Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,788)

Search Parameters:
Keywords = permeability enhancement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1777 KB  
Article
Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments
by Hee-Eun Woo, Valianto Rojulun Afif, Seongsik Park, Maheshkumar Prakash Patil, Ilwon Jeong, In-Cheol Lee, Jong-Oh Kim and Kyunghoi Kim
J. Mar. Sci. Eng. 2025, 13(9), 1723; https://doi.org/10.3390/jmse13091723 (registering DOI) - 6 Sep 2025
Abstract
Fine-grained intertidal sediments are typically characterized by low hydraulic conductivity and high nutrient loads, conditions that hinder biogeochemical recovery and exacerbate eutrophication. This study examined the feasibility of calcium-rich steel slag (SS) as a multifunctional capping material for improving both physical and chemical [...] Read more.
Fine-grained intertidal sediments are typically characterized by low hydraulic conductivity and high nutrient loads, conditions that hinder biogeochemical recovery and exacerbate eutrophication. This study examined the feasibility of calcium-rich steel slag (SS) as a multifunctional capping material for improving both physical and chemical properties of cohesive sediments. Short-term (24 h) column experiments with two slag dosages (25 g and 50 g) revealed that the higher dosage (SS50) increased sediment hydraulic conductivity by 113.2%, likely through Ca2+-mediated flocculation and enhanced pore connectivity. Phosphate (PO4-P) in pore water decreased by up to 64.1%, and effluent dissolved inorganic nitrogen (DIN) declined by 62.8%, indicating combined effects of Ca-driven precipitation, adsorption, and enhanced flushing. However, SS addition also raised pore water pH (to 11.8) and lowered redox potential, leading to transient phosphate release at the effluent boundary under reducing conditions. Cation analysis confirmed Ca2+ stability and Na+ reduction, suggesting improved sediment structural integrity. The results suggest that steel slag is a promising reactive capping material capable of enhancing permeability and controlling nutrient release in cohesive coastal sediments, yet further investigation into long-term ecological effects and dosage optimization is necessary. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 7016 KB  
Article
Stress-Barrier-Responsive Diverting Fracturing: Thermo-Uniform Fracture Control for CO2-Stimulated CBM Recovery
by Huaibin Zhen, Ersi Gao, Shuguang Li, Tengze Ge, Kai Wei, Yulong Liu and Ao Wang
Processes 2025, 13(9), 2855; https://doi.org/10.3390/pr13092855 - 5 Sep 2025
Abstract
Chinese coalbed methane (CBM) reservoirs exhibit characteristically low recovery rates due to adsorbed gas dominance and “three-low” properties (low permeability, low pressure, and low saturation). CO2 thermal drive (CTD) technology addresses this challenge by leveraging dual mechanisms—thermal desorption and displacement to enhance [...] Read more.
Chinese coalbed methane (CBM) reservoirs exhibit characteristically low recovery rates due to adsorbed gas dominance and “three-low” properties (low permeability, low pressure, and low saturation). CO2 thermal drive (CTD) technology addresses this challenge by leveraging dual mechanisms—thermal desorption and displacement to enhance production; however, its effectiveness necessitates uniform fracture networks for temperature field homogeneity—a requirement unmet by conventional long-fracture fracturing. To bridge this gap, a coupled seepage–heat–stress–fracture model was developed, and the temperature field evolution during CTD in coal under non-uniform fracture networks was determined. Integrating multi-cluster fracture propagation with stress barrier and intra-stage stress differential characteristics, a stress-barrier-responsive diverting fracturing technology meeting CTD requirements was established. Results demonstrate that high in situ stress and significant stress differentials induce asymmetric fracture propagation, generating detrimental CO2 channeling pathways and localized temperature cold islands that drastically reduce CTD efficiency. Further examination of multi-cluster fracture dynamics identifies stress shadow effects and intra-stage stress differentials as primary controlling factors. To overcome these constraints, an innovative fracture network uniformity control technique is proposed, leveraging synergistic interactions between diverting parameters and stress barriers through precise particle size gradation (16–18 mm targeting toe obstruction versus 19–21 mm sealing heel), optimized pumping displacements modulation (6 m3/min enhancing heel efficiency contrasted with 10 m3/min improving toe coverage), and calibrated diverting concentrations (34.6–46.2% ensuring uniform cluster intake). This methodology incorporates dynamic intra-stage adjustments where large-particle/low-rate combinations suppress toe flow in heel-dominant high-stress zones, small-particle/high-rate approaches control heel migration in toe-dominant high-stress zones, and elevated concentrations (57.7–69.2%) activate mid-cluster fractures in central high-stress zones—collectively establishing a tailored framework that facilitates precise flow regulation, enhances thermal conformance, and achieves dual thermal conduction and adsorption displacement objectives for CTD applications. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
18 pages, 1606 KB  
Article
Andesite and CO2-Saturated Water Interaction at Different Temperatures and Flow Rates Using a Flow-Through Reactor
by Heejun Yang, Akira Ueda, Hideki Kuramitz, Sakurako Satake, Kentaro Masuoka and Amane Terai
Geosciences 2025, 15(9), 351; https://doi.org/10.3390/geosciences15090351 - 5 Sep 2025
Abstract
This study aims to elucidate the geochemical reactions between CO2-saturated water and rocks in CO2-enhanced geothermal system (CO2-EGS) reservoirs by focusing on andesite found in island arc regions, such as Japan. Laboratory flow tests of CO2 [...] Read more.
This study aims to elucidate the geochemical reactions between CO2-saturated water and rocks in CO2-enhanced geothermal system (CO2-EGS) reservoirs by focusing on andesite found in island arc regions, such as Japan. Laboratory flow tests of CO2-saturated water (3 wt.% CO2) and rocks (particle size: 0.14–1 mm) were conducted under varying temperature (150–250 °C) and flow rate (0.3 and 1.0 mL/min) conditions using a flow-through reactor. Elevated temperatures enhanced the dissolution of silicate minerals, reflected by increased Na+, K+, Ca2+, and Si concentrations, whereas those of Fe2+ and Al3+ remained low, suggesting secondary mineral precipitation. The dissolution process was dominant at 150 °C. Al-bearing minerals, such as gibbsite and boehmite, as well as clay minerals, including beidellite and kaolinite, were predominant at higher temperatures (200–250 °C). Carbonate minerals were not observed, attributable to low pH and limited availability of divalent cations. Flow rate substantially influenced Si dissolution rates, with lower flow rates promoting longer residence times and higher Si dissolution rates. These results indicate that the test conditions simulate the environment around the injection well, where the fluid is acidic and dissolution is the main reaction in the rock. Although a small amount of secondary minerals precipitated and the Si dissolution rates were of the same order of magnitude as those for labradorite, it may be considered that andesite has less impact on permeability variations than basalt near the injection well in CO2-EGS reservoirs. Full article
22 pages, 682 KB  
Review
The Gut–Brain Axis in Brain Tumors: Insights into Tumor Development, Progression, and Therapy
by Sarah Adriana Scuderi, Alessio Ardizzone, Elsa Calcaterra, Nicoletta Palermo, Fabiola De Luca, Antonio Catalfamo, Emanuela Esposito and Anna Paola Capra
Biomedicines 2025, 13(9), 2172; https://doi.org/10.3390/biomedicines13092172 - 5 Sep 2025
Abstract
The gut–brain axis refers to the bidirectional communication network linking the gut microbiota and the central nervous system (CNS). Recent research has highlighted the critical role of gut microbiota in influencing brain health, neurogenesis, and neuroinflammation. In the context of brain tumors, especially [...] Read more.
The gut–brain axis refers to the bidirectional communication network linking the gut microbiota and the central nervous system (CNS). Recent research has highlighted the critical role of gut microbiota in influencing brain health, neurogenesis, and neuroinflammation. In the context of brain tumors, especially gliomas, the gut–brain axis plays a significant role in tumor development, progression, and response to therapy. Gut dysbiosis, characterized by an imbalance in microbiota composition, has been linked to chronic inflammation, immune suppression, and altered blood–brain barrier (BBB) permeability, key factors in glioma pathogenesis. Gut-derived metabolites such as short-chain fatty acids (SCFAs) and neurotransmitters can either promote or inhibit tumor growth, impacting the tumor microenvironment (TME) and immune responses. Emerging evidence suggests that microbiome modulation, through strategies such as probiotics, prebiotics, and dietary interventions, may enhance anti-tumor immunity and improve the efficacy of conventional treatments like chemotherapy, radiotherapy, and immunotherapy. This review examines the interactions between gut microbiota and brain tumors, focusing on how microbiota alterations may influence tumor biology and therapeutic outcomes. Understanding the mechanisms of the gut–brain axis could lead to novel adjunctive therapies in neuro-oncology, offering new prospects for personalized treatment strategies in brain tumor management. Full article
(This article belongs to the Section Cancer Biology and Oncology)
27 pages, 2162 KB  
Article
Performance Evaluation of Concrete Masonry Unit Mixtures Incorporating Citric Acid-Treated Corn Stover Ash and Alkalinized Corn Stover Fibers
by Mahmoud Shakouri and Ahmed A. Ahmed
Buildings 2025, 15(17), 3213; https://doi.org/10.3390/buildings15173213 - 5 Sep 2025
Abstract
This study investigates the potential of corn stover, an abundant agricultural byproduct, as a sustainable additive in concrete masonry units (CMUs). Preliminary trials were conducted to determine the optimal fiber length (~3 mm and ~10 mm), fiber content (0%, 1%, 3%, and 5% [...] Read more.
This study investigates the potential of corn stover, an abundant agricultural byproduct, as a sustainable additive in concrete masonry units (CMUs). Preliminary trials were conducted to determine the optimal fiber length (~3 mm and ~10 mm), fiber content (0%, 1%, 3%, and 5% by volume), and alkalinization method (soaking in 0.5 M NaOH, KOH, or synthetic concrete pore solution) for corn stover fibers (CSFs). The results indicated that short fibers treated with synthetic concrete pore solution yielded the best compressive strength and workability, and were thus selected for the main study. A novel mixture was developed by replacing 10% of cement with corn stover ash (CSA) and incorporating 1% alkaline-treated CSF by volume. The resulting blocks (termed “Corncrete”) were evaluated for mechanical and durability properties, including strength, water absorption, bulk and surface electrical resistivity, rapid chloride permeability (RCPT), and fire resistance. Compared to conventional CMUs, Corncrete exhibited an 11–13% reduction in 28- and 91-day compressive strength, though the difference was statistically insignificant. Physically, Corncrete had a 4.4% lower bulk density and a 7.9% higher total water absorption compared to the control. However, its water absorption rates at early stages were 32% and 48% lower, indicating better resistance to moisture uptake shortly after exposure. Durability tests revealed a 13.7% reduction in chloride ion permeability and a 33% increase in bulk and surface electrical resistivity after 90 days. Fire performance was comparable between the two mixtures, with both displaying ~10.5% mass loss and ~5% residual strength after high-temperature exposure. These findings demonstrate that Corncrete offers balanced mechanical performance and enhanced durability, making it a viable eco-friendly option for non-structural masonry applications. Full article
Show Figures

Figure 1

34 pages, 10857 KB  
Article
A Damage-Based Fully Coupled DFN Study of Fracture-Driven Interactions in Zipper Fracturing for Shale Gas Production
by Fushen Liu, Yang Mou, Fenggang Wen, Zhiguang Yao, Xinzheng Yi, Rui Xu and Nanlin Zhang
Energies 2025, 18(17), 4722; https://doi.org/10.3390/en18174722 - 4 Sep 2025
Abstract
As a significant energy source enabling the global energy transition, efficient shale gas development is critical for diversifying supplies and reducing carbon emissions. Zipper fracturing widely enhances the stimulated reservoir volume (SRV) by generating complex fracture networks of shale reservoirs. However, recent trends [...] Read more.
As a significant energy source enabling the global energy transition, efficient shale gas development is critical for diversifying supplies and reducing carbon emissions. Zipper fracturing widely enhances the stimulated reservoir volume (SRV) by generating complex fracture networks of shale reservoirs. However, recent trends of reduced well spacing and increased injection intensity have significantly intensified interwell interference, particularly fracture-driven interactions (FDIs), leading to early production decline and well integrity issues. This study develops a fully coupled hydro–mechanical–damage (HMD) numerical model incorporating an explicit discrete fracture network (DFN), opening and closure of fractures, and an aperture–permeability relationship to capture the nonlinear mechanical behavior of natural fractures and their role in FDIs. After model validation, sensitivity analyses are conducted. Results show that when the horizontal differential stress exceeds 12 MPa, fractures tend to propagate as single dominant planes due to stress concentration, increasing the risks of FDIs and reducing effective SRV. Increasing well spacing from 60 m to 110 m delays or eliminates FDIs while significantly improving reservoir stimulation. Fracture approach angle governs the interaction mechanisms between hydraulic and natural fractures, influencing the deflection and branching behavior of primary fractures. Injection rate exerts a dual influence on fracture extension and FDI risk, requiring an optimized balance between stimulation efficiency and interference control. This work enriches the multi-physics coupling theory of FDIs during fracturing processes, for better understanding the fracturing design and optimization in shale gas production. Full article
Show Figures

Figure 1

17 pages, 9993 KB  
Article
Evaluation of Tight Gas Reservoirs and Characteristics of Fracture Development: A Case Study of the He 8 Member in the Western Sulige Area, Ordos Basin
by Zhaoyu Zhang, Jingong Zhang, Zhiqiang Chen and Wanting Wang
Processes 2025, 13(9), 2838; https://doi.org/10.3390/pr13092838 - 4 Sep 2025
Abstract
This study focuses on the tight sandstone reservoirs of the He 8 Member (Lower Permian Shihezi Formation) in the western Sulige area, Ordos Basin. Multiple analytical methods were integrated, including core observation, thin-section analysis, X-ray diffraction (XRD), and rock mechanics experiments, to systematically [...] Read more.
This study focuses on the tight sandstone reservoirs of the He 8 Member (Lower Permian Shihezi Formation) in the western Sulige area, Ordos Basin. Multiple analytical methods were integrated, including core observation, thin-section analysis, X-ray diffraction (XRD), and rock mechanics experiments, to systematically evaluate the reservoir’s petrology, pore microstructure, physical properties, and fracture formation mechanisms. Results indicate that the reservoir is primarily composed of quartz arenite (78%), characterized by low porosity (avg. 5.5%) and permeability (avg. 0.15 mD). The pore system comprises dissolution pores, lithic dissolution pores, intergranular pores, and intercrystalline pores. Depositional microfacies significantly influence reservoir quality. Subaqueous distributary channel sands exhibit the best properties (porosity > 5%), followed by mouth bar deposits. The reservoir experienced intense compaction and siliceous cementation, which considerably reduced primary porosity. In contrast, dissolution and tectonic fracturing processes significantly enhanced reservoir quality. Rock mechanics tests reveal that highly heterogeneous rocks are more prone to fracturing under differential stress (σ1–σ3). These fractures considerably improve the flow capacity of tight reservoirs. Full article
Show Figures

Figure 1

30 pages, 7652 KB  
Article
Advancing Scaffold Architecture for Bone Tissue Engineering: A Comparative Study of 3D-Printed β-TCP Constructs in Dynamic Culture with pBMSC
by Yannick M. Sillmann, Ana M. P. Baggio, Pascal Eber, Benjamin R. Freedman, Cynthia Liu, Youssef Jounaidi, Alexander Schramm, Frank Wilde and Fernando P. S. Guastaldi
J. Funct. Biomater. 2025, 16(9), 327; https://doi.org/10.3390/jfb16090327 - 4 Sep 2025
Abstract
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation [...] Read more.
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation of porcine bone marrow-derived mesenchymal stem cells (pBMSCs) cultured in a rotational oxygen-permeable bioreactor system (ROBS). Three-dimensionally (3D) printed beta-tricalcium phosphate (β-TCP) scaffolds with pore sizes of 500 µm and 1000 µm were seeded with pBMSC and cultured for 7 and 14 days under dynamic perfusion conditions. Gene expression analysis revealed significantly higher levels of osteogenic markers (Runx2, BMP-2, ALP, Osx, Col1A1) in the 1000 µm group, particularly at the early time point, with the later-stage marker Osteocalcin (Ocl) rising faster and higher in the 1000 µm group, after a lower expression at 7 days. ALP activity assays corroborated these findings. Despite having lower mechanical strength, the 1000 µm scaffolds supported a homogeneous cell distribution and high viability across all regions. These results suggest that larger pore sizes enhance early osteogenic commitment by improving nutrient transport and fluid flow in dynamic culture. These findings also support the use of larger-pore scaffolds in bioreactor-based preconditioning strategies and underscore the clinical importance of promoting early osteogenic differentiation to reduce in vitro culture time, an essential consideration for the timely preparation of implantable grafts in bone tissue engineering. Full article
Show Figures

Figure 1

17 pages, 10795 KB  
Article
Lithofacies Characteristics of Point Bars and Their Control on Incremental Oil Recovery Distribution During Surfactant–Polymer Flooding: A Case Study from the Gudao Oilfield
by Xilei Liu, Changchun Guo, Qi Chen, Minghao Zhao and Yuming Liu
Energies 2025, 18(17), 4703; https://doi.org/10.3390/en18174703 - 4 Sep 2025
Abstract
Meandering river point bar sand bodies, serving as critical reservoir units, exhibit significant lithofacies heterogeneity that governs remaining oil distribution patterns. Taking the Guantao Formation in the Gudao Oilfield as an example, this study integrates core observation, pore-throat structure characterization, and numerical simulation [...] Read more.
Meandering river point bar sand bodies, serving as critical reservoir units, exhibit significant lithofacies heterogeneity that governs remaining oil distribution patterns. Taking the Guantao Formation in the Gudao Oilfield as an example, this study integrates core observation, pore-throat structure characterization, and numerical simulation to reveal lithofacies characteristics of point bar sand bodies and their controlling mechanisms on incremental oil recovery distribution during surfactant–polymer (SP) flooding. The results demonstrate that point bar lithofacies display planar grain-size fining from concave to convex banks, with vertical upward-fining sequences (point bar medium sandstone facies → fine sandstone facies → siltstone facies). Physical property variations among lithofacies lead to remaining oil enrichment in relatively low-permeability portions of fine sandstone facies and low-permeability siltstone facies after waterflooding. SP flooding significantly enhances remaining oil mobilization through a “lithofacies-controlled percolation—chemical synergy” coupling mechanisms. The petrophysical heterogeneity formed by vertical lithofacies assemblages in the reservoir directly governs the targeted zones of chemical agent action (with interfacial tension reduction preferentially occurring in high-permeability lithofacies, while viscosity control dominates sweep enhancement in low-permeability lithofacies). This results in a distinct spatial differentiation of the incremental oil recovery, characterized by a spindle-shaped sweep improvement zone and a dam-type displacement efficiency enhancement zone. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

29 pages, 8264 KB  
Review
Construction Biotechnology: Integrating Bacterial Systems into Civil Engineering Practices
by Olja Šovljanski, Ana Tomić, Tiana Milović, Vesna Bulatović, Aleksandra Ranitović, Dragoljub Cvetković and Siniša Markov
Microorganisms 2025, 13(9), 2051; https://doi.org/10.3390/microorganisms13092051 - 3 Sep 2025
Viewed by 222
Abstract
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 [...] Read more.
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 and a five-fold increase in annual output since 2020. Beyond bibliometric growth, technical studies have demonstrated the remarkable performance of bacterial systems: for example, microbial-induced calcium carbonate precipitation (MICP) can increase the compressive strength of treated soils by 60–70% and reduce permeability by more than 90% in field-scale trials. In concrete applications, bacterial self-healing has been shown to seal cracks up to 0.8 mm wide and improve water tightness by 70–90%. Similarly, biofilm-mediated corrosion barriers can extend the durability of reinforced steel by significantly reducing chloride ingress, while bacterial biopolymers such as xanthan gum and curdlan enhance soil cohesion and water retention in eco-grouting and erosion control. The novelty of this review lies in its interdisciplinary scope, integrating microbiological mechanisms, materials science, and engineering practice to highlight how bacterial processes can transition from laboratory models to real-world applications. By combining quantitative evidence with critical assessment of scalability, biosafety, and regulatory challenges, this paper provides a comprehensive framework that positions construction biotechnology as a transformative pathway towards low-carbon, adaptive, and resilient infrastructure systems. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

15 pages, 4743 KB  
Article
Upcycling Coffee Silverskin Waste into Functional Textile Coatings: Evaluation on Cotton, Lyocell, Wool, and Silk
by Agata Nolasco, Francesco Esposito, Teresa Cirillo, Augusta Silva and Carla Joana Silva
Coatings 2025, 15(9), 1033; https://doi.org/10.3390/coatings15091033 - 3 Sep 2025
Viewed by 151
Abstract
Agricultural and food by-products offer valuable opportunities for circular and bio-based innovation across sectors. In the textile industry, replacing fossil-based coatings with sustainable alternatives is increasingly urgent. This study evaluates the performance of a textile coating based on coffee silverskin (CS)—an abundant by-product [...] Read more.
Agricultural and food by-products offer valuable opportunities for circular and bio-based innovation across sectors. In the textile industry, replacing fossil-based coatings with sustainable alternatives is increasingly urgent. This study evaluates the performance of a textile coating based on coffee silverskin (CS)—an abundant by-product of coffee roasting—applied to four natural fibre substrates: cotton, lyocell, wool, and silk. A formulation combining 60% CS sludge (8% solids), treated by wet ball milling, with an aliphatic polyester-polyurethane dispersion was applied via knife coating. Standardised tests assessed mechanical resistance, air permeability, colour fastness, moisture management, and water repellency, including contact angle and drop absorption analyses. Results revealed that all substrates were compatible with the CS-based coating, which reduced air permeability and increased hydrophobicity. Notably, silk showed the most significant functional enhancement, transitioning from hydrophilic to waterproof with increased durability—indicating strong potential for technical applications such as outerwear and performance textiles. Given the renewable origin of both the substrate and coating, this study highlights the feasibility of valorising agri-food waste in high-performance, bio-based textile systems. These findings demonstrate the potential of CS as a bio-based coating for technical textiles, supporting the development of high-performance and sustainable materials within the textile industry. Full article
(This article belongs to the Special Issue Advances in Coated Fabrics and Textiles)
Show Figures

Figure 1

23 pages, 3480 KB  
Article
Research and Development of a CO2-Responsive TMPDA–SDS–SiO2 Gel System for Profile Control and Enhanced Oil Recovery
by Guojun Li, Meilong Fu, Jun Chen and Yuhao Zhu
Gels 2025, 11(9), 709; https://doi.org/10.3390/gels11090709 - 3 Sep 2025
Viewed by 129
Abstract
A CO2-responsive TMPDA–SDS–SiO2 gel system was developed and evaluated through formulation optimization, structural characterization, rheological testing, and core flooding experiments. The optimal formulation was identified as 7.39 wt% SDS, 1.69 wt% TMPDA, and 0.1 wt% SiO2, achieving post-CO [...] Read more.
A CO2-responsive TMPDA–SDS–SiO2 gel system was developed and evaluated through formulation optimization, structural characterization, rheological testing, and core flooding experiments. The optimal formulation was identified as 7.39 wt% SDS, 1.69 wt% TMPDA, and 0.1 wt% SiO2, achieving post-CO2 viscosities above 103–104 mPa·s. Spectroscopic and microscopic analyses confirmed that CO2 protonates TMPDA amine groups to form carbamate/bicarbonate species, which drive the micellar transformation into a wormlike network, thereby enhancing gelation and viscosity. Rheological tests showed severe shear-thinning behavior, excellent shear recovery, and reversible viscosity changes under alternating CO2/N2 injection. The gel demonstrated rapid responsiveness, reaching stable viscosities within 8 min, and maintained good performance after 60 days of thermal aging at 90 °C and in high-salinity brines. Plugging tests in sand-packed tubes revealed that a permeability reduction of 98.9% could be achieved at 0.15 PV injection. In heterogeneous parallel core flooding experiments, the gel preferentially reduced high-permeability channel conductivity, improved sweep efficiency in low-permeability zones, and increased incremental oil recovery by 14.28–34.38% depending on the permeability contrast. These findings indicate that the CO2-responsive TMPDA–SDS–SiO2 gel system offers promising potential as a novel smart blocking gel system for improving the effectiveness of CO2 flooding in heterogeneous reservoirs. Full article
Show Figures

Figure 1

53 pages, 8996 KB  
Article
Development of an Innovative Nanosystem Based on Functionalized Albumin and Oxidized Gellan for the Synergistic Delivery of Curcumin and Temozolomide in the Treatment of Brain Cancer
by Camelia Elena Iurciuc (Tincu), Gabriela Vochița, Daniela Gherghel, Cosmin-Teodor Mihai, Silvia Vasiliu, Ștefania Racoviță, Anca Niculina Cadinoiu, Corina Lenuța Logigan, Mihaela Hamcerencu, Florin Mitu, Marcel Popa and Lăcrămioara Ochiuz
Gels 2025, 11(9), 708; https://doi.org/10.3390/gels11090708 - 3 Sep 2025
Viewed by 81
Abstract
Treating brain cancer remains challenging due to the blood–brain barrier (BBB) and the systemic toxicity of chemotherapy. This study focuses on developing human serum albumin (HSA) nanoparticles modified with low-molecular-weight protamine (LMWP) to improve crossing the BBB and enable targeted delivery of curcumin [...] Read more.
Treating brain cancer remains challenging due to the blood–brain barrier (BBB) and the systemic toxicity of chemotherapy. This study focuses on developing human serum albumin (HSA) nanoparticles modified with low-molecular-weight protamine (LMWP) to improve crossing the BBB and enable targeted delivery of curcumin and temozolomide (TMZ). Nanoparticle stability was enhanced by crosslinking with aldehyde groups from oxidized gellan (OG). The successful attachment of LMWP to HSA at the thiol group of Cys34 was confirmed through FT-IR and 1H-NMR analyses. Most self-assembled nanoparticles were smaller than 200 nm in diameter. Curcumin showed higher encapsulation efficiency than TMZ. In vitro drug release was pH-dependent: curcumin released more at pH 7.4, while TMZ release was better at pH 4. Higher crosslinking degrees reduced drug release. Cytotoxicity assays on V79-4 (normal) and C6 (glioma) cell lines showed increased apoptosis and significantly lower IC50 values for co-encapsulated formulations, indicating a synergistic effect. Curcumin’s antioxidant activity was maintained and protected from UV degradation by the polymer matrix. The parallel artificial membrane permeability assay (PAMPA) confirmed that the functionalized formulations with co-encapsulated drugs could cross the BBB. Hemocompatibility studies indicated a favorable profile for intravenous use. Full article
Show Figures

Graphical abstract

17 pages, 4855 KB  
Article
The Combined Use of Fly Ash and Lime to Stabilize a Clayey Soil: A Sustainable and Promising Approach
by Marta Di Sante, Muhammad Khizar Khan, Luca Calò, Evelina Fratalocchi and Francesco Mazzieri
Geosciences 2025, 15(9), 346; https://doi.org/10.3390/geosciences15090346 - 3 Sep 2025
Viewed by 168
Abstract
The aim of the present note is to contribute to the search for sustainable binders to be used for soil stabilization purposes. Fly ash and quicklime are added to a clayey soil of low plasticity in different proportions; samples were prepared by wet [...] Read more.
The aim of the present note is to contribute to the search for sustainable binders to be used for soil stabilization purposes. Fly ash and quicklime are added to a clayey soil of low plasticity in different proportions; samples were prepared by wet mixing and Standard Proctor compaction of the soil–water–binder mixture. Permeability tests were carried out for the first 28 days of curing, varying the moulding water content of the investigated samples. Compressibility was evaluated through one-dimensional consolidation tests performed after 7 days of curing and shear strength was investigated at the same curing time. Reactions development was successfully monitored by measuring pH and small strain shear modulus by means of bender elements testing for the first 28 days of curing. Microstructural investigation through scanning electron microscope and Energy dispersive X-Ray Spectroscopy revealed the presence of pozzolanic products in the mixture, reflecting the reduction in compressibility and the improvement in the mechanical characteristics of the soil of concern, after the treatment. The addition of the combination of fly ash and quicklime allowed to enhance the draining capability of the mixtures, especially when the mixture is compacted at optimum water content. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

17 pages, 8152 KB  
Article
Decision Tree-Based Evaluation and Classification of Chemical Flooding Well Groups for Medium-Thick Sandstone Reservoirs
by Zuhua Dong, Man Li, Mingjun Zhang, Can Yang, Lintian Zhao, Zengyuan Zhou, Shuqin Zhang and Chenyu Zheng
Energies 2025, 18(17), 4672; https://doi.org/10.3390/en18174672 - 3 Sep 2025
Viewed by 197
Abstract
Targeting the classification and evaluation of chemical flooding well groups in medium-thick sandstone reservoirs (single-layer thickness: 5–15 m), this study proposes a multi-level classification model based on decision trees. Through the comprehensive analysis of key static factors influencing chemical flooding efficiency, a four-tier [...] Read more.
Targeting the classification and evaluation of chemical flooding well groups in medium-thick sandstone reservoirs (single-layer thickness: 5–15 m), this study proposes a multi-level classification model based on decision trees. Through the comprehensive analysis of key static factors influencing chemical flooding efficiency, a four-tier classification index system was established, comprising: interlayer/baffle development frequency (Level 1), thickness-weighted permeability rush coefficient (Level 2), reservoir rhythm characteristics (Level 3), and pore-throat radius-based reservoir connectivity quality (Level 4) as its core components. The model innovatively transforms common reservoir physical parameters (porosity and permeability) into pore-throat radius parameters to enhance guidance for polymer molecular weight design, while employing a thickness-weighted permeability rush coefficient to simultaneously characterize heterogeneity impacts from both permeability and thickness variations. Unlike existing classification methods primarily designed for thin-interbedded reservoirs—which consider only connectivity or apply fuzzy mathematics-based normalization—this model specifically addresses medium-thick reservoirs’ unique challenges of interlayer development and intra-layer heterogeneity. Furthermore, its decision tree architecture clarifies classification logic and significantly reduces data preprocessing complexity. In terms of engineering practicality, the classification results are directly linked to well-group development bottlenecks, as validated in the J16 field application. By implementing customized chemical flooding formulations tailored to the study area, the production performance in the expansion zone achieved comprehensive improvement: daily oil output dropped from 332 tons to 243 tons, then recovered to 316 tons with sustained stabilization. Concurrently, recognizing that interlayer barriers were underdeveloped in certain well groups during production layer realignment, coupled with strong vertical heterogeneity posing polymer channeling risks, targeted profile modification and zonal injection were implemented prior to flooding conversion. This intervention elevated industrial replacement flooding production in the study area from 69 tons to 145 tons daily post-conversion. This framework provides a theoretical foundation for optimizing chemical flooding pilot well-group selection, scheme design, and dynamic adjustments, offering significant implications for enhancing oil recovery in medium-thick sandstone reservoirs through chemical flooding. Full article
(This article belongs to the Special Issue Coal, Oil and Gas: Lastest Advances and Propects)
Show Figures

Figure 1

Back to TopTop