation, and other challenges persist. This review underscores the importance of building resilient systems against the escalating heat stress risks by proposing the integration of research-based technological innovation with policies and socio-organizational considerations. It contributes to providing the first updated scoping review post-2020, identifying implementation gaps (e.g., 40% non-compliance rate) and proposing a concrete action framework for future interventions. Recommendations for future research include cross-regional adaptations, cost-effective solutions for medium-sized construction enterprises, and the continuous re-evaluation and improvement of current interventions. Full article
Show Figures

Figure 1

21 pages, 1833 KB  
Review
A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa
by Nkanyiso Msweli, Gideon Ude Nnachi and Coneth Graham Richards
Energies 2025, 18(18), 5035; https://doi.org/10.3390/en18185035 - 22 Sep 2025
Viewed by 642
Abstract
Electricity access deficits remain acute in Sub-Saharan Africa (SSA), where more than 600 million people lack reliable supply. Green hydrogen, produced through renewable-powered electrolysis, is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage, sector [...] Read more.
Electricity access deficits remain acute in Sub-Saharan Africa (SSA), where more than 600 million people lack reliable supply. Green hydrogen, produced through renewable-powered electrolysis, is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage, sector coupling, and near-zero carbon emissions. This review adheres strictly to the PRISMA 2020 methodology, examining 190 records and synthesizing 80 peer-reviewed articles and industry reports released from 2010 to 2025. The review covers hydrogen production processes, hybrid renewable integration, techno-economic analysis, environmental compromises, global feasibility, and enabling policy incentives. The findings show that Alkaline (AEL) and PEM electrolyzers are immediately suitable for off-grid scenarios, whereas Solid Oxide (SOEC) and Anion Exchange Membrane (AEM) electrolyzers present high potential for future deployment. For Sub-Saharan Africa (SSA), the levelized costs of hydrogen (LCOH) are in the range of EUR5.0–7.7/kg. Nonetheless, estimates from the learning curve indicate that these costs could fall to between EUR1.0 and EUR1.5 per kg by 2050, assuming there is (i) continued public support for the technology innovation, (ii) appropriate, flexible, and predictable regulation, (iii) increased demand for hydrogen, and (iv) a stable and long-term policy framework. Environmental life-cycle assessments indicate that emissions are nearly zero, but they also highlight serious concerns regarding freshwater usage, land occupation, and dependence on platinum group metals. Namibia, South Africa, and Kenya exhibit considerable promise in the early stages of development, while Niger demonstrates the feasibility of deploying modular, community-scale systems in challenging conditions. The study concludes that green hydrogen cannot be treated as an integrated solution but needs to be regarded as part of blended off-grid systems. To improve its role, targeted material innovation, blended finance, and policies bridging export-oriented applications to community-scale access must be established. It will then be feasible to ensure that hydrogen contributes meaningfully to the attainment of Sustainable Development Goal 7 in SSA. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

30 pages, 3145 KB  
Systematic Review
A Comprehensive Systematic Review of Precision Planting Mechanisation for Sesame: Agronomic Challenges, Technological Advances, and Integration of Simulation-Based Optimisation
by Gowrishankaran Raveendran, Ramadas Narayanan, Jung-Hoon Sul and Tieneke Trotter
AgriEngineering 2025, 7(9), 309; https://doi.org/10.3390/agriengineering7090309 - 22 Sep 2025
Viewed by 686
Abstract
The mechanisation of sesame (Sesamum indicum L.) planting remains a significant challenge due to the crop’s small, fragile seeds and non-uniform shape, which hinder the effectiveness of standard seeding systems. Crop emergence and production are adversely affected by poor singulation and uneven [...] Read more.
The mechanisation of sesame (Sesamum indicum L.) planting remains a significant challenge due to the crop’s small, fragile seeds and non-uniform shape, which hinder the effectiveness of standard seeding systems. Crop emergence and production are adversely affected by poor singulation and uneven seed distribution, which are frequently caused by conventional and general-purpose planting equipment. For sesame, consistency in seed distribution and emergence is very important, necessitating careful consideration of agronomic conditions as well as seed properties. This study was conducted as a systematic review following the PRISMA 2020 guidelines to critically evaluate the existing literature on advanced planting methods that prioritise precision, efficiency, and seed protection. A comprehensive search was conducted across Scopus, Web of Science, and Google Scholar for peer-reviewed studies published from 2000 to 2025. Studies focused on the agronomic parameters of sesame, planting technologies, and/or simulation integration, such as Discrete Element Modelling (DEM), were included in this review, and studies unrelated to sesame planting or not available in full text were excluded. The findings from these studies were analysed to examine the interaction between seed metering mechanisms and seed morphology, specifically seed thickness and shape variability. Agronomic parameters such as optimal seed spacing, sowing depth, and population density are analysed to guide the development of effective planting systems. The review also evaluates limitations in existing mechanised approaches while highlighting innovations in precision planting technology. These include optimised seed plate designs, vacuum-assisted metering systems, and simulation tools such as DEM for performance prediction and system refinement. A total of 22 studies were included and analysed using systematic narrative synthesis, grouped into agronomical, technological, and simulation-based themes. The studies were screened for methodological clarity, and reference list screening was performed to reduce reporting bias. In conclusion, the findings of this research support the development of crop-specific planting strategies tailored to meet the unique requirements of sesame production. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

Back to TopTop